File: recurrent.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (950 lines) | stat: -rw-r--r-- 44,741 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L239)</span>
### RNN

```python
keras.engine.base_layer.wrapped_fn()
```

Base class for recurrent layers.

__Arguments__

- __cell__: A RNN cell instance. A RNN cell is a class that has:
    - a `call(input_at_t, states_at_t)` method, returning
        `(output_at_t, states_at_t_plus_1)`. The call method of the
        cell can also take the optional argument `constants`, see
        section "Note on passing external constants" below.
    - a `state_size` attribute. This can be a single integer
        (single state) in which case it is
        the size of the recurrent state
        (which should be the same as the size of the cell output).
        This can also be a list/tuple of integers
        (one size per state).
    - a `output_size` attribute. This can be a single integer or a
        TensorShape, which represent the shape of the output. For
        backward compatible reason, if this attribute is not available
        for the cell, the value will be inferred by the first element
        of the `state_size`.

    It is also possible for `cell` to be a list of RNN cell instances,
    in which cases the cells get stacked one after the other in the RNN,
    implementing an efficient stacked RNN.

- __return_sequences__: Boolean. Whether to return the last output
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output.
- __go_backwards__: Boolean (default False).
    If True, process the input sequence backwards and return the
    reversed sequence.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
- __unroll__: Boolean (default False).
    If True, the network will be unrolled,
    else a symbolic loop will be used.
    Unrolling can speed-up a RNN,
    although it tends to be more memory-intensive.
    Unrolling is only suitable for short sequences.
- __input_dim__: dimensionality of the input (integer).
    This argument (or alternatively,
    the keyword argument `input_shape`)
    is required when using this layer as the first layer in a model.
- __input_length__: Length of input sequences, to be specified
    when it is constant.
    This argument is required if you are going to connect
    `Flatten` then `Dense` layers upstream
    (without it, the shape of the dense outputs cannot be computed).
    Note that if the recurrent layer is not the first layer
    in your model, you would need to specify the input length
    at the level of the first layer
    (e.g. via the `input_shape` argument)

__Input shape__

3D tensor with shape `(batch_size, timesteps, input_dim)`.

__Output shape__

- if `return_state`: a list of tensors. The first tensor is
    the output. The remaining tensors are the last states,
    each with shape `(batch_size, units)`. For example, the number of
    state tensors is 1 (for RNN and GRU) or 2 (for LSTM).
- if `return_sequences`: 3D tensor with shape
    `(batch_size, timesteps, units)`.
- else, 2D tensor with shape `(batch_size, units)`.

__Masking__

This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.

__Note on using statefulness in RNNs__

You can set RNN layers to be 'stateful', which means that the states
computed for the samples in one batch will be reused as initial states
for the samples in the next batch. This assumes a one-to-one mapping
between samples in different successive batches.

To enable statefulness:
- specify `stateful=True` in the layer constructor.
- specify a fixed batch size for your model, by passing
if sequential model:
`batch_input_shape=(...)` to the first layer in your model.
else for functional model with 1 or more Input layers:
`batch_shape=(...)` to all the first layers in your model.
This is the expected shape of your inputs
*including the batch size*.
It should be a tuple of integers, e.g. `(32, 10, 100)`.
- specify `shuffle=False` when calling fit().

To reset the states of your model, call `.reset_states()` on either
a specific layer, or on your entire model.

__Note on specifying the initial state of RNNs__

You can specify the initial state of RNN layers symbolically by
calling them with the keyword argument `initial_state`. The value of
`initial_state` should be a tensor or list of tensors representing
the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by
calling `reset_states` with the keyword argument `states`. The value of
`states` should be a numpy array or list of numpy arrays representing
the initial state of the RNN layer.

__Note on passing external constants to RNNs__

You can pass "external" constants to the cell using the `constants`
keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This
requires that the `cell.call` method accepts the same keyword argument
`constants`. Such constants can be used to condition the cell
transformation on additional static inputs (not changing over time),
a.k.a. an attention mechanism.

__Examples__


```python
# First, let's define a RNN Cell, as a layer subclass.

class MinimalRNNCell(keras.layers.Layer):

    def __init__(self, units, **kwargs):
        self.units = units
        self.state_size = units
        super(MinimalRNNCell, self).__init__(**kwargs)

    def build(self, input_shape):
        self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
                                      initializer='uniform',
                                      name='kernel')
        self.recurrent_kernel = self.add_weight(
            shape=(self.units, self.units),
            initializer='uniform',
            name='recurrent_kernel')
        self.built = True

    def call(self, inputs, states):
        prev_output = states[0]
        h = K.dot(inputs, self.kernel)
        output = h + K.dot(prev_output, self.recurrent_kernel)
        return output, [output]

# Let's use this cell in a RNN layer:

cell = MinimalRNNCell(32)
x = keras.Input((None, 5))
layer = RNN(cell)
y = layer(x)

# Here's how to use the cell to build a stacked RNN:

cells = [MinimalRNNCell(32), MinimalRNNCell(64)]
x = keras.Input((None, 5))
layer = RNN(cells)
y = layer(x)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L972)</span>
### SimpleRNN

```python
keras.layers.SimpleRNN(units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)
```

Fully-connected RNN where the output is to be fed back to input.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
- __return_sequences__: Boolean. Whether to return the last output
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output.
- __go_backwards__: Boolean (default False).
    If True, process the input sequence backwards and return the
    reversed sequence.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
- __unroll__: Boolean (default False).
    If True, the network will be unrolled,
    else a symbolic loop will be used.
    Unrolling can speed-up a RNN,
    although it tends to be more memory-intensive.
    Unrolling is only suitable for short sequences.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L1519)</span>
### GRU

```python
keras.layers.GRU(units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=2, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, reset_after=False)
```

Gated Recurrent Unit - Cho et al. 2014.

There are two variants. The default one is based on 1406.1078v3 and
has reset gate applied to hidden state before matrix multiplication. The
other one is based on original 1406.1078v1 and has the order reversed.

The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for `kernel` and
`recurrent_kernel`. Use `'reset_after'=True` and
`recurrent_activation='sigmoid'`.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
    Default: hard sigmoid (`hard_sigmoid`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
- __implementation__: Implementation mode, either 1 or 2.
    Mode 1 will structure its operations as a larger number of
    smaller dot products and additions, whereas mode 2 will
    batch them into fewer, larger operations. These modes will
    have different performance profiles on different hardware and
    for different applications.
- __return_sequences__: Boolean. Whether to return the last output
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output.
- __go_backwards__: Boolean (default False).
    If True, process the input sequence backwards and return the
    reversed sequence.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
- __unroll__: Boolean (default False).
    If True, the network will be unrolled,
    else a symbolic loop will be used.
    Unrolling can speed-up a RNN,
    although it tends to be more memory-intensive.
    Unrolling is only suitable for short sequences.
- __reset_after__: GRU convention (whether to apply reset gate after or
    before matrix multiplication). False = "before" (default),
    True = "after" (CuDNN compatible).

__References__

- [Learning Phrase Representations using RNN Encoder-Decoder for
   Statistical Machine Translation](https://arxiv.org/abs/1406.1078)
- [On the Properties of Neural Machine Translation:
   Encoder-Decoder Approaches](https://arxiv.org/abs/1409.1259)
- [Empirical Evaluation of Gated Recurrent Neural Networks on
   Sequence Modeling](https://arxiv.org/abs/1412.3555v1)
- [A Theoretically Grounded Application of Dropout in
   Recurrent Neural Networks](https://arxiv.org/abs/1512.05287)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L2081)</span>
### LSTM

```python
keras.layers.LSTM(units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=2, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)
```

Long Short-Term Memory layer - Hochreiter 1997.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
    Default: hard sigmoid (`hard_sigmoid`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs.
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state.
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __unit_forget_bias__: Boolean.
    If True, add 1 to the bias of the forget gate at initialization.
    Setting it to true will also force `bias_initializer="zeros"`.
    This is recommended in [Jozefowicz et al. (2015)](
    http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
- __implementation__: Implementation mode, either 1 or 2.
    Mode 1 will structure its operations as a larger number of
    smaller dot products and additions, whereas mode 2 will
    batch them into fewer, larger operations. These modes will
    have different performance profiles on different hardware and
    for different applications.
- __return_sequences__: Boolean. Whether to return the last output
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output. The returned elements of the
    states list are the hidden state and the cell state, respectively.
- __go_backwards__: Boolean (default False).
    If True, process the input sequence backwards and return the
    reversed sequence.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
- __unroll__: Boolean (default False).
    If True, the network will be unrolled,
    else a symbolic loop will be used.
    Unrolling can speed-up a RNN,
    although it tends to be more memory-intensive.
    Unrolling is only suitable for short sequences.

__References__

- [Long short-term memory](
  http://www.bioinf.jku.at/publications/older/2604.pdf)
- [Learning to forget: Continual prediction with LSTM](
  http://www.mitpressjournals.org/doi/pdf/10.1162/089976600300015015)
- [Supervised sequence labeling with recurrent neural networks](
  http://www.cs.toronto.edu/~graves/preprint.pdf)
- [A Theoretically Grounded Application of Dropout in
   Recurrent Neural Networks](https://arxiv.org/abs/1512.05287)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/convolutional_recurrent.py#L795)</span>
### ConvLSTM2D

```python
keras.layers.ConvLSTM2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, go_backwards=False, stateful=False, dropout=0.0, recurrent_dropout=0.0)
```

Convolutional LSTM.

It is similar to an LSTM layer, but the input transformations
and recurrent transformations are both convolutional.

__Arguments__

- __filters__: Integer, the dimensionality of the output space
    (i.e. the number output of filters in the convolution).
- __kernel_size__: An integer or tuple/list of n integers, specifying the
    dimensions of the convolution window.
- __strides__: An integer or tuple/list of n integers,
    specifying the strides of the convolution.
    Specifying any stride value != 1 is incompatible with specifying
    any `dilation_rate` value != 1.
- __padding__: One of `"valid"` or `"same"` (case-insensitive).
- __data_format__: A string,
    one of `"channels_last"` (default) or `"channels_first"`.
    The ordering of the dimensions in the inputs.
    `"channels_last"` corresponds to inputs with shape
    `(batch, time, ..., channels)`
    while `"channels_first"` corresponds to
    inputs with shape `(batch, time, channels, ...)`.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be `"channels_last"`.
- __dilation_rate__: An integer or tuple/list of n integers, specifying
    the dilation rate to use for dilated convolution.
    Currently, specifying any `dilation_rate` value != 1 is
    incompatible with specifying any `strides` value != 1.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs.
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state.
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __unit_forget_bias__: Boolean.
    If True, add 1 to the bias of the forget gate at initialization.
    Use in combination with `bias_initializer="zeros"`.
    This is recommended in [Jozefowicz et al. (2015)](
    http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __return_sequences__: Boolean. Whether to return the last output
    in the output sequence, or the full sequence.
- __go_backwards__: Boolean (default False).
    If True, process the input sequence backwards.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.

__Input shape__

- if data_format='channels_first'
    5D tensor with shape:
    `(samples, time, channels, rows, cols)`
- if data_format='channels_last'
    5D tensor with shape:
    `(samples, time, rows, cols, channels)`

__Output shape__

- if `return_sequences`
     - if data_format='channels_first'
        5D tensor with shape:
        `(samples, time, filters, output_row, output_col)`
     - if data_format='channels_last'
        5D tensor with shape:
        `(samples, time, output_row, output_col, filters)`
- else
    - if data_format='channels_first'
        4D tensor with shape:
        `(samples, filters, output_row, output_col)`
    - if data_format='channels_last'
        4D tensor with shape:
        `(samples, output_row, output_col, filters)`

    where o_row and o_col depend on the shape of the filter and
    the padding

__Raises__

- __ValueError__: in case of invalid constructor arguments.

__References__

- [Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting](http://arxiv.org/abs/1506.04214v1)
  The current implementation does not include the feedback loop on the
  cells output
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/convolutional_recurrent.py#L479)</span>
### ConvLSTM2DCell

```python
keras.layers.ConvLSTM2DCell(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)
```

Cell class for the ConvLSTM2D layer.

__Arguments__

- __filters__: Integer, the dimensionality of the output space
    (i.e. the number of output filters in the convolution).
- __kernel_size__: An integer or tuple/list of n integers, specifying the
    dimensions of the convolution window.
- __strides__: An integer or tuple/list of n integers,
    specifying the strides of the convolution.
    Specifying any stride value != 1 is incompatible with specifying
    any `dilation_rate` value != 1.
- __padding__: One of `"valid"` or `"same"` (case-insensitive).
- __data_format__: A string,
    one of `"channels_last"` (default) or `"channels_first"`.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be `"channels_last"`.
- __dilation_rate__: An integer or tuple/list of n integers, specifying
    the dilation rate to use for dilated convolution.
    Currently, specifying any `dilation_rate` value != 1 is
    incompatible with specifying any `strides` value != 1.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs.
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state.
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __unit_forget_bias__: Boolean.
    If True, add 1 to the bias of the forget gate at initialization.
    Use in combination with `bias_initializer="zeros"`.
    This is recommended in [Jozefowicz et al. (2015)](
    http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L807)</span>
### SimpleRNNCell

```python
keras.layers.SimpleRNNCell(units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)
```

Cell class for SimpleRNN.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L1191)</span>
### GRUCell

```python
keras.layers.GRUCell(units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=2, reset_after=False)
```

Cell class for the GRU layer.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
    Default: hard sigmoid (`hard_sigmoid`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
- __implementation__: Implementation mode, either 1 or 2.
    Mode 1 will structure its operations as a larger number of
    smaller dot products and additions, whereas mode 2 will
    batch them into fewer, larger operations. These modes will
    have different performance profiles on different hardware and
    for different applications.
- __reset_after__: GRU convention (whether to apply reset gate after or
    before matrix multiplication). False = "before" (default),
    True = "after" (CuDNN compatible).
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L1793)</span>
### LSTMCell

```python
keras.layers.LSTMCell(units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=2)
```

Cell class for the LSTM layer.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    Default: hyperbolic tangent (`tanh`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __recurrent_activation__: Activation function to use
    for the recurrent step
    (see [activations](../activations.md)).
    Default: hard sigmoid (`hard_sigmoid`).
    If you pass `None`, no activation is applied
    (ie. "linear" activation: `a(x) = x`).x
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __unit_forget_bias__: Boolean.
    If True, add 1 to the bias of the forget gate at initialization.
    Setting it to true will also force `bias_initializer="zeros"`.
    This is recommended in [Jozefowicz et al. (2015)](
    http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the inputs.
- __recurrent_dropout__: Float between 0 and 1.
    Fraction of the units to drop for
    the linear transformation of the recurrent state.
- __implementation__: Implementation mode, either 1 or 2.
    Mode 1 will structure its operations as a larger number of
    smaller dot products and additions, whereas mode 2 will
    batch them into fewer, larger operations. These modes will
    have different performance profiles on different hardware and
    for different applications.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/cudnn_recurrent.py#L135)</span>
### CuDNNGRU

```python
keras.layers.CuDNNGRU(units, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, return_state=False, stateful=False)
```

Fast GRU implementation backed by [CuDNN](https://developer.nvidia.com/cudnn).

Can only be run on GPU, with the TensorFlow backend.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs.
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state.
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __return_sequences__: Boolean. Whether to return the last output.
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/cudnn_recurrent.py#L328)</span>
### CuDNNLSTM

```python
keras.layers.CuDNNLSTM(units, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, return_state=False, stateful=False)
```

Fast LSTM implementation with [CuDNN](https://developer.nvidia.com/cudnn).

Can only be run on GPU, with the TensorFlow backend.

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __kernel_initializer__: Initializer for the `kernel` weights matrix,
    used for the linear transformation of the inputs.
    (see [initializers](../initializers.md)).
- __recurrent_initializer__: Initializer for the `recurrent_kernel`
    weights matrix,
    used for the linear transformation of the recurrent state.
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __unit_forget_bias__: Boolean.
    If True, add 1 to the bias of the forget gate at initialization.
    Setting it to true will also force `bias_initializer="zeros"`.
    This is recommended in [Jozefowicz et al. (2015)](
    http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __recurrent_regularizer__: Regularizer function applied to
    the `recurrent_kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __recurrent_constraint__: Constraint function applied to
    the `recurrent_kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).
- __return_sequences__: Boolean. Whether to return the last output.
    in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
    in addition to the output.
- __stateful__: Boolean (default False). If True, the last state
    for each sample at index i in a batch will be used as initial
    state for the sample of index i in the following batch.