File: losses.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (200 lines) | stat: -rw-r--r-- 3,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

## Usage of loss functions

A loss function (or objective function, or optimization score function) is one of the two parameters required to compile a model:

```python
model.compile(loss='mean_squared_error', optimizer='sgd')
```

```python
from keras import losses

model.compile(loss=losses.mean_squared_error, optimizer='sgd')
```

You can either pass the name of an existing loss function, or pass a TensorFlow/Theano symbolic function that returns a scalar for each data-point and takes the following two arguments:

- __y_true__: True labels. TensorFlow/Theano tensor.
- __y_pred__: Predictions. TensorFlow/Theano tensor of the same shape as y_true.

The actual optimized objective is the mean of the output array across all datapoints.

For a few examples of such functions, check out the [losses source](https://github.com/keras-team/keras/blob/master/keras/losses.py).

## Available loss functions

### mean_squared_error


```python
keras.losses.mean_squared_error(y_true, y_pred)
```

----

### mean_absolute_error


```python
keras.losses.mean_absolute_error(y_true, y_pred)
```

----

### mean_absolute_percentage_error


```python
keras.losses.mean_absolute_percentage_error(y_true, y_pred)
```

----

### mean_squared_logarithmic_error


```python
keras.losses.mean_squared_logarithmic_error(y_true, y_pred)
```

----

### squared_hinge


```python
keras.losses.squared_hinge(y_true, y_pred)
```

----

### hinge


```python
keras.losses.hinge(y_true, y_pred)
```

----

### categorical_hinge


```python
keras.losses.categorical_hinge(y_true, y_pred)
```

----

### logcosh


```python
keras.losses.logcosh(y_true, y_pred)
```


Logarithm of the hyperbolic cosine of the prediction error.

`log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.

__Arguments__

- __y_true__: tensor of true targets.
- __y_pred__: tensor of predicted targets.

__Returns__

Tensor with one scalar loss entry per sample.
    
----

### huber_loss


```python
keras.losses.huber_loss(y_true, y_pred, delta=1.0)
```

----

### categorical_crossentropy


```python
keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
```

----

### sparse_categorical_crossentropy


```python
keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
```

----

### binary_crossentropy


```python
keras.losses.binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
```

----

### kullback_leibler_divergence


```python
keras.losses.kullback_leibler_divergence(y_true, y_pred)
```

----

### poisson


```python
keras.losses.poisson(y_true, y_pred)
```

----

### cosine_proximity


```python
keras.losses.cosine_proximity(y_true, y_pred, axis=-1)
```

----

### is_categorical_crossentropy


```python
keras.losses.is_categorical_crossentropy(loss)
```


----

**Note**: when using the `categorical_crossentropy` loss, your targets should be in categorical format (e.g. if you have 10 classes, the target for each sample should be a 10-dimensional vector that is all-zeros except for a 1 at the index corresponding to the class of the sample). In order to convert *integer targets* into *categorical targets*, you can use the Keras utility `to_categorical`:

```python
from keras.utils import to_categorical

categorical_labels = to_categorical(int_labels, num_classes=None)
```

When using the `sparse_categorical_crossentropy` loss, your targets should be *integer targets*.
If you have categorical targets, you should use `categorical_crossentropy`.

`categorical_crossentropy` is another term for [multi-class log loss](http://wiki.fast.ai/index.php/Log_Loss).