File: image.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (603 lines) | stat: -rw-r--r-- 22,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

# Image Preprocessing

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/preprocessing/image.py#L238)</span>
## ImageDataGenerator class

```python
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format='channels_last', validation_split=0.0, interpolation_order=1, dtype='float32')
```

Generate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).

__Arguments__

- __featurewise_center__: Boolean.
    Set input mean to 0 over the dataset, feature-wise.
- __samplewise_center__: Boolean. Set each sample mean to 0.
- __featurewise_std_normalization__: Boolean.
    Divide inputs by std of the dataset, feature-wise.
- __samplewise_std_normalization__: Boolean. Divide each input by its std.
- __zca_epsilon__: epsilon for ZCA whitening. Default is 1e-6.
- __zca_whitening__: Boolean. Apply ZCA whitening.
- __rotation_range__: Int. Degree range for random rotations.
- __width_shift_range__: Float, 1-D array-like or int
    - float: fraction of total width, if < 1, or pixels if >= 1.
    - 1-D array-like: random elements from the array.
    - int: integer number of pixels from interval
        `(-width_shift_range, +width_shift_range)`
    - With `width_shift_range=2` possible values
        are integers `[-1, 0, +1]`,
        same as with `width_shift_range=[-1, 0, +1]`,
        while with `width_shift_range=1.0` possible values are floats
        in the interval [-1.0, +1.0).
- __height_shift_range__: Float, 1-D array-like or int
    - float: fraction of total height, if < 1, or pixels if >= 1.
    - 1-D array-like: random elements from the array.
    - int: integer number of pixels from interval
        `(-height_shift_range, +height_shift_range)`
    - With `height_shift_range=2` possible values
        are integers `[-1, 0, +1]`,
        same as with `height_shift_range=[-1, 0, +1]`,
        while with `height_shift_range=1.0` possible values are floats
        in the interval [-1.0, +1.0).
- __brightness_range__: Tuple or list of two floats. Range for picking
    a brightness shift value from.
- __shear_range__: Float. Shear Intensity
    (Shear angle in counter-clockwise direction in degrees)
- __zoom_range__: Float or [lower, upper]. Range for random zoom.
    If a float, `[lower, upper] = [1-zoom_range, 1+zoom_range]`.
- __channel_shift_range__: Float. Range for random channel shifts.
- __fill_mode__: One of {"constant", "nearest", "reflect" or "wrap"}.
    Default is 'nearest'.
    Points outside the boundaries of the input are filled
    according to the given mode:
    - 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)
    - 'nearest':  aaaaaaaa|abcd|dddddddd
    - 'reflect':  abcddcba|abcd|dcbaabcd
    - 'wrap':  abcdabcd|abcd|abcdabcd
- __cval__: Float or Int.
    Value used for points outside the boundaries
    when `fill_mode = "constant"`.
- __horizontal_flip__: Boolean. Randomly flip inputs horizontally.
- __vertical_flip__: Boolean. Randomly flip inputs vertically.
- __rescale__: rescaling factor. Defaults to None.
    If None or 0, no rescaling is applied,
    otherwise we multiply the data by the value provided
    (after applying all other transformations).
- __preprocessing_function__: function that will be applied on each input.
    The function will run after the image is resized and augmented.
    The function should take one argument:
    one image (Numpy tensor with rank 3),
    and should output a Numpy tensor with the same shape.
- __data_format__: Image data format,
    either "channels_first" or "channels_last".
    "channels_last" mode means that the images should have shape
    `(samples, height, width, channels)`,
    "channels_first" mode means that the images should have shape
    `(samples, channels, height, width)`.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be "channels_last".
- __validation_split__: Float. Fraction of images reserved for validation
    (strictly between 0 and 1).
- __dtype__: Dtype to use for the generated arrays.

__Examples__

Example of using `.flow(x, y)`:

```python
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)

datagen = ImageDataGenerator(
    featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)

# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)

# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
                    steps_per_epoch=len(x_train) / 32, epochs=epochs)

# here's a more "manual" example
for e in range(epochs):
    print('Epoch', e)
    batches = 0
    for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
        model.fit(x_batch, y_batch)
        batches += 1
        if batches >= len(x_train) / 32:
            # we need to break the loop by hand because
            # the generator loops indefinitely
            break
```
Example of using `.flow_from_directory(directory)`:

```python
train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        'data/train',
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        'data/validation',
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

model.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=50,
        validation_data=validation_generator,
        validation_steps=800)
```

Example of transforming images and masks together.

```python
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
                     featurewise_std_normalization=True,
                     rotation_range=90,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)

# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)

image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
    train_generator,
    steps_per_epoch=2000,
    epochs=50)
```

Example of using ```.flow_from_dataframe(dataframe, directory,
```:

```python

train_df = pandas.read_csv("./train.csv")
valid_df = pandas.read_csv("./valid.csv")

train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_dataframe(
        dataframe=train_df,
        directory='data/train',
        x_col="filename",
        y_col="class",
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

validation_generator = test_datagen.flow_from_dataframe(
        dataframe=valid_df,
        directory='data/validation',
        x_col="filename",
        y_col="class",
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

model.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=50,
        validation_data=validation_generator,
        validation_steps=800)
```


---
## ImageDataGenerator methods

### apply_transform


```python
apply_transform(x, transform_parameters)
```


Applies a transformation to an image according to given parameters.

__Arguments__

- __x__: 3D tensor, single image.
- __transform_parameters__: Dictionary with string - parameter pairs
    describing the transformation.
    Currently, the following parameters
    from the dictionary are used:
    - `'theta'`: Float. Rotation angle in degrees.
    - `'tx'`: Float. Shift in the x direction.
    - `'ty'`: Float. Shift in the y direction.
    - `'shear'`: Float. Shear angle in degrees.
    - `'zx'`: Float. Zoom in the x direction.
    - `'zy'`: Float. Zoom in the y direction.
    - `'flip_horizontal'`: Boolean. Horizontal flip.
    - `'flip_vertical'`: Boolean. Vertical flip.
    - `'channel_shift_intencity'`: Float. Channel shift intensity.
    - `'brightness'`: Float. Brightness shift intensity.

__Returns__

A transformed version of the input (same shape).
    
---
### fit


```python
fit(x, augment=False, rounds=1, seed=None)
```


Fits the data generator to some sample data.

This computes the internal data stats related to the
data-dependent transformations, based on an array of sample data.

Only required if `featurewise_center` or
`featurewise_std_normalization` or `zca_whitening` are set to True.

__Arguments__

- __x__: Sample data. Should have rank 4.
 In case of grayscale data,
 the channels axis should have value 1, in case
 of RGB data, it should have value 3, and in case
 of RGBA data, it should have value 4.
- __augment__: Boolean (default: False).
    Whether to fit on randomly augmented samples.
- __rounds__: Int (default: 1).
    If using data augmentation (`augment=True`),
    this is how many augmentation passes over the data to use.
- __seed__: Int (default: None). Random seed.
   
---
### flow


```python
flow(x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None)
```


Takes data & label arrays, generates batches of augmented data.

__Arguments__

- __x__: Input data. Numpy array of rank 4 or a tuple.
    If tuple, the first element
    should contain the images and the second element
    another numpy array or a list of numpy arrays
    that gets passed to the output
    without any modifications.
    Can be used to feed the model miscellaneous data
    along with the images.
    In case of grayscale data, the channels axis of the image array
    should have value 1, in case
    of RGB data, it should have value 3, and in case
    of RGBA data, it should have value 4.
- __y__: Labels.
- __batch_size__: Int (default: 32).
- __shuffle__: Boolean (default: True).
- __sample_weight__: Sample weights.
- __seed__: Int (default: None).
- __save_to_dir__: None or str (default: None).
    This allows you to optionally specify a directory
    to which to save the augmented pictures being generated
    (useful for visualizing what you are doing).
- __save_prefix__: Str (default: `''`).
    Prefix to use for filenames of saved pictures
    (only relevant if `save_to_dir` is set).
- __save_format__: one of "png", "jpeg"
    (only relevant if `save_to_dir` is set). Default: "png".
- __subset__: Subset of data (`"training"` or `"validation"`) if
    `validation_split` is set in `ImageDataGenerator`.

__Returns__

An `Iterator` yielding tuples of `(x, y)`
    where `x` is a numpy array of image data
    (in the case of a single image input) or a list
    of numpy arrays (in the case with
    additional inputs) and `y` is a numpy array
    of corresponding labels. If 'sample_weight' is not None,
    the yielded tuples are of the form `(x, y, sample_weight)`.
    If `y` is None, only the numpy array `x` is returned.
    
---
### flow_from_dataframe


```python
flow_from_dataframe(dataframe, directory=None, x_col='filename', y_col='class', weight_col=None, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None, interpolation='nearest', validate_filenames=True)
```


Takes the dataframe and the path to a directory
and generates batches of augmented/normalized data.

**A simple tutorial can be found **[here](
http://bit.ly/keras_flow_from_dataframe).

__Arguments__

- __dataframe__: Pandas dataframe containing the filepaths relative to
    `directory` (or absolute paths if `directory` is None) of the
    images in a string column. It should include other column/s
    depending on the `class_mode`:
    - if `class_mode` is `"categorical"` (default value) it must
        include the `y_col` column with the class/es of each image.
        Values in column can be string/list/tuple if a single class
        or list/tuple if multiple classes.
    - if `class_mode` is `"binary"` or `"sparse"` it must include
        the given `y_col` column with class values as strings.
    - if `class_mode` is `"raw"` or `"multi_output"` it should contain

    the columns specified in `y_col`.

    - if `class_mode` is `"input"` or `None` no extra column is needed.
- __directory__: string, path to the directory to read images from. If `None`,
    data in `x_col` column should be absolute paths.
- __x_col__: string, column in `dataframe` that contains the filenames (or
    absolute paths if `directory` is `None`).
- __y_col__: string or list, column/s in `dataframe` that has the target data.
- __weight_col__: string, column in `dataframe` that contains the sample
    weights. Default: `None`.
- __target_size__: tuple of integers `(height, width)`, default: `(256, 256)`.
    The dimensions to which all images found will be resized.
- __color_mode__: one of "grayscale", "rgb", "rgba". Default: "rgb".
    Whether the images will be converted to have 1 or 3 color channels.
- __classes__: optional list of classes (e.g. `['dogs', 'cats']`).
    Default: None. If not provided, the list of classes will be
    automatically inferred from the `y_col`,
    which will map to the label indices, will be alphanumeric).
    The dictionary containing the mapping from class names to class
    indices can be obtained via the attribute `class_indices`.
- __class_mode__: one of "binary", "categorical", "input", "multi_output",
    "raw", sparse" or None. Default: "categorical".
    Mode for yielding the targets:
    - `"binary"`: 1D numpy array of binary labels,
    - `"categorical"`: 2D numpy array of one-hot encoded labels.
        Supports multi-label output.
    - `"input"`: images identical to input images (mainly used to
        work with autoencoders),
    - `"multi_output"`: list with the values of the different columns,
    - `"raw"`: numpy array of values in `y_col` column(s),
    - `"sparse"`: 1D numpy array of integer labels,
    - `None`, no targets are returned (the generator will only yield
        batches of image data, which is useful to use in
        `model.predict_generator()`).
- __batch_size__: size of the batches of data (default: 32).
- __shuffle__: whether to shuffle the data (default: True)
- __seed__: optional random seed for shuffling and transformations.
- __save_to_dir__: None or str (default: None).
    This allows you to optionally specify a directory
    to which to save the augmented pictures being generated
    (useful for visualizing what you are doing).
- __save_prefix__: str. Prefix to use for filenames of saved pictures
    (only relevant if `save_to_dir` is set).
- __save_format__: one of "png", "jpeg"
    (only relevant if `save_to_dir` is set). Default: "png".
- __follow_links__: whether to follow symlinks inside class subdirectories
    (default: False).
- __subset__: Subset of data (`"training"` or `"validation"`) if
    `validation_split` is set in `ImageDataGenerator`.
- __interpolation__: Interpolation method used to resample the image if the
    target size is different from that of the loaded image.
    Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`.
    If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
    supported. If PIL version 3.4.0 or newer is installed, `"box"` and
    `"hamming"` are also supported. By default, `"nearest"` is used.
- __validate_filenames__: Boolean, whether to validate image filenames in
    `x_col`. If `True`, invalid images will be ignored. Disabling this
    option can lead to speed-up in the execution of this function.
    Default: `True`.

__Returns__

A `DataFrameIterator` yielding tuples of `(x, y)`
where `x` is a numpy array containing a batch
of images with shape `(batch_size, *target_size, channels)`
and `y` is a numpy array of corresponding labels.
    
---
### flow_from_directory


```python
flow_from_directory(directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', follow_links=False, subset=None, interpolation='nearest')
```


Takes the path to a directory & generates batches of augmented data.

__Arguments__

- __directory__: string, path to the target directory.
    It should contain one subdirectory per class.
    Any PNG, JPG, BMP, PPM or TIF images
    inside each of the subdirectories directory tree
    will be included in the generator.
    See [this script](
    https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)
    for more details.
- __target_size__: Tuple of integers `(height, width)`,
    default: `(256, 256)`.
    The dimensions to which all images found will be resized.
- __color_mode__: One of "grayscale", "rgb", "rgba". Default: "rgb".
    Whether the images will be converted to
    have 1, 3, or 4 channels.
- __classes__: Optional list of class subdirectories
    (e.g. `['dogs', 'cats']`). Default: None.
    If not provided, the list of classes will be automatically
    inferred from the subdirectory names/structure
    under `directory`, where each subdirectory will
    be treated as a different class
    (and the order of the classes, which will map to the label
    indices, will be alphanumeric).
    The dictionary containing the mapping from class names to class
    indices can be obtained via the attribute `class_indices`.
- __class_mode__: One of "categorical", "binary", "sparse",
    "input", or None. Default: "categorical".
    Determines the type of label arrays that are returned:
    - "categorical" will be 2D one-hot encoded labels,
    - "binary" will be 1D binary labels,
        "sparse" will be 1D integer labels,
    - "input" will be images identical
        to input images (mainly used to work with autoencoders).
    - If None, no labels are returned
      (the generator will only yield batches of image data,
      which is useful to use with `model.predict_generator()`).
      Please note that in case of class_mode None,
      the data still needs to reside in a subdirectory
      of `directory` for it to work correctly.
- __batch_size__: Size of the batches of data (default: 32).
- __shuffle__: Whether to shuffle the data (default: True)
    If set to False, sorts the data in alphanumeric order.
- __seed__: Optional random seed for shuffling and transformations.
- __save_to_dir__: None or str (default: None).
    This allows you to optionally specify
    a directory to which to save
    the augmented pictures being generated
    (useful for visualizing what you are doing).
- __save_prefix__: Str. Prefix to use for filenames of saved pictures
    (only relevant if `save_to_dir` is set).
- __save_format__: One of "png", "jpeg"
    (only relevant if `save_to_dir` is set). Default: "png".
- __follow_links__: Whether to follow symlinks inside
    class subdirectories (default: False).
- __subset__: Subset of data (`"training"` or `"validation"`) if
    `validation_split` is set in `ImageDataGenerator`.
- __interpolation__: Interpolation method used to
    resample the image if the
    target size is different from that of the loaded image.
    Supported methods are `"nearest"`, `"bilinear"`,
    and `"bicubic"`.
    If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
    supported. If PIL version 3.4.0 or newer is installed,
    `"box"` and `"hamming"` are also supported.
    By default, `"nearest"` is used.

__Returns__

A `DirectoryIterator` yielding tuples of `(x, y)`
    where `x` is a numpy array containing a batch
    of images with shape `(batch_size, *target_size, channels)`
    and `y` is a numpy array of corresponding labels.
    
---
### get_random_transform


```python
get_random_transform(img_shape, seed=None)
```


Generates random parameters for a transformation.

__Arguments__

- __seed__: Random seed.
- __img_shape__: Tuple of integers.
    Shape of the image that is transformed.

__Returns__

A dictionary containing randomly chosen parameters describing the
transformation.
    
---
### random_transform


```python
random_transform(x, seed=None)
```


Applies a random transformation to an image.

__Arguments__

- __x__: 3D tensor, single image.
- __seed__: Random seed.

__Returns__

A randomly transformed version of the input (same shape).
    
---
### standardize


```python
standardize(x)
```


Applies the normalization configuration in-place to a batch of inputs.

`x` is changed in-place since the function is mainly used internally
to standarize images and feed them to your network. If a copy of `x`
would be created instead it would have a significant performance cost.
If you want to apply this method without changing the input in-place
you can call the method creating a copy before:

standarize(np.copy(x))

__Arguments__

- __x__: Batch of inputs to be normalized.

__Returns__

The inputs, normalized.