1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
# Image Preprocessing
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/preprocessing/image.py#L238)</span>
## ImageDataGenerator class
```python
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format='channels_last', validation_split=0.0, interpolation_order=1, dtype='float32')
```
Generate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).
__Arguments__
- __featurewise_center__: Boolean.
Set input mean to 0 over the dataset, feature-wise.
- __samplewise_center__: Boolean. Set each sample mean to 0.
- __featurewise_std_normalization__: Boolean.
Divide inputs by std of the dataset, feature-wise.
- __samplewise_std_normalization__: Boolean. Divide each input by its std.
- __zca_epsilon__: epsilon for ZCA whitening. Default is 1e-6.
- __zca_whitening__: Boolean. Apply ZCA whitening.
- __rotation_range__: Int. Degree range for random rotations.
- __width_shift_range__: Float, 1-D array-like or int
- float: fraction of total width, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
`(-width_shift_range, +width_shift_range)`
- With `width_shift_range=2` possible values
are integers `[-1, 0, +1]`,
same as with `width_shift_range=[-1, 0, +1]`,
while with `width_shift_range=1.0` possible values are floats
in the interval [-1.0, +1.0).
- __height_shift_range__: Float, 1-D array-like or int
- float: fraction of total height, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
`(-height_shift_range, +height_shift_range)`
- With `height_shift_range=2` possible values
are integers `[-1, 0, +1]`,
same as with `height_shift_range=[-1, 0, +1]`,
while with `height_shift_range=1.0` possible values are floats
in the interval [-1.0, +1.0).
- __brightness_range__: Tuple or list of two floats. Range for picking
a brightness shift value from.
- __shear_range__: Float. Shear Intensity
(Shear angle in counter-clockwise direction in degrees)
- __zoom_range__: Float or [lower, upper]. Range for random zoom.
If a float, `[lower, upper] = [1-zoom_range, 1+zoom_range]`.
- __channel_shift_range__: Float. Range for random channel shifts.
- __fill_mode__: One of {"constant", "nearest", "reflect" or "wrap"}.
Default is 'nearest'.
Points outside the boundaries of the input are filled
according to the given mode:
- 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)
- 'nearest': aaaaaaaa|abcd|dddddddd
- 'reflect': abcddcba|abcd|dcbaabcd
- 'wrap': abcdabcd|abcd|abcdabcd
- __cval__: Float or Int.
Value used for points outside the boundaries
when `fill_mode = "constant"`.
- __horizontal_flip__: Boolean. Randomly flip inputs horizontally.
- __vertical_flip__: Boolean. Randomly flip inputs vertically.
- __rescale__: rescaling factor. Defaults to None.
If None or 0, no rescaling is applied,
otherwise we multiply the data by the value provided
(after applying all other transformations).
- __preprocessing_function__: function that will be applied on each input.
The function will run after the image is resized and augmented.
The function should take one argument:
one image (Numpy tensor with rank 3),
and should output a Numpy tensor with the same shape.
- __data_format__: Image data format,
either "channels_first" or "channels_last".
"channels_last" mode means that the images should have shape
`(samples, height, width, channels)`,
"channels_first" mode means that the images should have shape
`(samples, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
- __validation_split__: Float. Fraction of images reserved for validation
(strictly between 0 and 1).
- __dtype__: Dtype to use for the generated arrays.
__Examples__
Example of using `.flow(x, y)`:
```python
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=epochs)
# here's a more "manual" example
for e in range(epochs):
print('Epoch', e)
batches = 0
for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
model.fit(x_batch, y_batch)
batches += 1
if batches >= len(x_train) / 32:
# we need to break the loop by hand because
# the generator loops indefinitely
break
```
Example of using `.flow_from_directory(directory)`:
```python
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
```
Example of transforming images and masks together.
```python
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
```
Example of using ```.flow_from_dataframe(dataframe, directory,
```:
```python
train_df = pandas.read_csv("./train.csv")
valid_df = pandas.read_csv("./valid.csv")
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_dataframe(
dataframe=train_df,
directory='data/train',
x_col="filename",
y_col="class",
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_dataframe(
dataframe=valid_df,
directory='data/validation',
x_col="filename",
y_col="class",
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
```
---
## ImageDataGenerator methods
### apply_transform
```python
apply_transform(x, transform_parameters)
```
Applies a transformation to an image according to given parameters.
__Arguments__
- __x__: 3D tensor, single image.
- __transform_parameters__: Dictionary with string - parameter pairs
describing the transformation.
Currently, the following parameters
from the dictionary are used:
- `'theta'`: Float. Rotation angle in degrees.
- `'tx'`: Float. Shift in the x direction.
- `'ty'`: Float. Shift in the y direction.
- `'shear'`: Float. Shear angle in degrees.
- `'zx'`: Float. Zoom in the x direction.
- `'zy'`: Float. Zoom in the y direction.
- `'flip_horizontal'`: Boolean. Horizontal flip.
- `'flip_vertical'`: Boolean. Vertical flip.
- `'channel_shift_intencity'`: Float. Channel shift intensity.
- `'brightness'`: Float. Brightness shift intensity.
__Returns__
A transformed version of the input (same shape).
---
### fit
```python
fit(x, augment=False, rounds=1, seed=None)
```
Fits the data generator to some sample data.
This computes the internal data stats related to the
data-dependent transformations, based on an array of sample data.
Only required if `featurewise_center` or
`featurewise_std_normalization` or `zca_whitening` are set to True.
__Arguments__
- __x__: Sample data. Should have rank 4.
In case of grayscale data,
the channels axis should have value 1, in case
of RGB data, it should have value 3, and in case
of RGBA data, it should have value 4.
- __augment__: Boolean (default: False).
Whether to fit on randomly augmented samples.
- __rounds__: Int (default: 1).
If using data augmentation (`augment=True`),
this is how many augmentation passes over the data to use.
- __seed__: Int (default: None). Random seed.
---
### flow
```python
flow(x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None)
```
Takes data & label arrays, generates batches of augmented data.
__Arguments__
- __x__: Input data. Numpy array of rank 4 or a tuple.
If tuple, the first element
should contain the images and the second element
another numpy array or a list of numpy arrays
that gets passed to the output
without any modifications.
Can be used to feed the model miscellaneous data
along with the images.
In case of grayscale data, the channels axis of the image array
should have value 1, in case
of RGB data, it should have value 3, and in case
of RGBA data, it should have value 4.
- __y__: Labels.
- __batch_size__: Int (default: 32).
- __shuffle__: Boolean (default: True).
- __sample_weight__: Sample weights.
- __seed__: Int (default: None).
- __save_to_dir__: None or str (default: None).
This allows you to optionally specify a directory
to which to save the augmented pictures being generated
(useful for visualizing what you are doing).
- __save_prefix__: Str (default: `''`).
Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
- __save_format__: one of "png", "jpeg"
(only relevant if `save_to_dir` is set). Default: "png".
- __subset__: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
__Returns__
An `Iterator` yielding tuples of `(x, y)`
where `x` is a numpy array of image data
(in the case of a single image input) or a list
of numpy arrays (in the case with
additional inputs) and `y` is a numpy array
of corresponding labels. If 'sample_weight' is not None,
the yielded tuples are of the form `(x, y, sample_weight)`.
If `y` is None, only the numpy array `x` is returned.
---
### flow_from_dataframe
```python
flow_from_dataframe(dataframe, directory=None, x_col='filename', y_col='class', weight_col=None, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None, interpolation='nearest', validate_filenames=True)
```
Takes the dataframe and the path to a directory
and generates batches of augmented/normalized data.
**A simple tutorial can be found **[here](
http://bit.ly/keras_flow_from_dataframe).
__Arguments__
- __dataframe__: Pandas dataframe containing the filepaths relative to
`directory` (or absolute paths if `directory` is None) of the
images in a string column. It should include other column/s
depending on the `class_mode`:
- if `class_mode` is `"categorical"` (default value) it must
include the `y_col` column with the class/es of each image.
Values in column can be string/list/tuple if a single class
or list/tuple if multiple classes.
- if `class_mode` is `"binary"` or `"sparse"` it must include
the given `y_col` column with class values as strings.
- if `class_mode` is `"raw"` or `"multi_output"` it should contain
the columns specified in `y_col`.
- if `class_mode` is `"input"` or `None` no extra column is needed.
- __directory__: string, path to the directory to read images from. If `None`,
data in `x_col` column should be absolute paths.
- __x_col__: string, column in `dataframe` that contains the filenames (or
absolute paths if `directory` is `None`).
- __y_col__: string or list, column/s in `dataframe` that has the target data.
- __weight_col__: string, column in `dataframe` that contains the sample
weights. Default: `None`.
- __target_size__: tuple of integers `(height, width)`, default: `(256, 256)`.
The dimensions to which all images found will be resized.
- __color_mode__: one of "grayscale", "rgb", "rgba". Default: "rgb".
Whether the images will be converted to have 1 or 3 color channels.
- __classes__: optional list of classes (e.g. `['dogs', 'cats']`).
Default: None. If not provided, the list of classes will be
automatically inferred from the `y_col`,
which will map to the label indices, will be alphanumeric).
The dictionary containing the mapping from class names to class
indices can be obtained via the attribute `class_indices`.
- __class_mode__: one of "binary", "categorical", "input", "multi_output",
"raw", sparse" or None. Default: "categorical".
Mode for yielding the targets:
- `"binary"`: 1D numpy array of binary labels,
- `"categorical"`: 2D numpy array of one-hot encoded labels.
Supports multi-label output.
- `"input"`: images identical to input images (mainly used to
work with autoencoders),
- `"multi_output"`: list with the values of the different columns,
- `"raw"`: numpy array of values in `y_col` column(s),
- `"sparse"`: 1D numpy array of integer labels,
- `None`, no targets are returned (the generator will only yield
batches of image data, which is useful to use in
`model.predict_generator()`).
- __batch_size__: size of the batches of data (default: 32).
- __shuffle__: whether to shuffle the data (default: True)
- __seed__: optional random seed for shuffling and transformations.
- __save_to_dir__: None or str (default: None).
This allows you to optionally specify a directory
to which to save the augmented pictures being generated
(useful for visualizing what you are doing).
- __save_prefix__: str. Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
- __save_format__: one of "png", "jpeg"
(only relevant if `save_to_dir` is set). Default: "png".
- __follow_links__: whether to follow symlinks inside class subdirectories
(default: False).
- __subset__: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
- __interpolation__: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`.
If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
supported. If PIL version 3.4.0 or newer is installed, `"box"` and
`"hamming"` are also supported. By default, `"nearest"` is used.
- __validate_filenames__: Boolean, whether to validate image filenames in
`x_col`. If `True`, invalid images will be ignored. Disabling this
option can lead to speed-up in the execution of this function.
Default: `True`.
__Returns__
A `DataFrameIterator` yielding tuples of `(x, y)`
where `x` is a numpy array containing a batch
of images with shape `(batch_size, *target_size, channels)`
and `y` is a numpy array of corresponding labels.
---
### flow_from_directory
```python
flow_from_directory(directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', follow_links=False, subset=None, interpolation='nearest')
```
Takes the path to a directory & generates batches of augmented data.
__Arguments__
- __directory__: string, path to the target directory.
It should contain one subdirectory per class.
Any PNG, JPG, BMP, PPM or TIF images
inside each of the subdirectories directory tree
will be included in the generator.
See [this script](
https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)
for more details.
- __target_size__: Tuple of integers `(height, width)`,
default: `(256, 256)`.
The dimensions to which all images found will be resized.
- __color_mode__: One of "grayscale", "rgb", "rgba". Default: "rgb".
Whether the images will be converted to
have 1, 3, or 4 channels.
- __classes__: Optional list of class subdirectories
(e.g. `['dogs', 'cats']`). Default: None.
If not provided, the list of classes will be automatically
inferred from the subdirectory names/structure
under `directory`, where each subdirectory will
be treated as a different class
(and the order of the classes, which will map to the label
indices, will be alphanumeric).
The dictionary containing the mapping from class names to class
indices can be obtained via the attribute `class_indices`.
- __class_mode__: One of "categorical", "binary", "sparse",
"input", or None. Default: "categorical".
Determines the type of label arrays that are returned:
- "categorical" will be 2D one-hot encoded labels,
- "binary" will be 1D binary labels,
"sparse" will be 1D integer labels,
- "input" will be images identical
to input images (mainly used to work with autoencoders).
- If None, no labels are returned
(the generator will only yield batches of image data,
which is useful to use with `model.predict_generator()`).
Please note that in case of class_mode None,
the data still needs to reside in a subdirectory
of `directory` for it to work correctly.
- __batch_size__: Size of the batches of data (default: 32).
- __shuffle__: Whether to shuffle the data (default: True)
If set to False, sorts the data in alphanumeric order.
- __seed__: Optional random seed for shuffling and transformations.
- __save_to_dir__: None or str (default: None).
This allows you to optionally specify
a directory to which to save
the augmented pictures being generated
(useful for visualizing what you are doing).
- __save_prefix__: Str. Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
- __save_format__: One of "png", "jpeg"
(only relevant if `save_to_dir` is set). Default: "png".
- __follow_links__: Whether to follow symlinks inside
class subdirectories (default: False).
- __subset__: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
- __interpolation__: Interpolation method used to
resample the image if the
target size is different from that of the loaded image.
Supported methods are `"nearest"`, `"bilinear"`,
and `"bicubic"`.
If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
supported. If PIL version 3.4.0 or newer is installed,
`"box"` and `"hamming"` are also supported.
By default, `"nearest"` is used.
__Returns__
A `DirectoryIterator` yielding tuples of `(x, y)`
where `x` is a numpy array containing a batch
of images with shape `(batch_size, *target_size, channels)`
and `y` is a numpy array of corresponding labels.
---
### get_random_transform
```python
get_random_transform(img_shape, seed=None)
```
Generates random parameters for a transformation.
__Arguments__
- __seed__: Random seed.
- __img_shape__: Tuple of integers.
Shape of the image that is transformed.
__Returns__
A dictionary containing randomly chosen parameters describing the
transformation.
---
### random_transform
```python
random_transform(x, seed=None)
```
Applies a random transformation to an image.
__Arguments__
- __x__: 3D tensor, single image.
- __seed__: Random seed.
__Returns__
A randomly transformed version of the input (same shape).
---
### standardize
```python
standardize(x)
```
Applies the normalization configuration in-place to a batch of inputs.
`x` is changed in-place since the function is mainly used internally
to standarize images and feed them to your network. If a copy of `x`
would be created instead it would have a significant performance cost.
If you want to apply this method without changing the input in-place
you can call the method creating a copy before:
standarize(np.copy(x))
__Arguments__
- __x__: Batch of inputs to be normalized.
__Returns__
The inputs, normalized.
|