1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/utils/generic_utils.py#L21)</span>
### CustomObjectScope
```python
keras.utils.CustomObjectScope()
```
Provides a scope that changes to `_GLOBAL_CUSTOM_OBJECTS` cannot escape.
Code within a `with` statement will be able to access custom objects
by name. Changes to global custom objects persist
within the enclosing `with` statement. At end of the `with` statement,
global custom objects are reverted to state
at beginning of the `with` statement.
__Example__
Consider a custom object `MyObject` (e.g. a class):
```python
with CustomObjectScope({'MyObject':MyObject}):
layer = Dense(..., kernel_regularizer='MyObject')
# save, load, etc. will recognize custom object by name
```
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/utils/io_utils.py#L26)</span>
### HDF5Matrix
```python
keras.utils.HDF5Matrix(datapath, dataset, start=0, end=None, normalizer=None)
```
Representation of HDF5 dataset to be used instead of a Numpy array.
__Example__
```python
x_data = HDF5Matrix('input/file.hdf5', 'data')
model.predict(x_data)
```
Providing `start` and `end` allows use of a slice of the dataset.
Optionally, a normalizer function (or lambda) can be given. This will
be called on every slice of data retrieved.
__Arguments__
- __datapath__: string, path to a HDF5 file
- __dataset__: string, name of the HDF5 dataset in the file specified
in datapath
- __start__: int, start of desired slice of the specified dataset
- __end__: int, end of desired slice of the specified dataset
- __normalizer__: function to be called on data when retrieved
__Returns__
An array-like HDF5 dataset.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/utils/data_utils.py#L305)</span>
### Sequence
```python
keras.utils.Sequence()
```
Base object for fitting to a sequence of data, such as a dataset.
Every `Sequence` must implement the `__getitem__` and the `__len__` methods.
If you want to modify your dataset between epochs you may implement
`on_epoch_end`. The method `__getitem__` should return a complete batch.
__Notes__
`Sequence` are a safer way to do multiprocessing. This structure guarantees
that the network will only train once on each sample per epoch which is not
the case with generators.
__Examples__
```python
from skimage.io import imread
from skimage.transform import resize
import numpy as np
# Here, `x_set` is list of path to the images
# and `y_set` are the associated classes.
class CIFAR10Sequence(Sequence):
def __init__(self, x_set, y_set, batch_size):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]
return np.array([
resize(imread(file_name), (200, 200))
for file_name in batch_x]), np.array(batch_y)
```
----
### to_categorical
```python
keras.utils.to_categorical(y, num_classes=None, dtype='float32')
```
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
__Arguments__
- __y__: class vector to be converted into a matrix
(integers from 0 to num_classes).
- __num_classes__: total number of classes.
- __dtype__: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
__Returns__
A binary matrix representation of the input. The classes axis
is placed last.
__Example__
```python
# Consider an array of 5 labels out of a set of 3 classes {0, 1, 2}:
> labels
array([0, 2, 1, 2, 0])
# `to_categorical` converts this into a matrix with as many
# columns as there are classes. The number of rows
# stays the same.
> to_categorical(labels)
array([[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]], dtype=float32)
```
----
### normalize
```python
keras.utils.normalize(x, axis=-1, order=2)
```
Normalizes a Numpy array.
__Arguments__
- __x__: Numpy array to normalize.
- __axis__: axis along which to normalize.
- __order__: Normalization order (e.g. 2 for L2 norm).
__Returns__
A normalized copy of the array.
----
### get_file
```python
keras.utils.get_file(fname, origin, untar=False, md5_hash=None, file_hash=None, cache_subdir='datasets', hash_algorithm='auto', extract=False, archive_format='auto', cache_dir=None)
```
Downloads a file from a URL if it not already in the cache.
By default the file at the url `origin` is downloaded to the
cache_dir `~/.keras`, placed in the cache_subdir `datasets`,
and given the filename `fname`. The final location of a file
`example.txt` would therefore be `~/.keras/datasets/example.txt`.
Files in tar, tar.gz, tar.bz, and zip formats can also be extracted.
Passing a hash will verify the file after download. The command line
programs `shasum` and `sha256sum` can compute the hash.
__Arguments__
- __fname__: Name of the file. If an absolute path `/path/to/file.txt` is
specified the file will be saved at that location.
- __origin__: Original URL of the file.
- __untar__: Deprecated in favor of 'extract'.
boolean, whether the file should be decompressed
- __md5_hash__: Deprecated in favor of 'file_hash'.
md5 hash of the file for verification
- __file_hash__: The expected hash string of the file after download.
The sha256 and md5 hash algorithms are both supported.
- __cache_subdir__: Subdirectory under the Keras cache dir where the file is
saved. If an absolute path `/path/to/folder` is
specified the file will be saved at that location.
- __hash_algorithm__: Select the hash algorithm to verify the file.
options are 'md5', 'sha256', and 'auto'.
The default 'auto' detects the hash algorithm in use.
- __extract__: True tries extracting the file as an Archive, like tar or zip.
- __archive_format__: Archive format to try for extracting the file.
Options are 'auto', 'tar', 'zip', and None.
'tar' includes tar, tar.gz, and tar.bz files.
The default 'auto' is ['tar', 'zip'].
None or an empty list will return no matches found.
- __cache_dir__: Location to store cached files, when None it
defaults to the [Keras Directory](/faq/#where-is-the-keras-configuration-filed-stored).
__Returns__
Path to the downloaded file
----
### print_summary
```python
keras.utils.print_summary(model, line_length=None, positions=None, print_fn=None)
```
Prints a summary of a model.
__Arguments__
- __model__: Keras model instance.
- __line_length__: Total length of printed lines
(e.g. set this to adapt the display to different
terminal window sizes).
- __positions__: Relative or absolute positions of log elements in each line.
If not provided, defaults to `[.33, .55, .67, 1.]`.
- __print_fn__: Print function to use.
It will be called on each line of the summary.
You can set it to a custom function
in order to capture the string summary.
It defaults to `print` (prints to stdout).
----
### plot_model
```python
keras.utils.plot_model(model, to_file='model.png', show_shapes=False, show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96)
```
Converts a Keras model to dot format and save to a file.
__Arguments__
- __model__: A Keras model instance
- __to_file__: File name of the plot image.
- __show_shapes__: whether to display shape information.
- __show_layer_names__: whether to display layer names.
- __rankdir__: `rankdir` argument passed to PyDot,
a string specifying the format of the plot:
'TB' creates a vertical plot;
'LR' creates a horizontal plot.
- __expand_nested__: whether to expand nested models into clusters.
- __dpi__: dot DPI.
__Returns__
A Jupyter notebook Image object if Jupyter is installed.
This enables in-line display of the model plots in notebooks.
----
### multi_gpu_model
```python
keras.utils.multi_gpu_model(model, gpus=None, cpu_merge=True, cpu_relocation=False)
```
Replicates a model on different GPUs.
Specifically, this function implements single-machine
multi-GPU data parallelism. It works in the following way:
- Divide the model's input(s) into multiple sub-batches.
- Apply a model copy on each sub-batch. Every model copy
is executed on a dedicated GPU.
- Concatenate the results (on CPU) into one big batch.
E.g. if your `batch_size` is 64 and you use `gpus=2`,
then we will divide the input into 2 sub-batches of 32 samples,
process each sub-batch on one GPU, then return the full
batch of 64 processed samples.
This induces quasi-linear speedup on up to 8 GPUs.
This function is only available with the TensorFlow backend
for the time being.
__Arguments__
- __model__: A Keras model instance. To avoid OOM errors,
this model could have been built on CPU, for instance
(see usage example below).
- __gpus__: Integer >= 2 or list of integers, number of GPUs or
list of GPU IDs on which to create model replicas.
- __cpu_merge__: A boolean value to identify whether to force
merging model weights under the scope of the CPU or not.
- __cpu_relocation__: A boolean value to identify whether to
create the model's weights under the scope of the CPU.
If the model is not defined under any preceding device
scope, you can still rescue it by activating this option.
__Returns__
A Keras `Model` instance which can be used just like the initial
`model` argument, but which distributes its workload on multiple GPUs.
__Examples__
Example 1 - Training models with weights merge on CPU
```python
import tensorflow as tf
from keras.applications import Xception
from keras.utils import multi_gpu_model
import numpy as np
num_samples = 1000
height = 224
width = 224
num_classes = 1000
# Instantiate the base model (or "template" model).
# We recommend doing this with under a CPU device scope,
# so that the model's weights are hosted on CPU memory.
# Otherwise they may end up hosted on a GPU, which would
# complicate weight sharing.
with tf.device('/cpu:0'):
model = Xception(weights=None,
input_shape=(height, width, 3),
classes=num_classes)
# Replicates the model on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss='categorical_crossentropy',
optimizer='rmsprop')
# Generate dummy data.
x = np.random.random((num_samples, height, width, 3))
y = np.random.random((num_samples, num_classes))
# This `fit` call will be distributed on 8 GPUs.
# Since the batch size is 256, each GPU will process 32 samples.
parallel_model.fit(x, y, epochs=20, batch_size=256)
# Save model via the template model (which shares the same weights):
model.save('my_model.h5')
```
Example 2 - Training models with weights merge on CPU using cpu_relocation
```python
..
# Not needed to change the device scope for model definition:
model = Xception(weights=None, ..)
try:
parallel_model = multi_gpu_model(model, cpu_relocation=True)
print("Training using multiple GPUs..")
except ValueError:
parallel_model = model
print("Training using single GPU or CPU..")
parallel_model.compile(..)
..
```
Example 3 - Training models with weights merge on GPU (recommended for NV-link)
```python
..
# Not needed to change the device scope for model definition:
model = Xception(weights=None, ..)
try:
parallel_model = multi_gpu_model(model, cpu_merge=False)
print("Training using multiple GPUs..")
except:
parallel_model = model
print("Training using single GPU or CPU..")
parallel_model.compile(..)
..
```
__On model saving__
To save the multi-gpu model, use `.save(fname)` or `.save_weights(fname)`
with the template model (the argument you passed to `multi_gpu_model`),
rather than the model returned by `multi_gpu_model`.
|