File: metrics.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (58 lines) | stat: -rw-r--r-- 1,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

## Usage of metrics

A metric is a function that is used to judge the performance of your model. Metric functions are to be supplied in the `metrics` parameter when a model is compiled. 

```python
model.compile(loss='mean_squared_error',
              optimizer='sgd',
              metrics=['mae', 'acc'])
```

```python
from keras import metrics

model.compile(loss='mean_squared_error',
              optimizer='sgd',
              metrics=[metrics.mae, metrics.categorical_accuracy])
```

A metric function is similar to a [loss function](/losses), except that the results from evaluating a metric are not used when training the model. You may use any of the loss functions as a metric function.

You can either pass the name of an existing metric, or pass a Theano/TensorFlow symbolic function (see [Custom metrics](#custom-metrics)).

#### Arguments
  - __y_true__: True labels. Theano/TensorFlow tensor.
  - __y_pred__: Predictions. Theano/TensorFlow tensor of the same shape as y_true.

#### Returns
  Single tensor value representing the mean of the output array across all
  datapoints.

----

## Available metrics


{{autogenerated}}

In addition to the metrics above, you may use any of the loss functions described in the [loss function](/losses) page as metrics.

----

## Custom metrics

Custom metrics can be passed at the compilation step. The
function would need to take `(y_true, y_pred)` as arguments and return
a single tensor value.

```python
import keras.backend as K

def mean_pred(y_true, y_pred):
    return K.mean(y_pred)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])
```