1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
'''Compares self-normalizing MLPs with regular MLPs.
Compares the performance of a simple MLP using two
different activation functions: RELU and SELU
on the Reuters newswire topic classification task.
# Reference
- Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017).
Self-Normalizing Neural Networks. arXiv preprint arXiv:1706.02515.
https://arxiv.org/abs/1706.02515
'''
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.layers.noise import AlphaDropout
from keras.preprocessing.text import Tokenizer
max_words = 1000
batch_size = 16
epochs = 40
plot = True
def create_network(n_dense=6,
dense_units=16,
activation='selu',
dropout=AlphaDropout,
dropout_rate=0.1,
kernel_initializer='lecun_normal',
optimizer='adam',
num_classes=1,
max_words=max_words):
"""Generic function to create a fully-connected neural network.
# Arguments
n_dense: int > 0. Number of dense layers.
dense_units: int > 0. Number of dense units per layer.
dropout: keras.layers.Layer. A dropout layer to apply.
dropout_rate: 0 <= float <= 1. The rate of dropout.
kernel_initializer: str. The initializer for the weights.
optimizer: str/keras.optimizers.Optimizer. The optimizer to use.
num_classes: int > 0. The number of classes to predict.
max_words: int > 0. The maximum number of words per data point.
# Returns
A Keras model instance (compiled).
"""
model = Sequential()
model.add(Dense(dense_units, input_shape=(max_words,),
kernel_initializer=kernel_initializer))
model.add(Activation(activation))
model.add(dropout(dropout_rate))
for i in range(n_dense - 1):
model.add(Dense(dense_units, kernel_initializer=kernel_initializer))
model.add(Activation(activation))
model.add(dropout(dropout_rate))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
return model
network1 = {
'n_dense': 6,
'dense_units': 16,
'activation': 'relu',
'dropout': Dropout,
'dropout_rate': 0.5,
'kernel_initializer': 'glorot_uniform',
'optimizer': 'sgd'
}
network2 = {
'n_dense': 6,
'dense_units': 16,
'activation': 'selu',
'dropout': AlphaDropout,
'dropout_rate': 0.1,
'kernel_initializer': 'lecun_normal',
'optimizer': 'sgd'
}
print('Loading data...')
(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=max_words,
test_split=0.2)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
num_classes = np.max(y_train) + 1
print(num_classes, 'classes')
print('Vectorizing sequence data...')
tokenizer = Tokenizer(num_words=max_words)
x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
print('Convert class vector to binary class matrix '
'(for use with categorical_crossentropy)')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)
print('\nBuilding network 1...')
model1 = create_network(num_classes=num_classes, **network1)
history_model1 = model1.fit(x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split=0.1)
score_model1 = model1.evaluate(x_test,
y_test,
batch_size=batch_size,
verbose=1)
print('\nBuilding network 2...')
model2 = create_network(num_classes=num_classes, **network2)
history_model2 = model2.fit(x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split=0.1)
score_model2 = model2.evaluate(x_test,
y_test,
batch_size=batch_size,
verbose=1)
print('\nNetwork 1 results')
print('Hyperparameters:', network1)
print('Test score:', score_model1[0])
print('Test accuracy:', score_model1[1])
print('Network 2 results')
print('Hyperparameters:', network2)
print('Test score:', score_model2[0])
print('Test accuracy:', score_model2[1])
plt.plot(range(epochs),
history_model1.history['val_loss'],
'g-',
label='Network 1 Val Loss')
plt.plot(range(epochs),
history_model2.history['val_loss'],
'r-',
label='Network 2 Val Loss')
plt.plot(range(epochs),
history_model1.history['loss'],
'g--',
label='Network 1 Loss')
plt.plot(range(epochs),
history_model2.history['loss'],
'r--',
label='Network 2 Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('comparison_of_networks.png')
|