1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
'''Example of VAE on MNIST dataset using CNN
The VAE has a modular design. The encoder, decoder and VAE
are 3 models that share weights. After training the VAE model,
the encoder can be used to generate latent vectors.
The decoder can be used to generate MNIST digits by sampling the
latent vector from a Gaussian distribution with mean=0 and std=1.
# Reference
[1] Kingma, Diederik P., and Max Welling.
"Auto-encoding variational bayes."
https://arxiv.org/abs/1312.6114
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten, Lambda
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.datasets import mnist
from keras.losses import mse, binary_crossentropy
from keras.utils import plot_model
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
import argparse
import os
# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# then z = z_mean + sqrt(var)*eps
def sampling(args):
"""Reparameterization trick by sampling fr an isotropic unit Gaussian.
# Arguments
args (tensor): mean and log of variance of Q(z|X)
# Returns
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def plot_results(models,
data,
batch_size=128,
model_name="vae_mnist"):
"""Plots labels and MNIST digits as function of 2-dim latent vector
# Arguments
models (tuple): encoder and decoder models
data (tuple): test data and label
batch_size (int): prediction batch size
model_name (string): which model is using this function
"""
encoder, decoder = models
x_test, y_test = data
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "vae_mean.png")
# display a 2D plot of the digit classes in the latent space
z_mean, _, _ = encoder.predict(x_test,
batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], c=y_test)
plt.colorbar()
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.savefig(filename)
plt.show()
filename = os.path.join(model_name, "digits_over_latent.png")
# display a 30x30 2D manifold of digits
n = 30
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates corresponding to the 2D plot
# of digit classes in the latent space
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = decoder.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
start_range = digit_size // 2
end_range = n * digit_size + start_range + 1
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap='Greys_r')
plt.savefig(filename)
plt.show()
# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
for i in range(2):
filters *= 2
x = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu',
strides=2,
padding='same')(x)
# shape info needed to build decoder model
shape = K.int_shape(x)
# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_cnn_encoder.png', show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)
for i in range(2):
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
activation='relu',
strides=2,
padding='same')(x)
filters //= 2
outputs = Conv2DTranspose(filters=1,
kernel_size=kernel_size,
activation='sigmoid',
padding='same',
name='decoder_output')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_cnn_decoder.png', show_shapes=True)
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load h5 model trained weights"
parser.add_argument("-w", "--weights", help=help_)
help_ = "Use mse loss instead of binary cross entropy (default)"
parser.add_argument("-m", "--mse", help=help_, action='store_true')
args = parser.parse_args()
models = (encoder, decoder)
data = (x_test, y_test)
# VAE loss = mse_loss or xent_loss + kl_loss
if args.mse:
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))
else:
reconstruction_loss = binary_crossentropy(K.flatten(inputs),
K.flatten(outputs))
reconstruction_loss *= image_size * image_size
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop')
vae.summary()
plot_model(vae, to_file='vae_cnn.png', show_shapes=True)
if args.weights:
vae.load_weights(args.weights)
else:
# train the autoencoder
vae.fit(x_train,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
vae.save_weights('vae_cnn_mnist.h5')
plot_results(models, data, batch_size=batch_size, model_name="vae_cnn")
|