File: test_model_saving.py

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (992 lines) | stat: -rw-r--r-- 33,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
import io
import pytest
import os
import h5py
import tempfile
import warnings
from contextlib import contextmanager
import numpy as np
from numpy.testing import assert_allclose
from numpy.testing import assert_raises

from keras import backend as K
from keras.engine.saving import preprocess_weights_for_loading
from keras.models import Model, Sequential
from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed
from keras.layers import Bidirectional, GRU, LSTM, CuDNNGRU, CuDNNLSTM
from keras.layers import Conv2D, Flatten
from keras.layers import Input, InputLayer
from keras.initializers import Constant
from keras import optimizers
from keras import losses
from keras import metrics
from keras.models import save_model, load_model
from keras.utils.test_utils import tf_file_io_proxy
try:
    from unittest.mock import patch
except:
    from mock import patch


skipif_no_tf_gpu = pytest.mark.skipif(
    (K.backend() != 'tensorflow' or
     not K.tensorflow_backend._get_available_gpus()),
    reason='Requires TensorFlow backend and a GPU')


def test_sequential_model_saving():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.add(RepeatVector(3))
    model.add(TimeDistributed(Dense(3)))
    model.compile(loss=losses.MeanSquaredError(),
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy],
                  sample_weight_mode='temporal')
    x = np.random.random((1, 3))
    y = np.random.random((1, 3, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    new_model_disk = load_model(fname)
    os.remove(fname)

    with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
        gcs_filepath = file_io_proxy.get_filepath(filename=fname)
        save_model(model, gcs_filepath)
        file_io_proxy.assert_exists(gcs_filepath)
        new_model_gcs = load_model(gcs_filepath)
        file_io_proxy.delete_file(gcs_filepath)  # cleanup

    x2 = np.random.random((1, 3))
    y2 = np.random.random((1, 3, 3))
    model.train_on_batch(x2, y2)
    out_2 = model.predict(x2)

    for new_model in [new_model_disk, new_model_gcs]:
        new_out = new_model.predict(x)
        assert_allclose(out, new_out, atol=1e-05)
        # test that new updates are the same with both models
        new_model.train_on_batch(x2, y2)
        new_out_2 = new_model.predict(x2)
        assert_allclose(out_2, new_out_2, atol=1e-05)


def test_sequential_model_saving_2():
    # test with custom optimizer, loss
    custom_opt = optimizers.rmsprop
    custom_loss = losses.mse
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.add(Dense(3))
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)
    out = model.predict(x)

    load_kwargs = {'custom_objects': {'custom_opt': custom_opt,
                                      'custom_loss': custom_loss}}
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    new_model_disk = load_model(fname, **load_kwargs)
    os.remove(fname)

    with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
        gcs_filepath = file_io_proxy.get_filepath(filename=fname)
        save_model(model, gcs_filepath)
        file_io_proxy.assert_exists(gcs_filepath)
        new_model_gcs = load_model(gcs_filepath, **load_kwargs)
        file_io_proxy.delete_file(gcs_filepath)  # cleanup

    for new_model in [new_model_disk, new_model_gcs]:
        new_out = new_model.predict(x)
        assert_allclose(out, new_out, atol=1e-05)


def _get_sample_model_and_input():
    inputs = Input(shape=(3,))
    x = Dense(2)(inputs)
    outputs = Dense(3)(x)

    model = Model(inputs, outputs)
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.Adam(),
                  metrics=[metrics.categorical_accuracy])
    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    return model, x


def test_functional_model_saving():
    model, x = _get_sample_model_and_input()
    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    new_model_disk = load_model(fname)
    os.remove(fname)

    with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
        gcs_filepath = file_io_proxy.get_filepath(filename=fname)
        save_model(model, gcs_filepath)
        file_io_proxy.assert_exists(gcs_filepath)
        new_model_gcs = load_model(gcs_filepath)
        file_io_proxy.delete_file(gcs_filepath)  # cleanup

    for new_model in [new_model_disk, new_model_gcs]:
        new_out = new_model.predict(x)
        assert_allclose(out, new_out, atol=1e-05)


def test_model_saving_to_pre_created_h5py_file():
    model, x = _get_sample_model_and_input()

    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    with h5py.File(fname, mode='r+') as h5file:
        save_model(model, h5file)
        loaded_model = load_model(h5file)
        out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)

    # test non-default options in h5
    with h5py.File('does not matter', driver='core',
                   backing_store=False, mode='w') as h5file:
        save_model(model, h5file)
        loaded_model = load_model(h5file)
        out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)

    with h5py.File(fname, mode='r+') as h5file:
        g = h5file.create_group('model')
        save_model(model, g)
        loaded_model = load_model(g)
        out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


@contextmanager
def temp_filename(filename):
    """Context that returns a temporary filename and deletes the file on exit if
    it still exists (so that this is not forgotten).
    """
    _, temp_fname = tempfile.mkstemp(filename)
    yield temp_fname
    if os.path.exists(temp_fname):
        os.remove(temp_fname)


def test_model_saving_to_binary_stream():
    model, x = _get_sample_model_and_input()
    out = model.predict(x)

    with temp_filename('h5') as fname:
        # save directly to binary file
        with open(fname, 'wb') as raw_file:
            save_model(model, raw_file)
        # Load the data the usual way, and make sure the model is intact.
        with h5py.File(fname, mode='r') as h5file:
            loaded_model = load_model(h5file)
    out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_model_loading_from_binary_stream():
    model, x = _get_sample_model_and_input()
    out = model.predict(x)

    with temp_filename('h5') as fname:
        # save the model the usual way
        with h5py.File(fname, mode='w') as h5file:
            save_model(model, h5file)
        # Load the data binary, and make sure the model is intact.
        with open(fname, 'rb') as raw_file:
            loaded_model = load_model(raw_file)
    out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_model_save_load_binary_in_memory():
    model, x = _get_sample_model_and_input()
    out = model.predict(x)

    stream = io.BytesIO()
    save_model(model, stream)
    stream.seek(0)
    loaded_model = load_model(stream)
    out2 = loaded_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_multiple_metrics_outputs():
    inputs = Input(shape=(5,))
    x = Dense(5)(inputs)
    output1 = Dense(1, name='output1')(x)
    output2 = Dense(1, name='output2')(x)

    model = Model(inputs=inputs, outputs=[output1, output2])

    metrics = {'output1': ['mse', 'binary_accuracy'],
               'output2': ['mse', 'binary_accuracy']
               }
    loss = {'output1': 'mse', 'output2': 'mse'}

    model.compile(loss=loss, optimizer='sgd', metrics=metrics)

    # assure that model is working
    x = np.array([[1, 1, 1, 1, 1]])
    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname)
    os.remove(fname)

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_without_compilation():
    """Test saving model without compiling.
    """
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.add(Dense(3))

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    model = load_model(fname)
    os.remove(fname)


def test_saving_right_after_compilation():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.add(Dense(3))
    model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
    model._make_train_function()

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    model = load_model(fname)
    os.remove(fname)


def test_saving_unused_layers_is_ok():
    a = Input(shape=(256, 512, 6))
    b = Input(shape=(256, 512, 1))
    c = Lambda(lambda x: x[:, :, :, :1])(a)

    model = Model(inputs=[a, b], outputs=c)

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    load_model(fname)
    os.remove(fname)


def test_loading_weights_by_name_and_reshape():
    """
    test loading model weights by name on:
        - sequential model
    """

    # test with custom optimizer, loss
    custom_opt = optimizers.rmsprop
    custom_loss = losses.mse

    # sequential model
    model = Sequential()
    model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
    model.add(Flatten())
    model.add(Dense(3, name='morty'))
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    x = np.random.random((1, 1, 1, 1))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    old_weights = [layer.get_weights() for layer in model.layers]
    _, fname = tempfile.mkstemp('.h5')

    model.save_weights(fname)

    # delete and recreate model
    del(model)
    model = Sequential()
    model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
    model.add(Conv2D(3, (1, 1), name='morty'))
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    # load weights from first model
    with pytest.raises(ValueError):
        model.load_weights(fname, by_name=True, reshape=False)
    with pytest.raises(ValueError):
        model.load_weights(fname, by_name=False, reshape=False)
    model.load_weights(fname, by_name=False, reshape=True)
    model.load_weights(fname, by_name=True, reshape=True)

    out2 = model.predict(x)
    assert_allclose(np.squeeze(out), np.squeeze(out2), atol=1e-05)
    for i in range(len(model.layers)):
        new_weights = model.layers[i].get_weights()
        for j in range(len(new_weights)):
            # only compare layers that have weights, skipping Flatten()
            if old_weights[i]:
                assert_allclose(old_weights[i][j], new_weights[j], atol=1e-05)

    # delete and recreate model with `use_bias=False`
    del(model)
    model = Sequential()
    model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), use_bias=False, name='rick'))
    model.add(Flatten())
    model.add(Dense(3, name='morty'))
    with pytest.raises(ValueError,
                       match=r'.* expects [0-9]+ .* but the saved .* [0-9]+ .*'):
        model.load_weights(fname)
    with pytest.raises(ValueError,
                       match=r'.* expects [0-9]+ .* but the saved .* [0-9]+ .*'):
        model.load_weights(fname, by_name=True)
    with pytest.warns(UserWarning,
                      match=r'Skipping loading .* due to mismatch .*'):
        model.load_weights(fname, by_name=True, skip_mismatch=True)

    # delete and recreate model with `filters=10`
    del(model)
    model = Sequential()
    model.add(Conv2D(10, (1, 1), input_shape=(1, 1, 1), name='rick'))
    with pytest.raises(ValueError,
                       match=r'.* has shape .* but the saved .* shape .*'):
        model.load_weights(fname, by_name=True)
    with pytest.raises(ValueError,
                       match=r'.* load .* [0-9]+ layers into .* [0-9]+ layers.'):
        model.load_weights(fname)

    os.remove(fname)


def test_loading_weights_by_name_2():
    """
    test loading model weights by name on:
        - both sequential and functional api models
        - different architecture with shared names
    """

    # test with custom optimizer, loss
    custom_opt = optimizers.rmsprop
    custom_loss = losses.mse

    # sequential model
    model = Sequential()
    model.add(Dense(2, input_shape=(3,), name='rick'))
    model.add(Dense(3, name='morty'))
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    old_weights = [layer.get_weights() for layer in model.layers]
    _, fname = tempfile.mkstemp('.h5')

    model.save_weights(fname)

    # delete and recreate model using Functional API
    del(model)
    data = Input(shape=(3,))
    rick = Dense(2, name='rick')(data)
    jerry = Dense(3, name='jerry')(rick)  # add 2 layers (but maintain shapes)
    jessica = Dense(2, name='jessica')(jerry)
    morty = Dense(3, name='morty')(jessica)

    model = Model(inputs=[data], outputs=[morty])
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    # load weights from first model
    model.load_weights(fname, by_name=True)
    os.remove(fname)

    out2 = model.predict(x)
    assert np.max(np.abs(out - out2)) > 1e-05

    rick = model.layers[1].get_weights()
    jerry = model.layers[2].get_weights()
    jessica = model.layers[3].get_weights()
    morty = model.layers[4].get_weights()

    assert_allclose(old_weights[0][0], rick[0], atol=1e-05)
    assert_allclose(old_weights[0][1], rick[1], atol=1e-05)
    assert_allclose(old_weights[1][0], morty[0], atol=1e-05)
    assert_allclose(old_weights[1][1], morty[1], atol=1e-05)
    assert_allclose(np.zeros_like(jerry[1]), jerry[1])  # biases init to 0
    assert_allclose(np.zeros_like(jessica[1]), jessica[1])  # biases init to 0


def test_loading_weights_by_name_skip_mismatch():
    """
    test skipping layers while loading model weights by name on:
        - sequential model
    """

    # test with custom optimizer, loss
    custom_opt = optimizers.rmsprop
    custom_loss = losses.mse

    # sequential model
    model = Sequential()
    model.add(Dense(2, input_shape=(3,), name='rick'))
    model.add(Dense(3, name='morty'))
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    old_weights = [layer.get_weights() for layer in model.layers]
    _, fname = tempfile.mkstemp('.h5')

    model.save_weights(fname)

    # delete and recreate model
    del(model)
    model = Sequential()
    model.add(Dense(2, input_shape=(3,), name='rick'))
    model.add(Dense(4, name='morty'))  # different shape w.r.t. previous model
    model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])

    # load weights from first model
    with pytest.warns(UserWarning):  # expect UserWarning for skipping weights
        model.load_weights(fname, by_name=True, skip_mismatch=True)
    os.remove(fname)

    # assert layers 'rick' are equal
    for old, new in zip(old_weights[0], model.layers[0].get_weights()):
        assert_allclose(old, new, atol=1e-05)

    # assert layers 'morty' are not equal, since we skipped loading this layer
    for old, new in zip(old_weights[1], model.layers[1].get_weights()):
        assert_raises(AssertionError, assert_allclose, old, new, atol=1e-05)


# a function to be called from the Lambda layer
def square_fn(x):
    return x * x


def test_saving_lambda_custom_objects():
    inputs = Input(shape=(3,))
    x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs)
    outputs = Dense(3)(x)

    model = Model(inputs, outputs)
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy])
    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname, custom_objects={'square_fn': square_fn})
    os.remove(fname)

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_lambda_numpy_array_arguments():
    mean = np.random.random((4, 2, 3))
    std = np.abs(np.random.random((4, 2, 3))) + 1e-5
    inputs = Input(shape=(4, 2, 3))
    outputs = Lambda(lambda image, mu, std: (image - mu) / std,
                     arguments={'mu': mean, 'std': std})(inputs)
    model = Model(inputs, outputs)
    model.compile(loss='mse', optimizer='sgd', metrics=['acc'])

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname)
    os.remove(fname)

    assert_allclose(mean, model.layers[1].arguments['mu'])
    assert_allclose(std, model.layers[1].arguments['std'])


def test_saving_custom_activation_function():
    x = Input(shape=(3,))
    output = Dense(3, activation=K.cos)(x)

    model = Model(x, output)
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy])
    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname, custom_objects={'cos': K.cos})
    os.remove(fname)

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_model_with_long_layer_names():
    # This layer name will make the `layers_name` HDF5 attribute blow
    # out of proportion. Note that it fits into the internal HDF5
    # attribute memory limit on its own but because h5py converts
    # the list of layer names into numpy array, which uses the same
    # amout of memory for every item, it increases the memory
    # requirements substantially.
    x = Input(shape=(2,), name='input_' + ('x' * (2**15)))
    f = x
    for i in range(4):
        f = Dense(2, name='dense_%d' % (i,))(f)

    model = Model(inputs=[x], outputs=[f])

    model.compile(loss='mse', optimizer='adam', metrics=['acc'])

    x = np.random.random((1, 2))
    y = np.random.random((1, 2))
    model.train_on_batch(x, y)

    out = model.predict(x)

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname)

    # Check that the HDF5 files contains chunked array
    # of layer names.
    with h5py.File(fname, 'r') as h5file:
        n_layer_names_arrays = len([attr for attr in h5file['model_weights'].attrs
                                    if attr.startswith('layer_names')])

    os.remove(fname)

    # The chunking of layer names array should have happened.
    assert n_layer_names_arrays > 0

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_model_with_long_weights_names():
    x = Input(shape=(2,), name='nested_model_input')
    f = x
    for i in range(4):
        f = Dense(2, name='nested_model_dense_%d' % (i,))(f)
    f = Dense(2, name='nested_model_dense_4', trainable=False)(f)
    # This layer name will make the `weights_name`
    # HDF5 attribute blow out of proportion.
    f = Dense(2, name='nested_model_output' + ('x' * (2**15)))(f)
    nested_model = Model(inputs=[x], outputs=[f], name='nested_model')

    x = Input(shape=(2,), name='outer_model_input')
    f = nested_model(x)
    f = Dense(2, name='outer_model_output')(f)

    model = Model(inputs=[x], outputs=[f])

    model.compile(loss='mse', optimizer='adam', metrics=['acc'])

    x = np.random.random((1, 2))
    y = np.random.random((1, 2))
    model.train_on_batch(x, y)

    out = model.predict(x)

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname)

    # Check that the HDF5 files contains chunked array
    # of weight names.
    with h5py.File(fname, 'r') as h5file:
        attrs = [attr for attr in h5file['model_weights']['nested_model'].attrs
                 if attr.startswith('weight_names')]
        n_weight_names_arrays = len(attrs)

    os.remove(fname)

    # The chunking of layer names array should have happened.
    assert n_weight_names_arrays > 0

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_recurrent_layer_with_init_state():
    vector_size = 8
    input_length = 20

    input_initial_state = Input(shape=(vector_size,))
    input_x = Input(shape=(input_length, vector_size))

    lstm = LSTM(vector_size, return_sequences=True)(
        input_x, initial_state=[input_initial_state, input_initial_state])

    model = Model(inputs=[input_x, input_initial_state], outputs=[lstm])

    _, fname = tempfile.mkstemp('.h5')
    model.save(fname)

    loaded_model = load_model(fname)
    os.remove(fname)


def test_saving_recurrent_layer_without_bias():
    vector_size = 8
    input_length = 20

    input_x = Input(shape=(input_length, vector_size))
    lstm = LSTM(vector_size, use_bias=False)(input_x)
    model = Model(inputs=[input_x], outputs=[lstm])

    _, fname = tempfile.mkstemp('.h5')
    model.save(fname)

    loaded_model = load_model(fname)
    os.remove(fname)


def test_loop_model_saving():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy])

    x = np.random.random((1, 3))
    y = np.random.random((1, 2))
    _, fname = tempfile.mkstemp('.h5')

    for _ in range(3):
        model.train_on_batch(x, y)
        save_model(model, fname, overwrite=True)
        out = model.predict(x)

    new_model = load_model(fname)
    os.remove(fname)

    out2 = new_model.predict(x)
    assert_allclose(out, out2, atol=1e-05)


def test_saving_constant_initializer_with_numpy():
    """Test saving and loading model of constant initializer with numpy inputs.
    """
    model = Sequential()
    model.add(Dense(2, input_shape=(3,),
                    kernel_initializer=Constant(np.ones((3, 2)))))
    model.add(Dense(3))
    model.compile(loss='mse', optimizer='sgd', metrics=['acc'])

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    model = load_model(fname)
    os.remove(fname)


def test_save_load_weights_gcs():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    org_weights = model.get_weights()

    with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
        gcs_filepath = file_io_proxy.get_filepath(
            filename='test_save_load_weights_gcs.h5')
        # we should not use same filename in several tests to allow for parallel
        # execution
        model.save_weights(gcs_filepath)
        model.set_weights([np.random.random(w.shape) for w in org_weights])
        for w, org_w in zip(model.get_weights(), org_weights):
            assert not (w == org_w).all()
        model.load_weights(gcs_filepath)
        for w, org_w in zip(model.get_weights(), org_weights):
            assert_allclose(w, org_w)

        file_io_proxy.delete_file(gcs_filepath)  # cleanup


def test_saving_overwrite_option():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    org_weights = model.get_weights()
    new_weights = [np.random.random(w.shape) for w in org_weights]

    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)
    model.set_weights(new_weights)

    with patch('keras.engine.saving.ask_to_proceed_with_overwrite') as ask:
        ask.return_value = False
        save_model(model, fname, overwrite=False)
        ask.assert_called_once()
        new_model = load_model(fname)
        for w, org_w in zip(new_model.get_weights(), org_weights):
            assert_allclose(w, org_w)

        ask.return_value = True
        save_model(model, fname, overwrite=False)
        assert ask.call_count == 2
        new_model = load_model(fname)
        for w, new_w in zip(new_model.get_weights(), new_weights):
            assert_allclose(w, new_w)

    os.remove(fname)


def test_saving_overwrite_option_gcs():
    model = Sequential()
    model.add(Dense(2, input_shape=(3,)))
    org_weights = model.get_weights()
    new_weights = [np.random.random(w.shape) for w in org_weights]

    with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
        gcs_filepath = file_io_proxy.get_filepath(
            filename='test_saving_overwrite_option_gcs.h5')
        # we should not use same filename in several tests to allow for parallel
        # execution
        save_model(model, gcs_filepath)
        model.set_weights(new_weights)

        with patch('keras.engine.saving.ask_to_proceed_with_overwrite') as ask:
            ask.return_value = False
            save_model(model, gcs_filepath, overwrite=False)
            ask.assert_called_once()
            new_model = load_model(gcs_filepath)
            for w, org_w in zip(new_model.get_weights(), org_weights):
                assert_allclose(w, org_w)

            ask.return_value = True
            save_model(model, gcs_filepath, overwrite=False)
            assert ask.call_count == 2
            new_model = load_model(gcs_filepath)
            for w, new_w in zip(new_model.get_weights(), new_weights):
                assert_allclose(w, new_w)

        file_io_proxy.delete_file(gcs_filepath)  # cleanup


@pytest.mark.parametrize('implementation', [1, 2], ids=['impl1', 'impl2'])
@pytest.mark.parametrize('bidirectional',
                         [False, True],
                         ids=['single', 'bidirectional'])
@pytest.mark.parametrize('to_cudnn', [False, True], ids=['from_cudnn', 'to_cudnn'])
@pytest.mark.parametrize('rnn_type', ['LSTM', 'GRU'], ids=['LSTM', 'GRU'])
@pytest.mark.parametrize('model_nest_level',
                         [1, 2],
                         ids=['model_plain', 'model_nested'])
@pytest.mark.parametrize('model_type',
                         ['func', 'seq'],
                         ids=['model_func', 'model_seq'])
@skipif_no_tf_gpu
def test_load_weights_between_noncudnn_rnn(rnn_type, to_cudnn, bidirectional,
                                           implementation, model_nest_level,
                                           model_type):
    input_size = 10
    timesteps = 6
    input_shape = (timesteps, input_size)
    units = 2
    num_samples = 32
    inputs = np.random.random((num_samples, timesteps, input_size))

    rnn_layer_kwargs = {
        'recurrent_activation': 'sigmoid',
        # ensure biases are non-zero and properly converted
        'bias_initializer': 'random_uniform',
        'implementation': implementation
    }
    if rnn_type == 'LSTM':
        rnn_layer_class = LSTM
        cudnn_rnn_layer_class = CuDNNLSTM
    else:
        rnn_layer_class = GRU
        cudnn_rnn_layer_class = CuDNNGRU
        rnn_layer_kwargs['reset_after'] = True

    layer = rnn_layer_class(units, **rnn_layer_kwargs)
    if bidirectional:
        layer = Bidirectional(layer)

    cudnn_layer = cudnn_rnn_layer_class(units)
    if bidirectional:
        cudnn_layer = Bidirectional(cudnn_layer)

    model = _make_nested_model(input_shape, layer, model_nest_level, model_type)
    cudnn_model = _make_nested_model(input_shape, cudnn_layer,
                                     model_nest_level, model_type)

    if to_cudnn:
        _convert_model_weights(model, cudnn_model)
    else:
        _convert_model_weights(cudnn_model, model)

    assert_allclose(model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4)


def _make_nested_model(input_shape, layer, level=1, model_type='func'):
    # example: make_nested_seq_model((1,), Dense(10), level=2).summary()
    def make_nested_seq_model(input_shape, layer, level=1):
        model = layer
        for i in range(1, level + 1):
            layers = [InputLayer(input_shape), model] if (i == 1) else [model]
            model = Sequential(layers)
        return model

    # example: make_nested_func_model((1,), Dense(10), level=2).summary()
    def make_nested_func_model(input_shape, layer, level=1):
        input = Input(input_shape)
        model = layer
        for i in range(level):
            model = Model(input, model(input))
        return model

    if model_type == 'func':
        return make_nested_func_model(input_shape, layer, level)
    elif model_type == 'seq':
        return make_nested_seq_model(input_shape, layer, level)


def _convert_model_weights(source_model, target_model):
    _, fname = tempfile.mkstemp('.h5')
    source_model.save_weights(fname)
    target_model.load_weights(fname)
    os.remove(fname)


@pytest.mark.parametrize('to_cudnn', [False, True], ids=['from_cudnn', 'to_cudnn'])
@pytest.mark.parametrize('rnn_type', ['LSTM', 'GRU'], ids=['LSTM', 'GRU'])
@skipif_no_tf_gpu
def test_load_weights_between_noncudnn_rnn_time_distributed(rnn_type, to_cudnn):
    """
    Similar test as  test_load_weights_between_noncudnn_rnn() but has different
    rank of input due to usage of TimeDistributed. Issue: #10356.
    """
    input_size = 10
    steps = 6
    timesteps = 6
    input_shape = (timesteps, steps, input_size)
    units = 2
    num_samples = 32
    inputs = np.random.random((num_samples,) + input_shape)

    rnn_layer_kwargs = {
        'recurrent_activation': 'sigmoid',
        # ensure biases are non-zero and properly converted
        'bias_initializer': 'random_uniform',
    }
    if rnn_type == 'LSTM':
        rnn_layer_class = LSTM
        cudnn_rnn_layer_class = CuDNNLSTM
    else:
        rnn_layer_class = GRU
        cudnn_rnn_layer_class = CuDNNGRU
        rnn_layer_kwargs['reset_after'] = True

    layer = rnn_layer_class(units, **rnn_layer_kwargs)
    layer = TimeDistributed(layer)

    cudnn_layer = cudnn_rnn_layer_class(units)
    cudnn_layer = TimeDistributed(cudnn_layer)

    model = _make_nested_model(input_shape, layer)
    cudnn_model = _make_nested_model(input_shape, cudnn_layer)

    if to_cudnn:
        _convert_model_weights(model, cudnn_model)
    else:
        _convert_model_weights(cudnn_model, model)

    assert_allclose(model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4)


@skipif_no_tf_gpu
def test_preprocess_weights_for_loading_gru_incompatible():
    """
    Loading weights between incompatible layers should fail fast with an exception.
    """
    def gru(cudnn=False, **kwargs):
        layer_class = CuDNNGRU if cudnn else GRU
        return layer_class(2, input_shape=[3, 5], **kwargs)

    def initialize_weights(layer):
        # A model is needed to initialize weights.
        _ = Sequential([layer])
        return layer

    def assert_not_compatible(src, dest, message):
        with pytest.raises(ValueError) as ex:
            preprocess_weights_for_loading(dest,
                                           initialize_weights(src).get_weights())
        assert message in ex.value.message

    assert_not_compatible(gru(), gru(cudnn=True),
                          'GRU(reset_after=False) is not compatible with CuDNNGRU')
    assert_not_compatible(gru(cudnn=True), gru(),
                          'CuDNNGRU is not compatible with GRU(reset_after=False)')
    assert_not_compatible(gru(), gru(reset_after=True),
                          'GRU(reset_after=False) is not compatible with '
                          'GRU(reset_after=True)')
    assert_not_compatible(gru(reset_after=True), gru(),
                          'GRU(reset_after=True) is not compatible with '
                          'GRU(reset_after=False)')


def test_model_saving_with_rnn_initial_state_and_args():
    class CustomRNN(LSTM):
        def call(self, inputs, arg=1, mask=None, training=None, initial_state=None):
            if isinstance(inputs, list):
                inputs = inputs[:]
                shape = K.int_shape(inputs[0])
                inputs[0] *= arg
                inputs[0]._keras_shape = shape  # for theano backend
            else:
                shape = K.int_shape(inputs)
                inputs *= arg
                inputs._keras_shape = shape  # for theano backend
            return super(CustomRNN, self).call(inputs, mask, training, initial_state)

    inp = Input((3, 2))
    rnn_out, h, c = CustomRNN(2, return_state=True, return_sequences=True)(inp)
    assert hasattr(rnn_out, '_keras_history')
    assert hasattr(h, '_keras_history')
    assert hasattr(c, '_keras_history')
    rnn2_out = CustomRNN(2)(rnn_out, arg=2, initial_state=[h, c])
    assert hasattr(rnn2_out, '_keras_history')
    model = Model(inputs=inp, outputs=rnn2_out)
    x = np.random.random((2, 3, 2))
    y1 = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    with warnings.catch_warnings():
        warnings.filterwarnings('error')
        model.save(fname)
    model2 = load_model(fname, custom_objects={'CustomRNN': CustomRNN})
    y2 = model2.predict(x)
    assert_allclose(y1, y2, atol=1e-5)
    os.remove(fname)


if __name__ == '__main__':
    pytest.main([__file__])