1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
import io
import pytest
import os
import h5py
import tempfile
import warnings
from contextlib import contextmanager
import numpy as np
from numpy.testing import assert_allclose
from numpy.testing import assert_raises
from keras import backend as K
from keras.engine.saving import preprocess_weights_for_loading
from keras.models import Model, Sequential
from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed
from keras.layers import Bidirectional, GRU, LSTM, CuDNNGRU, CuDNNLSTM
from keras.layers import Conv2D, Flatten
from keras.layers import Input, InputLayer
from keras.initializers import Constant
from keras import optimizers
from keras import losses
from keras import metrics
from keras.models import save_model, load_model
from keras.utils.test_utils import tf_file_io_proxy
try:
from unittest.mock import patch
except:
from mock import patch
skipif_no_tf_gpu = pytest.mark.skipif(
(K.backend() != 'tensorflow' or
not K.tensorflow_backend._get_available_gpus()),
reason='Requires TensorFlow backend and a GPU')
def test_sequential_model_saving():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=losses.MeanSquaredError(),
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
new_model_disk = load_model(fname)
os.remove(fname)
with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
gcs_filepath = file_io_proxy.get_filepath(filename=fname)
save_model(model, gcs_filepath)
file_io_proxy.assert_exists(gcs_filepath)
new_model_gcs = load_model(gcs_filepath)
file_io_proxy.delete_file(gcs_filepath) # cleanup
x2 = np.random.random((1, 3))
y2 = np.random.random((1, 3, 3))
model.train_on_batch(x2, y2)
out_2 = model.predict(x2)
for new_model in [new_model_disk, new_model_gcs]:
new_out = new_model.predict(x)
assert_allclose(out, new_out, atol=1e-05)
# test that new updates are the same with both models
new_model.train_on_batch(x2, y2)
new_out_2 = new_model.predict(x2)
assert_allclose(out_2, new_out_2, atol=1e-05)
def test_sequential_model_saving_2():
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(Dense(3))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
load_kwargs = {'custom_objects': {'custom_opt': custom_opt,
'custom_loss': custom_loss}}
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
new_model_disk = load_model(fname, **load_kwargs)
os.remove(fname)
with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
gcs_filepath = file_io_proxy.get_filepath(filename=fname)
save_model(model, gcs_filepath)
file_io_proxy.assert_exists(gcs_filepath)
new_model_gcs = load_model(gcs_filepath, **load_kwargs)
file_io_proxy.delete_file(gcs_filepath) # cleanup
for new_model in [new_model_disk, new_model_gcs]:
new_out = new_model.predict(x)
assert_allclose(out, new_out, atol=1e-05)
def _get_sample_model_and_input():
inputs = Input(shape=(3,))
x = Dense(2)(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.Adam(),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
return model, x
def test_functional_model_saving():
model, x = _get_sample_model_and_input()
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
new_model_disk = load_model(fname)
os.remove(fname)
with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
gcs_filepath = file_io_proxy.get_filepath(filename=fname)
save_model(model, gcs_filepath)
file_io_proxy.assert_exists(gcs_filepath)
new_model_gcs = load_model(gcs_filepath)
file_io_proxy.delete_file(gcs_filepath) # cleanup
for new_model in [new_model_disk, new_model_gcs]:
new_out = new_model.predict(x)
assert_allclose(out, new_out, atol=1e-05)
def test_model_saving_to_pre_created_h5py_file():
model, x = _get_sample_model_and_input()
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
with h5py.File(fname, mode='r+') as h5file:
save_model(model, h5file)
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# test non-default options in h5
with h5py.File('does not matter', driver='core',
backing_store=False, mode='w') as h5file:
save_model(model, h5file)
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
with h5py.File(fname, mode='r+') as h5file:
g = h5file.create_group('model')
save_model(model, g)
loaded_model = load_model(g)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
@contextmanager
def temp_filename(filename):
"""Context that returns a temporary filename and deletes the file on exit if
it still exists (so that this is not forgotten).
"""
_, temp_fname = tempfile.mkstemp(filename)
yield temp_fname
if os.path.exists(temp_fname):
os.remove(temp_fname)
def test_model_saving_to_binary_stream():
model, x = _get_sample_model_and_input()
out = model.predict(x)
with temp_filename('h5') as fname:
# save directly to binary file
with open(fname, 'wb') as raw_file:
save_model(model, raw_file)
# Load the data the usual way, and make sure the model is intact.
with h5py.File(fname, mode='r') as h5file:
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_model_loading_from_binary_stream():
model, x = _get_sample_model_and_input()
out = model.predict(x)
with temp_filename('h5') as fname:
# save the model the usual way
with h5py.File(fname, mode='w') as h5file:
save_model(model, h5file)
# Load the data binary, and make sure the model is intact.
with open(fname, 'rb') as raw_file:
loaded_model = load_model(raw_file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_model_save_load_binary_in_memory():
model, x = _get_sample_model_and_input()
out = model.predict(x)
stream = io.BytesIO()
save_model(model, stream)
stream.seek(0)
loaded_model = load_model(stream)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_multiple_metrics_outputs():
inputs = Input(shape=(5,))
x = Dense(5)(inputs)
output1 = Dense(1, name='output1')(x)
output2 = Dense(1, name='output2')(x)
model = Model(inputs=inputs, outputs=[output1, output2])
metrics = {'output1': ['mse', 'binary_accuracy'],
'output2': ['mse', 'binary_accuracy']
}
loss = {'output1': 'mse', 'output2': 'mse'}
model.compile(loss=loss, optimizer='sgd', metrics=metrics)
# assure that model is working
x = np.array([[1, 1, 1, 1, 1]])
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_without_compilation():
"""Test saving model without compiling.
"""
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(Dense(3))
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
def test_saving_right_after_compilation():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
model._make_train_function()
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
def test_saving_unused_layers_is_ok():
a = Input(shape=(256, 512, 6))
b = Input(shape=(256, 512, 1))
c = Lambda(lambda x: x[:, :, :, :1])(a)
model = Model(inputs=[a, b], outputs=c)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
load_model(fname)
os.remove(fname)
def test_loading_weights_by_name_and_reshape():
"""
test loading model weights by name on:
- sequential model
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
model.add(Flatten())
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 1, 1, 1))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model
del(model)
model = Sequential()
model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
model.add(Conv2D(3, (1, 1), name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
with pytest.raises(ValueError):
model.load_weights(fname, by_name=True, reshape=False)
with pytest.raises(ValueError):
model.load_weights(fname, by_name=False, reshape=False)
model.load_weights(fname, by_name=False, reshape=True)
model.load_weights(fname, by_name=True, reshape=True)
out2 = model.predict(x)
assert_allclose(np.squeeze(out), np.squeeze(out2), atol=1e-05)
for i in range(len(model.layers)):
new_weights = model.layers[i].get_weights()
for j in range(len(new_weights)):
# only compare layers that have weights, skipping Flatten()
if old_weights[i]:
assert_allclose(old_weights[i][j], new_weights[j], atol=1e-05)
# delete and recreate model with `use_bias=False`
del(model)
model = Sequential()
model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), use_bias=False, name='rick'))
model.add(Flatten())
model.add(Dense(3, name='morty'))
with pytest.raises(ValueError,
match=r'.* expects [0-9]+ .* but the saved .* [0-9]+ .*'):
model.load_weights(fname)
with pytest.raises(ValueError,
match=r'.* expects [0-9]+ .* but the saved .* [0-9]+ .*'):
model.load_weights(fname, by_name=True)
with pytest.warns(UserWarning,
match=r'Skipping loading .* due to mismatch .*'):
model.load_weights(fname, by_name=True, skip_mismatch=True)
# delete and recreate model with `filters=10`
del(model)
model = Sequential()
model.add(Conv2D(10, (1, 1), input_shape=(1, 1, 1), name='rick'))
with pytest.raises(ValueError,
match=r'.* has shape .* but the saved .* shape .*'):
model.load_weights(fname, by_name=True)
with pytest.raises(ValueError,
match=r'.* load .* [0-9]+ layers into .* [0-9]+ layers.'):
model.load_weights(fname)
os.remove(fname)
def test_loading_weights_by_name_2():
"""
test loading model weights by name on:
- both sequential and functional api models
- different architecture with shared names
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model using Functional API
del(model)
data = Input(shape=(3,))
rick = Dense(2, name='rick')(data)
jerry = Dense(3, name='jerry')(rick) # add 2 layers (but maintain shapes)
jessica = Dense(2, name='jessica')(jerry)
morty = Dense(3, name='morty')(jessica)
model = Model(inputs=[data], outputs=[morty])
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
model.load_weights(fname, by_name=True)
os.remove(fname)
out2 = model.predict(x)
assert np.max(np.abs(out - out2)) > 1e-05
rick = model.layers[1].get_weights()
jerry = model.layers[2].get_weights()
jessica = model.layers[3].get_weights()
morty = model.layers[4].get_weights()
assert_allclose(old_weights[0][0], rick[0], atol=1e-05)
assert_allclose(old_weights[0][1], rick[1], atol=1e-05)
assert_allclose(old_weights[1][0], morty[0], atol=1e-05)
assert_allclose(old_weights[1][1], morty[1], atol=1e-05)
assert_allclose(np.zeros_like(jerry[1]), jerry[1]) # biases init to 0
assert_allclose(np.zeros_like(jessica[1]), jessica[1]) # biases init to 0
def test_loading_weights_by_name_skip_mismatch():
"""
test skipping layers while loading model weights by name on:
- sequential model
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model
del(model)
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(4, name='morty')) # different shape w.r.t. previous model
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
with pytest.warns(UserWarning): # expect UserWarning for skipping weights
model.load_weights(fname, by_name=True, skip_mismatch=True)
os.remove(fname)
# assert layers 'rick' are equal
for old, new in zip(old_weights[0], model.layers[0].get_weights()):
assert_allclose(old, new, atol=1e-05)
# assert layers 'morty' are not equal, since we skipped loading this layer
for old, new in zip(old_weights[1], model.layers[1].get_weights()):
assert_raises(AssertionError, assert_allclose, old, new, atol=1e-05)
# a function to be called from the Lambda layer
def square_fn(x):
return x * x
def test_saving_lambda_custom_objects():
inputs = Input(shape=(3,))
x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname, custom_objects={'square_fn': square_fn})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_lambda_numpy_array_arguments():
mean = np.random.random((4, 2, 3))
std = np.abs(np.random.random((4, 2, 3))) + 1e-5
inputs = Input(shape=(4, 2, 3))
outputs = Lambda(lambda image, mu, std: (image - mu) / std,
arguments={'mu': mean, 'std': std})(inputs)
model = Model(inputs, outputs)
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
assert_allclose(mean, model.layers[1].arguments['mu'])
assert_allclose(std, model.layers[1].arguments['std'])
def test_saving_custom_activation_function():
x = Input(shape=(3,))
output = Dense(3, activation=K.cos)(x)
model = Model(x, output)
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname, custom_objects={'cos': K.cos})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_model_with_long_layer_names():
# This layer name will make the `layers_name` HDF5 attribute blow
# out of proportion. Note that it fits into the internal HDF5
# attribute memory limit on its own but because h5py converts
# the list of layer names into numpy array, which uses the same
# amout of memory for every item, it increases the memory
# requirements substantially.
x = Input(shape=(2,), name='input_' + ('x' * (2**15)))
f = x
for i in range(4):
f = Dense(2, name='dense_%d' % (i,))(f)
model = Model(inputs=[x], outputs=[f])
model.compile(loss='mse', optimizer='adam', metrics=['acc'])
x = np.random.random((1, 2))
y = np.random.random((1, 2))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
# Check that the HDF5 files contains chunked array
# of layer names.
with h5py.File(fname, 'r') as h5file:
n_layer_names_arrays = len([attr for attr in h5file['model_weights'].attrs
if attr.startswith('layer_names')])
os.remove(fname)
# The chunking of layer names array should have happened.
assert n_layer_names_arrays > 0
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_model_with_long_weights_names():
x = Input(shape=(2,), name='nested_model_input')
f = x
for i in range(4):
f = Dense(2, name='nested_model_dense_%d' % (i,))(f)
f = Dense(2, name='nested_model_dense_4', trainable=False)(f)
# This layer name will make the `weights_name`
# HDF5 attribute blow out of proportion.
f = Dense(2, name='nested_model_output' + ('x' * (2**15)))(f)
nested_model = Model(inputs=[x], outputs=[f], name='nested_model')
x = Input(shape=(2,), name='outer_model_input')
f = nested_model(x)
f = Dense(2, name='outer_model_output')(f)
model = Model(inputs=[x], outputs=[f])
model.compile(loss='mse', optimizer='adam', metrics=['acc'])
x = np.random.random((1, 2))
y = np.random.random((1, 2))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
# Check that the HDF5 files contains chunked array
# of weight names.
with h5py.File(fname, 'r') as h5file:
attrs = [attr for attr in h5file['model_weights']['nested_model'].attrs
if attr.startswith('weight_names')]
n_weight_names_arrays = len(attrs)
os.remove(fname)
# The chunking of layer names array should have happened.
assert n_weight_names_arrays > 0
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_recurrent_layer_with_init_state():
vector_size = 8
input_length = 20
input_initial_state = Input(shape=(vector_size,))
input_x = Input(shape=(input_length, vector_size))
lstm = LSTM(vector_size, return_sequences=True)(
input_x, initial_state=[input_initial_state, input_initial_state])
model = Model(inputs=[input_x, input_initial_state], outputs=[lstm])
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
loaded_model = load_model(fname)
os.remove(fname)
def test_saving_recurrent_layer_without_bias():
vector_size = 8
input_length = 20
input_x = Input(shape=(input_length, vector_size))
lstm = LSTM(vector_size, use_bias=False)(input_x)
model = Model(inputs=[input_x], outputs=[lstm])
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
loaded_model = load_model(fname)
os.remove(fname)
def test_loop_model_saving():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 2))
_, fname = tempfile.mkstemp('.h5')
for _ in range(3):
model.train_on_batch(x, y)
save_model(model, fname, overwrite=True)
out = model.predict(x)
new_model = load_model(fname)
os.remove(fname)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
def test_saving_constant_initializer_with_numpy():
"""Test saving and loading model of constant initializer with numpy inputs.
"""
model = Sequential()
model.add(Dense(2, input_shape=(3,),
kernel_initializer=Constant(np.ones((3, 2)))))
model.add(Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
def test_save_load_weights_gcs():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
org_weights = model.get_weights()
with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
gcs_filepath = file_io_proxy.get_filepath(
filename='test_save_load_weights_gcs.h5')
# we should not use same filename in several tests to allow for parallel
# execution
model.save_weights(gcs_filepath)
model.set_weights([np.random.random(w.shape) for w in org_weights])
for w, org_w in zip(model.get_weights(), org_weights):
assert not (w == org_w).all()
model.load_weights(gcs_filepath)
for w, org_w in zip(model.get_weights(), org_weights):
assert_allclose(w, org_w)
file_io_proxy.delete_file(gcs_filepath) # cleanup
def test_saving_overwrite_option():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
org_weights = model.get_weights()
new_weights = [np.random.random(w.shape) for w in org_weights]
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model.set_weights(new_weights)
with patch('keras.engine.saving.ask_to_proceed_with_overwrite') as ask:
ask.return_value = False
save_model(model, fname, overwrite=False)
ask.assert_called_once()
new_model = load_model(fname)
for w, org_w in zip(new_model.get_weights(), org_weights):
assert_allclose(w, org_w)
ask.return_value = True
save_model(model, fname, overwrite=False)
assert ask.call_count == 2
new_model = load_model(fname)
for w, new_w in zip(new_model.get_weights(), new_weights):
assert_allclose(w, new_w)
os.remove(fname)
def test_saving_overwrite_option_gcs():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
org_weights = model.get_weights()
new_weights = [np.random.random(w.shape) for w in org_weights]
with tf_file_io_proxy('keras.engine.saving.tf_file_io') as file_io_proxy:
gcs_filepath = file_io_proxy.get_filepath(
filename='test_saving_overwrite_option_gcs.h5')
# we should not use same filename in several tests to allow for parallel
# execution
save_model(model, gcs_filepath)
model.set_weights(new_weights)
with patch('keras.engine.saving.ask_to_proceed_with_overwrite') as ask:
ask.return_value = False
save_model(model, gcs_filepath, overwrite=False)
ask.assert_called_once()
new_model = load_model(gcs_filepath)
for w, org_w in zip(new_model.get_weights(), org_weights):
assert_allclose(w, org_w)
ask.return_value = True
save_model(model, gcs_filepath, overwrite=False)
assert ask.call_count == 2
new_model = load_model(gcs_filepath)
for w, new_w in zip(new_model.get_weights(), new_weights):
assert_allclose(w, new_w)
file_io_proxy.delete_file(gcs_filepath) # cleanup
@pytest.mark.parametrize('implementation', [1, 2], ids=['impl1', 'impl2'])
@pytest.mark.parametrize('bidirectional',
[False, True],
ids=['single', 'bidirectional'])
@pytest.mark.parametrize('to_cudnn', [False, True], ids=['from_cudnn', 'to_cudnn'])
@pytest.mark.parametrize('rnn_type', ['LSTM', 'GRU'], ids=['LSTM', 'GRU'])
@pytest.mark.parametrize('model_nest_level',
[1, 2],
ids=['model_plain', 'model_nested'])
@pytest.mark.parametrize('model_type',
['func', 'seq'],
ids=['model_func', 'model_seq'])
@skipif_no_tf_gpu
def test_load_weights_between_noncudnn_rnn(rnn_type, to_cudnn, bidirectional,
implementation, model_nest_level,
model_type):
input_size = 10
timesteps = 6
input_shape = (timesteps, input_size)
units = 2
num_samples = 32
inputs = np.random.random((num_samples, timesteps, input_size))
rnn_layer_kwargs = {
'recurrent_activation': 'sigmoid',
# ensure biases are non-zero and properly converted
'bias_initializer': 'random_uniform',
'implementation': implementation
}
if rnn_type == 'LSTM':
rnn_layer_class = LSTM
cudnn_rnn_layer_class = CuDNNLSTM
else:
rnn_layer_class = GRU
cudnn_rnn_layer_class = CuDNNGRU
rnn_layer_kwargs['reset_after'] = True
layer = rnn_layer_class(units, **rnn_layer_kwargs)
if bidirectional:
layer = Bidirectional(layer)
cudnn_layer = cudnn_rnn_layer_class(units)
if bidirectional:
cudnn_layer = Bidirectional(cudnn_layer)
model = _make_nested_model(input_shape, layer, model_nest_level, model_type)
cudnn_model = _make_nested_model(input_shape, cudnn_layer,
model_nest_level, model_type)
if to_cudnn:
_convert_model_weights(model, cudnn_model)
else:
_convert_model_weights(cudnn_model, model)
assert_allclose(model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4)
def _make_nested_model(input_shape, layer, level=1, model_type='func'):
# example: make_nested_seq_model((1,), Dense(10), level=2).summary()
def make_nested_seq_model(input_shape, layer, level=1):
model = layer
for i in range(1, level + 1):
layers = [InputLayer(input_shape), model] if (i == 1) else [model]
model = Sequential(layers)
return model
# example: make_nested_func_model((1,), Dense(10), level=2).summary()
def make_nested_func_model(input_shape, layer, level=1):
input = Input(input_shape)
model = layer
for i in range(level):
model = Model(input, model(input))
return model
if model_type == 'func':
return make_nested_func_model(input_shape, layer, level)
elif model_type == 'seq':
return make_nested_seq_model(input_shape, layer, level)
def _convert_model_weights(source_model, target_model):
_, fname = tempfile.mkstemp('.h5')
source_model.save_weights(fname)
target_model.load_weights(fname)
os.remove(fname)
@pytest.mark.parametrize('to_cudnn', [False, True], ids=['from_cudnn', 'to_cudnn'])
@pytest.mark.parametrize('rnn_type', ['LSTM', 'GRU'], ids=['LSTM', 'GRU'])
@skipif_no_tf_gpu
def test_load_weights_between_noncudnn_rnn_time_distributed(rnn_type, to_cudnn):
"""
Similar test as test_load_weights_between_noncudnn_rnn() but has different
rank of input due to usage of TimeDistributed. Issue: #10356.
"""
input_size = 10
steps = 6
timesteps = 6
input_shape = (timesteps, steps, input_size)
units = 2
num_samples = 32
inputs = np.random.random((num_samples,) + input_shape)
rnn_layer_kwargs = {
'recurrent_activation': 'sigmoid',
# ensure biases are non-zero and properly converted
'bias_initializer': 'random_uniform',
}
if rnn_type == 'LSTM':
rnn_layer_class = LSTM
cudnn_rnn_layer_class = CuDNNLSTM
else:
rnn_layer_class = GRU
cudnn_rnn_layer_class = CuDNNGRU
rnn_layer_kwargs['reset_after'] = True
layer = rnn_layer_class(units, **rnn_layer_kwargs)
layer = TimeDistributed(layer)
cudnn_layer = cudnn_rnn_layer_class(units)
cudnn_layer = TimeDistributed(cudnn_layer)
model = _make_nested_model(input_shape, layer)
cudnn_model = _make_nested_model(input_shape, cudnn_layer)
if to_cudnn:
_convert_model_weights(model, cudnn_model)
else:
_convert_model_weights(cudnn_model, model)
assert_allclose(model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4)
@skipif_no_tf_gpu
def test_preprocess_weights_for_loading_gru_incompatible():
"""
Loading weights between incompatible layers should fail fast with an exception.
"""
def gru(cudnn=False, **kwargs):
layer_class = CuDNNGRU if cudnn else GRU
return layer_class(2, input_shape=[3, 5], **kwargs)
def initialize_weights(layer):
# A model is needed to initialize weights.
_ = Sequential([layer])
return layer
def assert_not_compatible(src, dest, message):
with pytest.raises(ValueError) as ex:
preprocess_weights_for_loading(dest,
initialize_weights(src).get_weights())
assert message in ex.value.message
assert_not_compatible(gru(), gru(cudnn=True),
'GRU(reset_after=False) is not compatible with CuDNNGRU')
assert_not_compatible(gru(cudnn=True), gru(),
'CuDNNGRU is not compatible with GRU(reset_after=False)')
assert_not_compatible(gru(), gru(reset_after=True),
'GRU(reset_after=False) is not compatible with '
'GRU(reset_after=True)')
assert_not_compatible(gru(reset_after=True), gru(),
'GRU(reset_after=True) is not compatible with '
'GRU(reset_after=False)')
def test_model_saving_with_rnn_initial_state_and_args():
class CustomRNN(LSTM):
def call(self, inputs, arg=1, mask=None, training=None, initial_state=None):
if isinstance(inputs, list):
inputs = inputs[:]
shape = K.int_shape(inputs[0])
inputs[0] *= arg
inputs[0]._keras_shape = shape # for theano backend
else:
shape = K.int_shape(inputs)
inputs *= arg
inputs._keras_shape = shape # for theano backend
return super(CustomRNN, self).call(inputs, mask, training, initial_state)
inp = Input((3, 2))
rnn_out, h, c = CustomRNN(2, return_state=True, return_sequences=True)(inp)
assert hasattr(rnn_out, '_keras_history')
assert hasattr(h, '_keras_history')
assert hasattr(c, '_keras_history')
rnn2_out = CustomRNN(2)(rnn_out, arg=2, initial_state=[h, c])
assert hasattr(rnn2_out, '_keras_history')
model = Model(inputs=inp, outputs=rnn2_out)
x = np.random.random((2, 3, 2))
y1 = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
with warnings.catch_warnings():
warnings.filterwarnings('error')
model.save(fname)
model2 = load_model(fname, custom_objects={'CustomRNN': CustomRNN})
y2 = model2.predict(x)
assert_allclose(y1, y2, atol=1e-5)
os.remove(fname)
if __name__ == '__main__':
pytest.main([__file__])
|