1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
## Usage of constraints
Functions from the `constraints` module allow setting constraints (eg. non-negativity) on network parameters during optimization.
The penalties are applied on a per-layer basis. The exact API will depend on the layer, but the layers `Dense`, `Conv1D`, `Conv2D` and `Conv3D` have a unified API.
These layers expose 2 keyword arguments:
- `kernel_constraint` for the main weights matrix
- `bias_constraint` for the bias.
```python
from keras.constraints import max_norm
model.add(Dense(64, kernel_constraint=max_norm(2.)))
```
---
## Available constraints
{{autogenerated}}
---
|