1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
from __future__ import absolute_import
from __future__ import print_function
import pytest
import numpy as np
from keras import backend as K
from keras.utils.test_utils import get_test_data
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, GRU, TimeDistributed, Input
from keras.utils import np_utils
from numpy.testing import assert_almost_equal, assert_array_almost_equal
num_classes = 10
batch_size = 128
epochs = 15
weighted_class = 5
high_weight = 10
train_samples = 5000
test_samples = 1000
timesteps = 3
input_dim = 10
loss = 'mse'
standard_weight = 1
standard_score_sequential = 0.5
decimal_precision = {
'cntk': 2,
'theano': 6,
'tensorflow': 6
}
def _get_test_data():
np.random.seed(1337)
(x_train, y_train), (x_test, y_test) = get_test_data(num_train=train_samples,
num_test=test_samples,
input_shape=(input_dim,),
classification=True,
num_classes=num_classes)
int_y_test = y_test.copy()
int_y_train = y_train.copy()
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
test_ids = np.where(int_y_test == np.array(weighted_class))[0]
class_weight = dict([(i, standard_weight) for i in range(num_classes)])
class_weight[weighted_class] = high_weight
sample_weight = np.ones((y_train.shape[0])) * standard_weight
sample_weight[int_y_train == weighted_class] = high_weight
return ((x_train, y_train), (x_test, y_test),
(sample_weight, class_weight, test_ids))
def create_sequential_model():
model = Sequential()
model.add(Dense(32, input_shape=(input_dim,)))
model.add(Activation('relu'))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
return model
def create_temporal_sequential_model():
model = Sequential()
model.add(GRU(32, input_shape=(timesteps, input_dim), return_sequences=True))
model.add(TimeDistributed(Dense(num_classes)))
model.add(Activation('softmax'))
return model
def test_sequential_class_weights():
model = create_sequential_model()
model.compile(loss=loss, optimizer='rmsprop')
((x_train, y_train), (x_test, y_test),
(sample_weight, class_weight, test_ids)) = _get_test_data()
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs // 3, verbose=0,
class_weight=class_weight,
validation_data=(x_train, y_train, sample_weight))
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs // 2, verbose=0,
class_weight=class_weight)
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs // 2, verbose=0,
class_weight=class_weight,
validation_split=0.1)
model.train_on_batch(x_train[:32], y_train[:32],
class_weight=class_weight)
score = model.evaluate(x_test[test_ids, :], y_test[test_ids, :], verbose=0)
assert(score < standard_score_sequential)
def test_sequential_sample_weights():
model = create_sequential_model()
model.compile(loss=loss, optimizer='rmsprop')
((x_train, y_train), (x_test, y_test),
(sample_weight, class_weight, test_ids)) = _get_test_data()
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs // 3, verbose=0,
sample_weight=sample_weight)
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs // 3, verbose=0,
sample_weight=sample_weight,
validation_split=0.1)
model.train_on_batch(x_train[:32], y_train[:32],
sample_weight=sample_weight[:32])
model.test_on_batch(x_train[:32], y_train[:32],
sample_weight=sample_weight[:32])
score = model.evaluate(x_test[test_ids, :], y_test[test_ids, :], verbose=0)
assert(score < standard_score_sequential)
def test_sequential_temporal_sample_weights():
((x_train, y_train), (x_test, y_test),
(sample_weight, class_weight, test_ids)) = _get_test_data()
temporal_x_train = np.reshape(x_train, (len(x_train), 1, x_train.shape[1]))
temporal_x_train = np.repeat(temporal_x_train, timesteps, axis=1)
temporal_x_test = np.reshape(x_test, (len(x_test), 1, x_test.shape[1]))
temporal_x_test = np.repeat(temporal_x_test, timesteps, axis=1)
temporal_y_train = np.reshape(y_train, (len(y_train), 1, y_train.shape[1]))
temporal_y_train = np.repeat(temporal_y_train, timesteps, axis=1)
temporal_y_test = np.reshape(y_test, (len(y_test), 1, y_test.shape[1]))
temporal_y_test = np.repeat(temporal_y_test, timesteps, axis=1)
temporal_sample_weight = np.reshape(sample_weight, (len(sample_weight), 1))
temporal_sample_weight = np.repeat(temporal_sample_weight, timesteps, axis=1)
model = create_temporal_sequential_model()
model.compile(loss=loss, optimizer='rmsprop',
sample_weight_mode='temporal')
model.fit(temporal_x_train, temporal_y_train, batch_size=batch_size,
epochs=epochs // 3, verbose=0,
sample_weight=temporal_sample_weight)
model.fit(temporal_x_train, temporal_y_train, batch_size=batch_size,
epochs=epochs // 3, verbose=0,
sample_weight=temporal_sample_weight,
validation_split=0.1)
model.train_on_batch(temporal_x_train[:32], temporal_y_train[:32],
sample_weight=temporal_sample_weight[:32])
model.test_on_batch(temporal_x_train[:32], temporal_y_train[:32],
sample_weight=temporal_sample_weight[:32])
score = model.evaluate(temporal_x_test[test_ids], temporal_y_test[test_ids],
verbose=0)
assert(score < standard_score_sequential)
def test_class_weight_wrong_classes():
model = create_sequential_model()
model.compile(loss=loss, optimizer='rmsprop')
((x_train, y_train), (x_test, y_test),
(sample_weight, class_weight, test_ids)) = _get_test_data()
del class_weight[1]
with pytest.raises(ValueError):
model.fit(x_train, y_train,
epochs=0, verbose=0, class_weight=class_weight)
if __name__ == '__main__':
pytest.main([__file__])
|