File: utmath.c

package info (click to toggle)
kernel-image-2.4.17-hppa 32.4
  • links: PTS
  • area: main
  • in suites: woody
  • size: 156,356 kB
  • ctags: 442,585
  • sloc: ansic: 2,542,442; asm: 144,771; makefile: 8,468; sh: 3,097; perl: 2,578; yacc: 1,177; tcl: 577; lex: 352; awk: 251; lisp: 218; sed: 72
file content (314 lines) | stat: -rw-r--r-- 8,628 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*******************************************************************************
 *
 * Module Name: utmath - Integer math support routines
 *              $Revision: 7 $
 *
 ******************************************************************************/

/*
 *  Copyright (C) 2000, 2001 R. Byron Moore
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */


#include "acpi.h"


#define _COMPONENT          ACPI_UTILITIES
	 MODULE_NAME         ("utmath")

/*
 * Support for double-precision integer divide.  This code is included here
 * in order to support kernel environments where the double-precision math
 * library is not available.
 */

#ifndef ACPI_USE_NATIVE_DIVIDE
/*******************************************************************************
 *
 * FUNCTION:    Acpi_ut_short_divide
 *
 * PARAMETERS:  In_dividend         - Pointer to the dividend
 *              Divisor             - 32-bit divisor
 *              Out_quotient        - Pointer to where the quotient is returned
 *              Out_remainder       - Pointer to where the remainder is returned
 *
 * RETURN:      Status (Checks for divide-by-zero)
 *
 * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
 *              divide and modulo.  The result is a 64-bit quotient and a
 *              32-bit remainder.
 *
 ******************************************************************************/

acpi_status
acpi_ut_short_divide (
	acpi_integer            *in_dividend,
	u32                     divisor,
	acpi_integer            *out_quotient,
	u32                     *out_remainder)
{
	uint64_overlay          dividend;
	uint64_overlay          quotient;
	u32                     remainder32;


	FUNCTION_TRACE ("Ut_short_divide");

	dividend.full = *in_dividend;

	/* Always check for a zero divisor */

	if (divisor == 0) {
		REPORT_ERROR (("Acpi_ut_short_divide: Divide by zero\n"));
		return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
	}

	/*
	 * The quotient is 64 bits, the remainder is always 32 bits,
	 * and is generated by the second divide.
	 */
	ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor,
			  quotient.part.hi, remainder32);
	ACPI_DIV_64_BY_32 (remainder32, dividend.part.lo,  divisor,
			  quotient.part.lo, remainder32);

	/* Return only what was requested */

	if (out_quotient) {
		*out_quotient = quotient.full;
	}
	if (out_remainder) {
		*out_remainder = remainder32;
	}

	return_ACPI_STATUS (AE_OK);
}


/*******************************************************************************
 *
 * FUNCTION:    Acpi_ut_divide
 *
 * PARAMETERS:  In_dividend         - Pointer to the dividend
 *              In_divisor          - Pointer to the divisor
 *              Out_quotient        - Pointer to where the quotient is returned
 *              Out_remainder       - Pointer to where the remainder is returned
 *
 * RETURN:      Status (Checks for divide-by-zero)
 *
 * DESCRIPTION: Perform a divide and modulo.
 *
 ******************************************************************************/

acpi_status
acpi_ut_divide (
	acpi_integer            *in_dividend,
	acpi_integer            *in_divisor,
	acpi_integer            *out_quotient,
	acpi_integer            *out_remainder)
{
	uint64_overlay          dividend;
	uint64_overlay          divisor;
	uint64_overlay          quotient;
	uint64_overlay          remainder;
	uint64_overlay          normalized_dividend;
	uint64_overlay          normalized_divisor;
	u32                     partial1;
	uint64_overlay          partial2;
	uint64_overlay          partial3;


	FUNCTION_TRACE ("Ut_divide");


	/* Always check for a zero divisor */

	if (*in_divisor == 0) {
		REPORT_ERROR (("Acpi_ut_divide: Divide by zero\n"));
		return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
	}

	divisor.full  = *in_divisor;
	dividend.full = *in_dividend;
	if (divisor.part.hi == 0) {
		/*
		 * 1) Simplest case is where the divisor is 32 bits, we can
		 * just do two divides
		 */
		remainder.part.hi = 0;

		/*
		 * The quotient is 64 bits, the remainder is always 32 bits,
		 * and is generated by the second divide.
		 */
		ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor.part.lo,
				  quotient.part.hi, partial1);
		ACPI_DIV_64_BY_32 (partial1, dividend.part.lo, divisor.part.lo,
				  quotient.part.lo, remainder.part.lo);
	}

	else {
		/*
		 * 2) The general case where the divisor is a full 64 bits
		 * is more difficult
		 */
		quotient.part.hi   = 0;
		normalized_dividend = dividend;
		normalized_divisor = divisor;

		/* Normalize the operands (shift until the divisor is < 32 bits) */

		do {
			ACPI_SHIFT_RIGHT_64 (normalized_divisor.part.hi,
					 normalized_divisor.part.lo);
			ACPI_SHIFT_RIGHT_64 (normalized_dividend.part.hi,
					 normalized_dividend.part.lo);

		} while (normalized_divisor.part.hi != 0);

		/* Partial divide */

		ACPI_DIV_64_BY_32 (normalized_dividend.part.hi,
				  normalized_dividend.part.lo,
				  normalized_divisor.part.lo,
				  quotient.part.lo, partial1);

		/*
		 * The quotient is always 32 bits, and simply requires adjustment.
		 * The 64-bit remainder must be generated.
		 */
		partial1      = quotient.part.lo * divisor.part.hi;
		partial2.full = (acpi_integer) quotient.part.lo * divisor.part.lo;
		partial3.full = partial2.part.hi + partial1;

		remainder.part.hi = partial3.part.lo;
		remainder.part.lo = partial2.part.lo;

		if (partial3.part.hi == 0) {
			if (partial3.part.lo >= dividend.part.hi) {
				if (partial3.part.lo == dividend.part.hi) {
					if (partial2.part.lo > dividend.part.lo) {
						quotient.part.lo--;
						remainder.full -= divisor.full;
					}
				}
				else {
					quotient.part.lo--;
					remainder.full -= divisor.full;
				}
			}

			remainder.full    = remainder.full - dividend.full;
			remainder.part.hi = -((s32) remainder.part.hi);
			remainder.part.lo = -((s32) remainder.part.lo);

			if (remainder.part.lo) {
				remainder.part.hi--;
			}
		}
	}

	/* Return only what was requested */

	if (out_quotient) {
		*out_quotient = quotient.full;
	}
	if (out_remainder) {
		*out_remainder = remainder.full;
	}

	return_ACPI_STATUS (AE_OK);
}

#else

/*******************************************************************************
 *
 * FUNCTION:    Acpi_ut_short_divide, Acpi_ut_divide
 *
 * DESCRIPTION: Native versions of the Ut_divide functions. Use these if either
 *              1) The target is a 64-bit platform and therefore 64-bit
 *                 integer math is supported directly by the machine.
 *              2) The target is a 32-bit or 16-bit platform, and the
 *                 double-precision integer math library is available to
 *                 perform the divide.
 *
 ******************************************************************************/

acpi_status
acpi_ut_short_divide (
	acpi_integer            *in_dividend,
	u32                     divisor,
	acpi_integer            *out_quotient,
	u32                     *out_remainder)
{

	FUNCTION_TRACE ("Ut_short_divide");


	/* Always check for a zero divisor */

	if (divisor == 0) {
		REPORT_ERROR (("Acpi_ut_short_divide: Divide by zero\n"));
		return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
	}

	/* Return only what was requested */

	if (out_quotient) {
		*out_quotient = *in_dividend / divisor;
	}
	if (out_remainder) {
		*out_remainder = (u32) *in_dividend % divisor;
	}

	return_ACPI_STATUS (AE_OK);
}

acpi_status
acpi_ut_divide (
	acpi_integer            *in_dividend,
	acpi_integer            *in_divisor,
	acpi_integer            *out_quotient,
	acpi_integer            *out_remainder)
{
	FUNCTION_TRACE ("Ut_divide");


	/* Always check for a zero divisor */

	if (*in_divisor == 0) {
		REPORT_ERROR (("Acpi_ut_divide: Divide by zero\n"));
		return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
	}


	/* Return only what was requested */

	if (out_quotient) {
		*out_quotient = *in_dividend / *in_divisor;
	}
	if (out_remainder) {
		*out_remainder = *in_dividend % *in_divisor;
	}

	return_ACPI_STATUS (AE_OK);
}

#endif