File: setup.c

package info (click to toggle)
kernel-image-2.4.18-hppa 62.3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 156,012 kB
  • ctags: 448,723
  • sloc: ansic: 2,586,445; asm: 145,047; makefile: 8,574; sh: 3,097; perl: 2,578; yacc: 1,177; tcl: 577; lex: 352; awk: 251; lisp: 218; sed: 72
file content (289 lines) | stat: -rw-r--r-- 8,430 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/* $Id: setup.c,v 1.24 2001/12/07 17:03:19 bjornw Exp $
 *
 *  linux/arch/cris/kernel/setup.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 *  Copyright (c) 2001  Axis Communications AB
 */

/*
 * This file handles the architecture-dependent parts of initialization
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>

#include <asm/segment.h>
#include <asm/system.h>
#include <asm/smp.h>
#include <asm/pgtable.h>
#include <asm/types.h>
#include <asm/svinto.h>

/*
 * Setup options
 */
struct drive_info_struct { char dummy[32]; } drive_info;
struct screen_info screen_info;

unsigned char aux_device_present;

extern int root_mountflags;
extern char _etext, _edata, _end;

#define COMMAND_LINE_SIZE 256

static char command_line[COMMAND_LINE_SIZE] = { 0, };
       char saved_command_line[COMMAND_LINE_SIZE];

extern const unsigned long text_start, edata; /* set by the linker script */

extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */

/* This mainly sets up the memory area, and can be really confusing.
 *
 * The physical DRAM is virtually mapped into dram_start to dram_end
 * (usually c0000000 to c0000000 + DRAM size). The physical address is
 * given by the macro __pa().
 *
 * In this DRAM, the kernel code and data is loaded, in the beginning.
 * It really starts at c0004000 to make room for some special pages - 
 * the start address is text_start. The kernel data ends at _end. After
 * this the ROM filesystem is appended (if there is any).
 * 
 * Between this address and dram_end, we have RAM pages usable to the
 * boot code and the system.
 *
 */

void __init 
setup_arch(char **cmdline_p)
{
	extern void init_etrax_debug(void);
	unsigned long bootmap_size;
	unsigned long start_pfn, max_pfn;
	unsigned long memory_start;

 	/* register an initial console printing routine for printk's */

	init_etrax_debug();

	/* we should really poll for DRAM size! */

	high_memory = &dram_end;

	if(romfs_in_flash || !romfs_length) {
		/* if we have the romfs in flash, or if there is no rom filesystem,
		 * our free area starts directly after the BSS
		 */
		memory_start = (unsigned long) &_end;
	} else {
		/* otherwise the free area starts after the ROM filesystem */
		printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
		memory_start = romfs_start + romfs_length;
	}

	/* process 1's initial memory region is the kernel code/data */

	init_mm.start_code = (unsigned long) &text_start;
	init_mm.end_code =   (unsigned long) &_etext;
	init_mm.end_data =   (unsigned long) &_edata;
	init_mm.brk =        (unsigned long) &_end;

#define PFN_UP(x)       (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
#define PFN_DOWN(x)     ((x) >> PAGE_SHIFT)
#define PFN_PHYS(x)     ((x) << PAGE_SHIFT)

	/* min_low_pfn points to the start of DRAM, start_pfn points
	 * to the first DRAM pages after the kernel, and max_low_pfn
	 * to the end of DRAM.
	 */

        /*
         * partially used pages are not usable - thus
         * we are rounding upwards:
         */

        start_pfn = PFN_UP(memory_start);  /* usually c0000000 + kernel + romfs */
	max_pfn =   PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */

        /*
         * Initialize the boot-time allocator (start, end)
	 *
	 * We give it access to all our DRAM, but we could as well just have
	 * given it a small slice. No point in doing that though, unless we
	 * have non-contiguous memory and want the boot-stuff to be in, say,
	 * the smallest area.
	 *
	 * It will put a bitmap of the allocated pages in the beginning
	 * of the range we give it, but it won't mark the bitmaps pages
	 * as reserved. We have to do that ourselves below.
	 *
	 * We need to use init_bootmem_node instead of init_bootmem
	 * because our map starts at a quite high address (min_low_pfn).
         */

	max_low_pfn = max_pfn;
	min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;

	bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
					 min_low_pfn, 
					 max_low_pfn);

	/* And free all memory not belonging to the kernel (addr, size) */

	free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));

        /*
         * Reserve the bootmem bitmap itself as well. We do this in two
         * steps (first step was init_bootmem()) because this catches
         * the (very unlikely) case of us accidentally initializing the
         * bootmem allocator with an invalid RAM area.
	 *
	 * Arguments are start, size
         */

        reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size);

	/* paging_init() sets up the MMU and marks all pages as reserved */

	paging_init();

	/* We dont use a command line yet, so just re-initialize it without
	   saving anything that might be there.  */

	*cmdline_p = command_line;

	if (romfs_in_flash) {
		strncpy(command_line, "root=", COMMAND_LINE_SIZE);
		strncpy(command_line+5, CONFIG_ETRAX_ROOT_DEVICE,
			COMMAND_LINE_SIZE-5);

		/* Save command line copy for /proc/cmdline */

		memcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
		saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
	}

	/* give credit for the CRIS port */

	printk("Linux/CRIS port on ETRAX 100LX (c) 2001 Axis Communications AB\n");

}

#ifdef CONFIG_PROC_FS
#define HAS_FPU		0x0001
#define HAS_MMU		0x0002
#define HAS_ETHERNET100	0x0004
#define HAS_TOKENRING	0x0008
#define HAS_SCSI	0x0010
#define HAS_ATA		0x0020
#define HAS_USB		0x0040
#define HAS_IRQ_BUG	0x0080
#define HAS_MMU_BUG	0x0100

static struct cpu_info {
	char *model;
	unsigned short cache;
	unsigned short flags;
} cpu_info[] = {
	/* The first four models will never ever run this code and are
	   only here for display.  */
	{ "ETRAX 1",         0, 0 },
	{ "ETRAX 2",         0, 0 },
	{ "ETRAX 3",         0, HAS_TOKENRING },
	{ "ETRAX 4",         0, HAS_TOKENRING | HAS_SCSI },
	{ "Unknown",         0, 0 },
	{ "Unknown",         0, 0 },
	{ "Unknown",         0, 0 },
	{ "Simulator",       8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA },
	{ "ETRAX 100",       8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_IRQ_BUG },
	{ "ETRAX 100",       8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA },
	{ "ETRAX 100LX",     8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_USB | HAS_MMU | HAS_MMU_BUG },
	{ "ETRAX 100LX v2",  8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_USB | HAS_MMU  },
	{ "Unknown",         0, 0 }  /* This entry MUST be the last */
};

static int show_cpuinfo(struct seq_file *m, void *v)
{
	unsigned long revision;
	struct cpu_info *info;

	/* read the version register in the CPU and print some stuff */

	revision = rdvr();

	if (revision >= sizeof cpu_info/sizeof *cpu_info)
		info = &cpu_info[sizeof cpu_info/sizeof *cpu_info - 1];
	else
		info = &cpu_info[revision];

	return seq_printf(m,
		       "cpu\t\t: CRIS\n"
		       "cpu revision\t: %lu\n"
		       "cpu model\t: %s\n"
		       "cache size\t: %d kB\n"
		       "fpu\t\t: %s\n"
		       "mmu\t\t: %s\n"
		       "mmu DMA bug\t: %s\n"
		       "ethernet\t: %s Mbps\n"
		       "token ring\t: %s\n"
		       "scsi\t\t: %s\n"
		       "ata\t\t: %s\n"
		       "usb\t\t: %s\n"
		       "bogomips\t: %lu.%02lu\n",

		       revision,
		       info->model,
		       info->cache,
		       info->flags & HAS_FPU ? "yes" : "no",
		       info->flags & HAS_MMU ? "yes" : "no",
		       info->flags & HAS_MMU_BUG ? "yes" : "no",
		       info->flags & HAS_ETHERNET100 ? "10/100" : "10",
		       info->flags & HAS_TOKENRING ? "4/16 Mbps" : "no",
		       info->flags & HAS_SCSI ? "yes" : "no",
		       info->flags & HAS_ATA ? "yes" : "no",
		       info->flags & HAS_USB ? "yes" : "no",
		       (loops_per_jiffy * HZ + 500) / 500000,
		       ((loops_per_jiffy * HZ + 500) / 5000) % 100);
}

static void *c_start(struct seq_file *m, loff_t *pos)
{
	/* We only got one CPU... */
	return *pos < 1 ? (void *)1 : NULL;
}

static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
	++*pos;
	return NULL;
}

static void c_stop(struct seq_file *m, void *v)
{
}

struct seq_operations cpuinfo_op = {
	start:  c_start,
	next:   c_next,
	stop:   c_stop,
	show:   show_cpuinfo,
};

#endif /* CONFIG_PROC_FS */