1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#include <linux/config.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/cache.h>
#include <asm/atomic.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#include <asm/mmu_context.h>
#include <asm/irq.h>
#ifdef CONFIG_SGI_IP27
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/addrs.h>
#include <asm/sn/agent.h>
#include <asm/sn/sn0/ip27.h>
#define DORESCHED 0xab
#define DOCALL 0xbc
static void sendintr(int destid, unsigned char status)
{
int irq;
#if (CPUS_PER_NODE == 2)
switch (status) {
case DORESCHED: irq = CPU_RESCHED_A_IRQ; break;
case DOCALL: irq = CPU_CALL_A_IRQ; break;
default: panic("sendintr");
}
irq += cputoslice(destid);
/*
* Convert the compact hub number to the NASID to get the correct
* part of the address space. Then set the interrupt bit associated
* with the CPU we want to send the interrupt to.
*/
REMOTE_HUB_SEND_INTR(COMPACT_TO_NASID_NODEID(cputocnode(destid)),
FAST_IRQ_TO_LEVEL(irq));
#else
<< Bomb! Must redefine this for more than 2 CPUS. >>
#endif
}
#endif /* CONFIG_SGI_IP27 */
/* The 'big kernel lock' */
spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
int smp_threads_ready; /* Not used */
atomic_t smp_commenced = ATOMIC_INIT(0);
struct cpuinfo_mips cpu_data[NR_CPUS];
int smp_num_cpus = 1; /* Number that came online. */
int __cpu_number_map[NR_CPUS];
int __cpu_logical_map[NR_CPUS];
cycles_t cacheflush_time;
static void smp_tune_scheduling (void)
{
}
void __init smp_boot_cpus(void)
{
extern void allowboot(void);
init_new_context(current, &init_mm);
current->processor = 0;
init_idle();
smp_tune_scheduling();
allowboot();
}
void __init smp_commence(void)
{
wmb();
atomic_set(&smp_commenced,1);
}
static void stop_this_cpu(void *dummy)
{
/*
* Remove this CPU
*/
for (;;);
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 1, 0);
smp_num_cpus = 1;
}
/*
* this function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
void smp_send_reschedule(int cpu)
{
sendintr(cpu, DORESCHED);
}
/* Not really SMP stuff ... */
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
/*
* Run a function on all other CPUs.
* <func> The function to run. This must be fast and non-blocking.
* <info> An arbitrary pointer to pass to the function.
* <retry> If true, keep retrying until ready.
* <wait> If true, wait until function has completed on other CPUs.
* [RETURNS] 0 on success, else a negative status code.
*
* Does not return until remote CPUs are nearly ready to execute <func>
* or are or have executed.
*/
static volatile struct call_data_struct {
void (*func) (void *info);
void *info;
atomic_t started;
atomic_t finished;
int wait;
} *call_data;
int smp_call_function (void (*func) (void *info), void *info, int retry,
int wait)
{
struct call_data_struct data;
int i, cpus = smp_num_cpus-1;
static spinlock_t lock = SPIN_LOCK_UNLOCKED;
if (cpus == 0)
return 0;
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
spin_lock_bh(&lock);
call_data = &data;
/* Send a message to all other CPUs and wait for them to respond */
for (i = 0; i < smp_num_cpus; i++)
if (smp_processor_id() != i)
sendintr(i, DOCALL);
/* Wait for response */
/* FIXME: lock-up detection, backtrace on lock-up */
while (atomic_read(&data.started) != cpus)
barrier();
if (wait)
while (atomic_read(&data.finished) != cpus)
barrier();
spin_unlock_bh(&lock);
return 0;
}
extern void smp_call_function_interrupt(int irq, void *d, struct pt_regs *r)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
int wait = call_data->wait;
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function.
*/
atomic_inc(&call_data->started);
/*
* At this point the info structure may be out of scope unless wait==1.
*/
(*func)(info);
if (wait)
atomic_inc(&call_data->finished);
}
static void flush_tlb_all_ipi(void *info)
{
_flush_tlb_all();
}
void flush_tlb_all(void)
{
smp_call_function(flush_tlb_all_ipi, 0, 1, 1);
_flush_tlb_all();
}
static void flush_tlb_mm_ipi(void *mm)
{
_flush_tlb_mm((struct mm_struct *)mm);
}
/*
* The following tlb flush calls are invoked when old translations are
* being torn down, or pte attributes are changing. For single threaded
* address spaces, a new context is obtained on the current cpu, and tlb
* context on other cpus are invalidated to force a new context allocation
* at switch_mm time, should the mm ever be used on other cpus. For
* multithreaded address spaces, intercpu interrupts have to be sent.
* Another case where intercpu interrupts are required is when the target
* mm might be active on another cpu (eg debuggers doing the flushes on
* behalf of debugees, kswapd stealing pages from another process etc).
* Kanoj 07/00.
*/
void flush_tlb_mm(struct mm_struct *mm)
{
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
} else {
int i;
for (i = 0; i < smp_num_cpus; i++)
if (smp_processor_id() != i)
CPU_CONTEXT(i, mm) = 0;
}
_flush_tlb_mm(mm);
}
struct flush_tlb_data {
struct mm_struct *mm;
struct vm_area_struct *vma;
unsigned long addr1;
unsigned long addr2;
};
static void flush_tlb_range_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
_flush_tlb_range(fd->mm, fd->addr1, fd->addr2);
}
void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end)
{
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
struct flush_tlb_data fd;
fd.mm = mm;
fd.addr1 = start;
fd.addr2 = end;
smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < smp_num_cpus; i++)
if (smp_processor_id() != i)
CPU_CONTEXT(i, mm) = 0;
}
_flush_tlb_range(mm, start, end);
}
static void flush_tlb_page_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
_flush_tlb_page(fd->vma, fd->addr1);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
struct flush_tlb_data fd;
fd.vma = vma;
fd.addr1 = page;
smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < smp_num_cpus; i++)
if (smp_processor_id() != i)
CPU_CONTEXT(i, vma->vm_mm) = 0;
}
_flush_tlb_page(vma, page);
}
|