File: kdbmain.c

package info (click to toggle)
kernel-patch-kdb 2.1-3-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 4,900 kB
  • ctags: 421
  • sloc: ansic: 3,819; makefile: 74
file content (2831 lines) | stat: -rw-r--r-- 66,866 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
/*
 * Minimalist Kernel Debugger
 *
 * Copyright (C) 1999 Silicon Graphics, Inc.
 * Copyright (C) Scott Lurndal (slurn@engr.sgi.com)
 * Copyright (C) Scott Foehner (sfoehner@engr.sgi.com)
 * Copyright (C) Srinivasa Thirumalachar (sprasad@engr.sgi.com)
 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
 *
 * Written March 1999 by Scott Lurndal at Silicon Graphics, Inc.
 *
 * Modifications from:
 *      Richard Bass                    1999/07/20
 *              Many bug fixes and enhancements.
 *      Scott Foehner
 *              Port to ia64
 *      Srinivasa Thirumalachar
 *              RSE support for ia64
 *	Masahiro Adegawa                1999/12/01
 *		'sr' command, active flag in 'ps'
 *	Scott Lurndal			1999/12/12
 *		Significantly restructure for linux2.3
 *	Keith Owens			2000/05/23
 *		KDB v1.2
 *	Keith Owens			2000/06/09
 *		KDB v1.3.
 *		  Rewrite SMP handling.
 *		  Add NMI watchdog from Ted Kline,
 *		  lsmod/rmmod commands from Marc Esipovich <marc@mucom.co.il>
 *	Stephane Eranian		2000/06/05
 *		Enabled disassembler support. Added command history support.
 *
 *	Keith Owens			2000/09/16
 *		KDB v1.4
 *		kdb=on/off/early at boot, /proc/sys/kernel/kdb.
 *		Env BTAPROMPT.
 */

#include <linux/config.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/sysrq.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/kdb.h>
#include <linux/kdbprivate.h>

#include <asm/system.h>

#if defined(CONFIG_MODULES)
extern struct module *module_list;
#endif

	/*
	 * Kernel debugger state flags
	 */
volatile int kdb_flags;

	/*
	 * kdb_lock protects updates to kdb_initial_cpu.  Used to
	 * single thread processors through the kernel debugger.
	 */
spinlock_t kdb_lock = SPIN_LOCK_UNLOCKED;
volatile int kdb_initial_cpu = -1;		/* cpu number that owns kdb */

volatile int kdb_nextline = 1;
static volatile int kdb_new_cpu;		/* Which cpu to switch to */

volatile int kdb_state[NR_CPUS];		/* Per cpu state */

#ifdef	CONFIG_KDB_OFF
int kdb_on = 0;				/* Default is off */
#else
int kdb_on = 1;				/* Default is on */
#endif	/* CONFIG_KDB_OFF */

const char *kdb_diemsg;

#ifdef KDB_HAVE_LONGJMP
	/*
	 * Must have a setjmp buffer per CPU.  Switching cpus will
	 * cause the jump buffer to be setup for the new cpu, and
	 * subsequent switches (and pager aborts) will use the
	 * appropriate per-processor values.
	 */
kdb_jmp_buf	kdbjmpbuf[NR_CPUS];
#endif	/* KDB_HAVE_LONGJMP */

	/*
	 * kdb_commands describes the available commands.
	 */
static kdbtab_t kdb_commands[KDB_MAX_COMMANDS];

typedef struct _kdbmsg {
	int	km_diag;	/* kdb diagnostic */
	char	*km_msg;	/* Corresponding message text */
} kdbmsg_t;

#define KDBMSG(msgnum, text) \
	{ KDB_##msgnum, text }

static kdbmsg_t kdbmsgs[] = {
	KDBMSG(NOTFOUND,"Command Not Found"),
	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, 8 is only allowed on 64 bit systems"),
	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
	KDBMSG(NOTENV, "Cannot find environment variable"),
	KDBMSG(NOENVVALUE, "Environment variable should have value"),
	KDBMSG(NOTIMP, "Command not implemented"),
	KDBMSG(ENVFULL, "Environment full"),
	KDBMSG(ENVBUFFULL, "Environment buffer full"),
	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
	KDBMSG(BADMODE, "Invalid IDMODE"),
	KDBMSG(BADINT, "Illegal numeric value"),
	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
	KDBMSG(BADREG, "Invalid register name"),
	KDBMSG(BADCPUNUM, "Invalid cpu number"),
	KDBMSG(BADLENGTH, "Invalid length field"),
	KDBMSG(NOBP, "No Breakpoint exists"),
	KDBMSG(BADADDR, "Invalid address"),
};
#undef KDBMSG

static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);


/*
 * Initial environment.   This is all kept static and local to
 * this file.   We don't want to rely on the memory allocation
 * mechanisms in the kernel, so we use a very limited allocate-only
 * heap for new and altered environment variables.  The entire
 * environment is limited to a fixed number of entries (add more
 * to __env[] if required) and a fixed amount of heap (add more to
 * KDB_ENVBUFSIZE if required).
 */

static char *__env[] = {
#if defined(CONFIG_SMP)
 "PROMPT=[%d]kdb> ",
 "MOREPROMPT=[%d]more> ",
#else
 "PROMPT=kdb> ",
 "MOREPROMPT=more> ",
#endif
 "RADIX=16",
 "LINES=24",
 "COLUMNS=80",
 "MDCOUNT=8",			/* lines of md output */
 "BTARGS=5",			/* 5 possible args in bt */
 KDB_PLATFORM_ENV,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
};

static const int __nenv = (sizeof(__env) / sizeof(char *));

/*
 * kdbgetenv
 *
 *	This function will return the character string value of
 *	an environment variable.
 *
 * Parameters:
 *	match	A character string representing an environment variable.
 * Outputs:
 *	None.
 * Returns:
 *	NULL	No environment variable matches 'match'
 *	char*	Pointer to string value of environment variable.
 * Locking:
 *	No locking considerations required.
 * Remarks:
 */
char *
kdbgetenv(const char *match)
{
	char **ep = __env;
	int    matchlen = strlen(match);
	int i;

	for(i=0; i<__nenv; i++) {
		char *e = *ep++;

		if (!e) continue;

		if ((strncmp(match, e, matchlen) == 0)
		 && ((e[matchlen] == '\0')
		   ||(e[matchlen] == '='))) {
			char *cp = strchr(e, '=');
			return (cp)?++cp:"";
		}
	}
	return (char *)0;
}

/*
 * kdballocenv
 *
 *	This function is used to allocate bytes for environment entries.
 *
 * Parameters:
 *	match	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long represntation of the env variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 * Locking:
 *	No locking considerations required.  Must be called with all
 *	processors halted.
 * Remarks:
 *	We use a static environment buffer (envbuffer) to hold the values
 *	of dynamically generated environment variables (see kdb_set).  Buffer
 *	space once allocated is never free'd, so over time, the amount of space
 *	(currently 512 bytes) will be exhausted if env variables are changed
 *	frequently.
 */
static char *
kdballocenv(size_t bytes)
{
#define	KDB_ENVBUFSIZE	512
	static char envbuffer[KDB_ENVBUFSIZE];
	static int  envbufsize;
	char *ep = (char *)0;

	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
		ep = &envbuffer[envbufsize];
		envbufsize += bytes;
	}
	return ep;
}

/*
 * kdbgetulenv
 *
 *	This function will return the value of an unsigned long-valued
 *	environment variable.
 *
 * Parameters:
 *	match	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long represntation of the env variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 * Locking:
 *	No locking considerations required.
 * Remarks:
 */

int
kdbgetulenv(const char *match, unsigned long *value)
{
	char *ep;

	ep = kdbgetenv(match);
	if (!ep) return KDB_NOTENV;
	if (strlen(ep) == 0) return KDB_NOENVVALUE;

	*value = simple_strtoul(ep, 0, 0);

	return 0;
}

/*
 * kdbgetintenv
 *
 *	This function will return the value of an integer-valued
 *	environment variable.
 *
 * Parameters:
 *	match	A character string representing an integer-valued env variable
 * Outputs:
 *	*value  the integer representation of the environment variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 * Locking:
 *	No locking considerations required.
 * Remarks:
 */

int
kdbgetintenv(const char *match, int *value) {
	unsigned long val;
	int           diag;

	diag = kdbgetulenv(match, &val);
	if (!diag) {
		*value = (int) val;
	}
	return diag;
}

/*
 * kdbgetularg
 *
 *	This function will convert a numeric string
 *	into an unsigned long value.
 *
 * Parameters:
 *	arg	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long represntation of arg.
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 * Locking:
 *	No locking considerations required.
 * Remarks:
 */

int
kdbgetularg(const char *arg, unsigned long *value)
{
	char *endp;
	unsigned long val;

	val = simple_strtoul(arg, &endp, 0);

	if (endp == arg) {
		/*
		 * Try base 16, for us folks too lazy to type the
		 * leading 0x...
		 */
		val = simple_strtoul(arg, &endp, 16);
		if (endp == arg)
			return KDB_BADINT;
	}

	*value = val;

	return 0;
}

/*
 * kdbgetaddrarg
 *
 *	This function is responsible for parsing an
 *	address-expression and returning the value of
 *	the expression, symbol name, and offset to the caller.
 *
 *	The argument may consist of a numeric value (decimal or
 *	hexidecimal), a symbol name, a register name (preceeded
 *	by the percent sign), an environment variable with a numeric
 *	value (preceeded by a dollar sign) or a simple arithmetic
 *	expression consisting of a symbol name, +/-, and a numeric
 *	constant value (offset).
 *
 * Parameters:
 *	argc	- count of arguments in argv
 *	argv	- argument vector
 *	*nextarg - index to next unparsed argument in argv[]
 *	regs	- Register state at time of KDB entry
 * Outputs:
 *	*value	- receives the value of the address-expression
 *	*offset - receives the offset specified, if any
 *	*name   - receives the symbol name, if any
 *	*nextarg - index to next unparsed argument in argv[]
 *
 * Returns:
 *	zero is returned on success, a kdb diagnostic code is
 *      returned on error.
 *
 * Locking:
 *	No locking requirements.
 *
 * Remarks:
 *
 */

int
kdbgetaddrarg(int argc, const char **argv, int *nextarg,
	      kdb_machreg_t *value,  long *offset,
	      char **name, kdb_eframe_t ef)
{
	kdb_machreg_t addr;
	long	      off = 0;
	int	      positive;
	int	      diag;
	int	      found = 0;
	char	     *symname;
	char	      symbol = '\0';
	char	     *cp;
	kdb_symtab_t   symtab;

	/*
	 * Process arguments which follow the following syntax:
	 *
	 *  symbol | numeric-address [+/- numeric-offset]
	 *  %register
	 *  $environment-variable
	 */

	if (*nextarg > argc) {
		return KDB_ARGCOUNT;
	}

	symname = (char *)argv[*nextarg];

	/*
	 * If there is no whitespace between the symbol
	 * or address and the '+' or '-' symbols, we
	 * remember the character and replace it with a
	 * null so the symbol/value can be properly parsed
	 */
	if ((cp = strpbrk(symname, "+-")) != NULL) {
		symbol = *cp;
		*cp++ = '\0';
	}

	if (symname[0] == '$') {
		diag = kdbgetulenv(&symname[1], &addr);
		if (diag)
			return diag;
	} else if (symname[0] == '%') {
		diag = kdba_getregcontents(&symname[1], ef, &addr);
		if (diag)
			return diag;
	} else {
		found = kdbgetsymval(symname, &symtab);
		if (found) {
			addr = symtab.sym_start;
		} else {
			diag = kdbgetularg(argv[*nextarg], &addr);
			if (diag)
				return diag;
		}
	}

	if (!found)
		found = kdbnearsym(addr, &symtab);

	(*nextarg)++;

	if (name)
		*name = symname;
	if (value)
		*value = addr;
	if (offset && name && *name)
		*offset = addr - symtab.sym_start;

	if ((*nextarg > argc)
	 && (symbol == '\0'))
		return 0;

	/*
	 * check for +/- and offset
	 */

	if (symbol == '\0') {
		if ((argv[*nextarg][0] != '+')
		 && (argv[*nextarg][0] != '-')) {
			/*
			 * Not our argument.  Return.
			 */
			return 0;
		} else {
			positive = (argv[*nextarg][0] == '+');
			(*nextarg)++;
		}
	} else
		positive = (symbol == '+');

	/*
	 * Now there must be an offset!
	 */
	if ((*nextarg > argc)
	 && (symbol == '\0')) {
		return KDB_INVADDRFMT;
	}

	if (!symbol) {
		cp = (char *)argv[*nextarg];
		(*nextarg)++;
	}

	diag = kdbgetularg(cp, &off);
	if (diag)
		return diag;

	if (!positive)
		off = -off;

	if (offset)
		*offset += off;

	if (value)
		*value += off;

	return 0;
}

static void
kdb_cmderror(int diag)
{
	int i;

	if (diag >= 0) {
		kdb_printf("no error detected\n");
		return;
	}

	for(i=0; i<__nkdb_err; i++) {
		if (kdbmsgs[i].km_diag == diag) {
			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
			return;
		}
	}

	kdb_printf("Unknown diag %d\n", -diag);
}

/* The command history feature is not functional at the moment.  It
 * will be replaced by something that understands editting keys,
 * including left, right, insert, delete as well as up, down.
 * Keith Owens, November 18 2000
 */
#define KDB_CMD_HISTORY_COUNT	32
#define CMD_BUFLEN		200	/* kdb_printf: max printline size == 256 */
static unsigned int cmd_head, cmd_tail;
static unsigned int cmdptr;
static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];

/*
 * kdb_parse
 *
 *	Parse the command line, search the command table for a
 *	matching command and invoke the command function.
 *
 * Parameters:
 *      cmdstr	The input command line to be parsed.
 *	regs	The registers at the time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	Zero for success, a kdb diagnostic if failure.
 * Locking:
 * 	None.
 * Remarks:
 *	Limited to 20 tokens.
 *
 *	Real rudimentary tokenization. Basically only whitespace
 *	is considered a token delimeter (but special consideration
 *	is taken of the '=' sign as used by the 'set' command).
 *
 *	The algorithm used to tokenize the input string relies on
 *	there being at least one whitespace (or otherwise useless)
 *	character between tokens as the character immediately following
 *	the token is altered in-place to a null-byte to terminate the
 *	token string.
 */

#define MAXARGC	20

static int
kdb_parse(char *cmdstr, kdb_eframe_t ef)
{
	static char *argv[MAXARGC];
	static int  argc = 0;
	static char cbuf[CMD_BUFLEN];
	char *cp, *cpp;
	kdbtab_t *tp;
	int i;

	/*
	 * First tokenize the command string.
	 */
	cp = cmdstr;

	if (*cp != '\n' && *cp != '\0') {
		argc = 0;
		cpp = cbuf;
		while (*cp) {
			/* skip whitespace */
			while (isspace(*cp)) cp++;
			if ((*cp == '\0') || (*cp == '\n'))
				break;
			argv[argc++] = cpp;
			/* Copy to next whitespace or '=' */
			while (*cp && !isspace(*cp)) {
				if ((*cpp = *cp++) == '=')
					break;
				++cpp;
			}
			*cpp++ = '\0';	/* Squash a ws or '=' character */
		}
	}
	if (!argc)
		return 0;

	for(tp=kdb_commands, i=0; i < KDB_MAX_COMMANDS; i++,tp++) {
		if (tp->cmd_name) {
			/*
			 * If this command is allowed to be abbreviated,
			 * check to see if this is it.
			 */

			if (tp->cmd_minlen
			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
				if (strncmp(argv[0],
					    tp->cmd_name,
					    tp->cmd_minlen) == 0) {
					break;
				}
			}

			if (strcmp(argv[0], tp->cmd_name)==0) {
				break;
			}
		}
	}
	
	/* 
	 * If we don't find a command by this name, see if the first 
	 * few characters of this match any of the known commands.
	 * e.g., md1c20 should match md.
	 */
	if (i == KDB_MAX_COMMANDS) {
		for(tp=kdb_commands, i=0; i < KDB_MAX_COMMANDS; i++,tp++) {
			if (tp->cmd_name) {
				if (strncmp(argv[0], 
					    tp->cmd_name,
					    strlen(tp->cmd_name))==0) {
					break;
				}
			}
		}
	}

	if (i < KDB_MAX_COMMANDS) {
		int result;
		KDB_STATE_SET(CMD);
		result = (*tp->cmd_func)(argc-1,
				       (const char**)argv,
				       (const char**)__env,
				       ef);
		KDB_STATE_CLEAR(CMD);
		switch (tp->cmd_repeat) {
		case KDB_REPEAT_NONE:
			argc = 0;
			if (argv[0])
				*(argv[0]) = '\0';
			break;
		case KDB_REPEAT_NO_ARGS:
			argc = 1;
			if (argv[1])
				*(argv[1]) = '\0';
			break;
		case KDB_REPEAT_WITH_ARGS:
			break;
		}
		return result;
	}

	/*
	 * If the input with which we were presented does not
	 * map to an existing command, attempt to parse it as an
	 * address argument and display the result.   Useful for
	 * obtaining the address of a variable, or the nearest symbol
	 * to an address contained in a register.
	 */
	{
		kdb_machreg_t value;
		char *name = NULL;
		long offset;
		int nextarg = 0;

		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
				  &value, &offset, &name, ef)) {
			return KDB_NOTFOUND;
		}

		kdb_printf("%s = ", argv[0]);
		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
		kdb_printf("\n");
		return 0;
	}
}


static int
handle_ctrl_cmd(char *cmd)
{
#define CTRL_P	16
#define CTRL_N	14

	/* initial situation */
	if (cmd_head == cmd_tail) return 1;

	switch(*cmd) {
		case '\n':
		case CTRL_P:
			if (cmdptr != cmd_tail)
				cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
			strcpy(cmd, cmd_hist[cmdptr]);
			return 0;	
		case CTRL_N:
			if (cmdptr != (cmd_head-1))
				cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
			strcpy(cmd, cmd_hist[cmdptr]);
			return 0;
	}
	return 1;
}


/*
 * kdb_local
 *
 *	The main code for kdb.  This routine is invoked on a specific
 *	processor, it is not global.  The main kdb() routine ensures
 *	that only one processor at a time is in this routine.  This
 *	code is called with the real reason code on the first entry
 *	to a kdb session, thereafter it is called with reason SWITCH,
 *	even if the user goes back to the original cpu.
 *
 * Inputs:
 *	reason		The reason KDB was invoked
 *	error		The hardware-defined error code
 *	ef		The exception frame at time of fault/breakpoint.  NULL
 *			for reason SILENT, otherwise valid.
 *	db_result	Result code from the break or debug point.
 * Returns:
 *	0	KDB was invoked for an event which it wasn't responsible
 *	1	KDB handled the event for which it was invoked.
 *	KDB_CMD_GO	User typed 'go'.
 *	KDB_CMD_CPU	User switched to another cpu.
 *	KDB_CMD_SS	Single step.
 *	KDB_CMD_SSB	Single step until branch.
 * Locking:
 *	none
 * Remarks:
 *	none
 */

static int
kdb_local(kdb_reason_t reason, int error, kdb_eframe_t ef, kdb_dbtrap_t db_result)
{
	char		*cmdbuf;
	char		cmd[CMD_BUFLEN];
	int		diag;
	typeof (*ef)	local_ef;

	if (reason != KDB_REASON_DEBUG &&
	    reason != KDB_REASON_SILENT) {
		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", (void *)current, current->pid);
#if defined(CONFIG_SMP)
		kdb_printf("on processor %d ", smp_processor_id());
#endif
	}

	switch (reason) {
	case KDB_REASON_DEBUG:
	{
		/*
		 * If re-entering kdb after a single step
		 * command, don't print the message.
		 */
		switch(db_result) {
		case KDB_DB_BPT:
			kdb_printf("\nEntering kdb (0x%p) ", (void *)current);
#if defined(CONFIG_SMP)
			kdb_printf("on processor %d ", smp_processor_id());
#endif
			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
			break;
		case KDB_DB_SSB:
			/*
			 * In the midst of ssb command. Just return.
			 */
			return KDB_CMD_SSB;	/* Continue with SSB command */

			break;
		case KDB_DB_SS:
			break;
		case KDB_DB_SSBPT:
			return 1;	/* kdba_db_trap did the work */
		default:
			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
				   db_result);
			break;
		}

	}
		break;
	case KDB_REASON_FAULT:
		break;
	case KDB_REASON_ENTER:
		kdb_printf("due to KDB_ENTER()\n");
		break;
	case KDB_REASON_KEYBOARD:
		kdb_printf("due to Keyboard Entry\n");
		break;
	case KDB_REASON_SWITCH:
		kdb_printf("due to cpu switch\n");
		break;
	case KDB_REASON_CALL:	
		if (ef) break; /* drop through if regs is not specified */
	case KDB_REASON_PANIC:
		if (reason == KDB_REASON_CALL)
			kdb_printf("due to direct function call\n");
		else
			kdb_printf("due to panic\n");
		/*
		 *  Get a set of registers that defines the current
		 * context (as of the call to kdb).
		 */
		memset(&local_ef, 0, sizeof(local_ef));
		ef = &local_ef;
		kdba_getcurrentframe(ef);
		kdba_setpc(ef, (kdb_machreg_t)(&kdb));	/* for traceback */
		break;
	case KDB_REASON_OOPS:
		kdb_printf("Oops: %s\n", kdb_diemsg);
		kdb_printf("due to oops @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
		kdba_dumpregs(ef, NULL, NULL);
		break;
	case KDB_REASON_NMI:
		kdb_printf("due to NonMaskable Interrupt @ " kdb_machreg_fmt "\n",
			  kdba_getpc(ef));
		kdba_dumpregs(ef, NULL, NULL);
		break;
	case KDB_REASON_WATCHDOG:
		kdb_printf("due to WatchDog Interrupt @ " kdb_machreg_fmt "\n",
			  kdba_getpc(ef));
		kdba_dumpregs(ef, NULL, NULL);
		break;
	case KDB_REASON_BREAK:
		kdb_printf("due to Breakpoint @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
		/*
		 * Determine if this breakpoint is one that we
		 * are interested in.
		 */
		if (db_result != KDB_DB_BPT) {
			kdb_printf("kdb: error return from kdba_bp_trap: %d\n", db_result);
			return 0;	/* Not for us, dismiss it */
		}
		break;
	case KDB_REASON_RECURSE:
		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
		break;
	case KDB_REASON_SILENT:
		return KDB_CMD_GO;	/* Silent entry, silent exit */
		break;
	default:
		kdb_printf("kdb: unexpected reason code: %d\n", reason);
		return 0;	/* Not for us, dismiss it */
	}

	while (1) {
		/*
		 * Initialize pager context.
		 */
		kdb_nextline = 1;
		KDB_STATE_CLEAR(SUPPRESS);
#ifdef KDB_HAVE_LONGJMP
		/*
		 * Use kdba_setjmp/kdba_longjmp to break out of
		 * the pager early and to attempt to recover from kdb errors.
		 */
		KDB_STATE_CLEAR(LONGJMP);
		if (kdba_setjmp(&kdbjmpbuf[smp_processor_id()])) {
			/* Command aborted (usually in pager) */
			continue;
		}
		else
			KDB_STATE_SET(LONGJMP);
#endif	/* KDB_HAVE_LONGJMP */

do_full_getstr:
#if defined(CONFIG_SMP)
	kdb_printf(kdbgetenv("PROMPT"), smp_processor_id());
#else
	kdb_printf(kdbgetenv("PROMPT"));
#endif


		cmdbuf = cmd_hist[cmd_head];
		*cmdbuf = '\0';
		/*
		 * Fetch command from keyboard
		 */
		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN,"");
		if (*cmdbuf < 32 && *cmdbuf != '\n')
			if (handle_ctrl_cmd(cmdbuf))
				goto do_full_getstr;

		if (*cmdbuf != '\n') {
			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
			if (cmd_head == cmd_tail) cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;

		}

		cmdptr = cmd_head;
		strcpy(cmd, cmdbuf); /* copy because of destructive parsing */
		diag = kdb_parse(cmd, ef);
		if (diag == KDB_NOTFOUND) {
			kdb_printf("Unknown kdb command: '%s'\n", cmd);
			diag = 0;
		}
		if (diag == KDB_CMD_GO
		 || diag == KDB_CMD_CPU
		 || diag == KDB_CMD_SS
		 || diag == KDB_CMD_SSB)
			break;

		if (diag)
			kdb_cmderror(diag);
	}

	return(diag);
}


/*
 * kdb_print_state
 *
 *	Print the state data for the current processor for debugging.
 *
 * Inputs:
 *	text		Identifies the debug point
 *	value		Any integer value to be printed, e.g. reason code.
 * Returns:
 *	None.
 * Locking:
 *	none
 * Remarks:
 *	none
 */

void kdb_print_state(const char *text, int value)
{
	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
		text, smp_processor_id(), value, kdb_initial_cpu, kdb_state[smp_processor_id()]);
}

/*
 * kdb_previous_event
 *
 *	Return a count of cpus that are leaving kdb, i.e. the number
 *	of processors that are still handling the previous kdb event.
 *
 * Inputs:
 *	None.
 * Returns:
 *	Count of cpus in previous event.
 * Locking:
 *	none
 * Remarks:
 *	none
 */

static int
kdb_previous_event(void)
{
	int i, leaving = 0;
	for (i = 0; i < NR_CPUS; ++i) {
		if (KDB_STATE_CPU(LEAVING, i))
			++leaving;
	}
	return(leaving);
}

/*
 * kdb_main_loop
 *
 * The main kdb loop.  After initial setup and assignment of the controlling
 * cpu, all cpus are in this loop.  One cpu is in control and will issue the kdb
 * prompt, the others will spin until 'go' or cpu switch.
 *
 * To get a consistent view of the kernel stacks for all processes, this routine
 * is invoked from the main kdb code via an architecture specific routine.
 * kdba_main_loop is responsible for making the kernel stacks consistent for all
 * processes, there should be no difference between a blocked process and a
 * running process as far as kdb is concerned.
 *
 * Inputs:
 *	reason		The reason KDB was invoked
 *	error		The hardware-defined error code
 *	reason2		kdb's current reason code.  Initially error but can change
 *			acording to kdb state.
 *	db_result	Result code from break or debug point.
 *	ef		The exception frame at time of fault/breakpoint.  If reason
 *			is KDB_REASON_SILENT or KDB_REASON_PANIC then ef is NULL,
 *			otherwise it should always be valid.
 * Returns:
 *	0	KDB was invoked for an event which it wasn't responsible
 *	1	KDB handled the event for which it was invoked.
 * Locking:
 *	none
 * Remarks:
 *	none
 */

int
kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
	      kdb_dbtrap_t db_result, kdb_eframe_t ef)
{
	int result = 1;
	/* Stay in kdb() until 'go', 'ss[b]' or an error */
	while (1) {
		int i;
		/*
		 * All processors except the one that is in control
		 * will spin here.
		 */
		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
		while (KDB_STATE(HOLD_CPU))
			;
		KDB_STATE_CLEAR(SUPPRESS);
		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
		if (KDB_STATE(LEAVING))
			break;	/* Another cpu said 'go' */

		/* Still using kdb, this processor is in control */
		result = kdb_local(reason2, error, ef, db_result);
		KDB_DEBUG_STATE("kdb_main_loop 3", result);

		if (result == KDB_CMD_CPU) {
			/* Cpu switch, hold the current cpu, release the target one. */
			reason2 = KDB_REASON_SWITCH;
			KDB_STATE_SET(HOLD_CPU);
			KDB_STATE_CLEAR_CPU(HOLD_CPU, kdb_new_cpu);
			continue;
		}

		if (result == KDB_CMD_SS) {
			KDB_STATE_SET(DOING_SS);
			break;
		}

		if (result == KDB_CMD_SSB) {
			KDB_STATE_SET(DOING_SS);
			KDB_STATE_SET(DOING_SSB);
			break;
		}

		if (result && result != 1 && result != KDB_CMD_GO)
			kdb_printf("\nUnexpected kdb_local return code %d\n", result);

		/*
		 * All other return codes (including KDB_CMD_GO) from
		 * kdb_local will end kdb().  Release all other cpus
		 * which will see KDB_STATE(LEAVING) is set.
		 */
		for (i = 0; i < NR_CPUS; ++i) {
			if (KDB_STATE_CPU(KDB, i))
				KDB_STATE_SET_CPU(LEAVING, i);
			KDB_STATE_CLEAR_CPU(WAIT_IPI, i);
			KDB_STATE_CLEAR_CPU(HOLD_CPU, i);
		}
		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
		break;
	}
	return(result != 0);
}

/*
 * kdb
 *
 * 	This function is the entry point for the kernel debugger.  It
 *	provides a command parser and associated support functions to
 *	allow examination and control of an active kernel.
 *
 * 	This function may be invoked directly from any
 *	point in the kernel by calling with reason == KDB_REASON_CALL
 *	(XXX - note that the regs aren't set up this way - could
 *	       use a software interrupt to enter kdb to get regs...)
 *
 *	The breakpoint trap code should invoke this function with
 *	one of KDB_REASON_BREAK (int 03) or KDB_REASON_DEBUG (debug register)
 *
 *	the die_if_kernel function should invoke this function with
 *	KDB_REASON_OOPS.
 *
 *	the panic function should invoke this function with KDB_REASON_PANIC.
 *
 *	The kernel fault handler should invoke this function with
 *	reason == KDB_REASON_FAULT and error == trap vector #.
 *
 *	In single step mode, one cpu is released to run without
 *	breakpoints.   Interrupts and NMI are reset to their original values,
 *	the cpu is allowed to do one instruction which causes a trap
 *	into kdb with KDB_REASON_DEBUG.
 *
 * Inputs:
 *	reason		The reason KDB was invoked
 *	error		The hardware-defined error code
 *	ef		The exception frame at time of fault/breakpoint.  If reason
 *			is KDB_REASON_SILENT or KDB_REASON_PANIC then ef is NULL,
 *			otherwise it should always be valid.
 * Returns:
 *	0	KDB was invoked for an event which it wasn't responsible
 *	1	KDB handled the event for which it was invoked.
 * Locking:
 *	none
 * Remarks:
 *	No assumptions of system state.  This function may be invoked
 *	with arbitrary locks held.  It will stop all other processors
 *	in an SMP environment, disable all interrupts and does not use
 *	the operating systems keyboard driver.
 *
 *	This code is reentrant but only for cpu switch.  Any other
 *	reentrancy is an error, although kdb will attempt to recover.
 *
 *	At the start of a kdb session the initial processor is running
 *	kdb() and the other processors can be doing anything.  When the
 *	initial processor calls smp_kdb_stop() the other processors are
 *	driven through kdb_ipi which calls kdb() with reason SWITCH.
 *	That brings all processors into this routine, one with a "real"
 *	reason code, the other with SWITCH.
 *
 *	Because the other processors are driven via smp_kdb_stop(),
 *	they enter here from the NMI handler.  Until the other
 *	processors exit from here and exit from kdb_ipi, they will not
 *	take any more NMI requests.  The initial cpu will still take NMI.
 *
 *	Multiple race and reentrancy conditions, each with different
 *	advoidance mechanisms.
 *
 *	Two cpus hit debug points at the same time.
 *
 *	  kdb_lock and kdb_initial_cpu ensure that only one cpu gets
 *	  control of kdb.  The others spin on kdb_initial_cpu until
 *	  they are driven through NMI into kdb_ipi.  When the initial
 *	  cpu releases the others from NMI, they resume trying to get
 *	  kdb_initial_cpu to start a new event.
 *
 *	A cpu is released from kdb and starts a new event before the
 *	original event has completely ended.
 *
 *	  kdb_previous_event() prevents any cpu from entering
 *	  kdb_initial_cpu state until the previous event has completely
 *	  ended on all cpus.
 *
 *      An exception occurs inside kdb.
 *
 *	  kdb_initial_cpu detects recursive entry to kdb and attempts
 *	  to recover.  The recovery uses longjmp() which means that
 *	  recursive calls to kdb never return.  Beware of assumptions
 *	  like
 *
 *          ++depth;
 *          kdb();
 *          --depth;
 *
 *        If the kdb call is recursive then longjmp takes over and
 *        --depth is never executed.
 *
 *      NMI handling.
 *
 *	  NMI handling is tricky.  The initial cpu is invoked by some kdb event,
 *	  this event could be NMI driven but usually is not.  The other cpus are
 *	  driven into kdb() via kdb_ipi which uses NMI so at the start the other
 *	  cpus will not accept NMI.  Some operations such as SS release one cpu
 *	  but hold all the others.  Releasing a cpu means it drops back to
 *	  whatever it was doing before the kdb event, this means it drops out of
 *	  kdb_ipi and hence out of NMI status.  But the software watchdog uses
 *	  NMI and we do not want spurious watchdog calls into kdb.  kdba_read()
 *	  resets the watchdog counters in its input polling loop, when a kdb
 *	  command is running it is subject to NMI watchdog events.
 *
 *	  Another problem with NMI handling is the NMI used to drive the other
 *	  cpus into kdb cannot be distinguished from the watchdog NMI.  State
 *	  flag WAIT_IPI indicates that a cpu is waiting for NMI via kdb_ipi,
 *	  if not set then software NMI is ignored by kdb_ipi.
 *
 *      Cpu switching.
 *
 *        All cpus are in kdb (or they should be), all but one are
 *        spinning on KDB_STATE(HOLD_CPU).  Only one cpu is not in
 *        HOLD_CPU state, only that cpu can handle commands.
 *
 */

int
kdb(kdb_reason_t reason, int error, kdb_eframe_t ef)
{
	kdb_intstate_t	int_state;	/* Interrupt state */
	kdb_reason_t	reason2 = reason;
	int		result = 1;	/* Default is kdb handled it */
	int		ss_event;
	kdb_dbtrap_t 	db_result=KDB_DB_NOBPT;

	if (!kdb_on)
		return 0;

	KDB_DEBUG_STATE("kdb 1", reason);
	KDB_STATE_CLEAR(SUPPRESS);

	/* Filter out userspace breakpoints first, no point in doing all
	 * the kdb smp fiddling when it is really a gdb trap.
	 * Save the single step status first, kdba_db_trap clears ss status.
	 */
	ss_event = reason != KDB_REASON_PANIC && (KDB_STATE(DOING_SS) || KDB_STATE(SSBPT));
	if (reason == KDB_REASON_BREAK)
		db_result = kdba_bp_trap(ef, error);	/* Only call this once */
	if (reason == KDB_REASON_DEBUG)
		db_result = kdba_db_trap(ef, error);	/* Only call this once */

	if ((reason == KDB_REASON_BREAK || reason == KDB_REASON_DEBUG)
	 && db_result == KDB_DB_NOBPT) {
		KDB_DEBUG_STATE("kdb 2", reason);
		return 0;	/* Not one of mine */
	}

	/* Turn off single step if it was being used */
	if (ss_event) {
		kdba_clearsinglestep(ef);
		/* Single step after a breakpoint removes the need for a delayed reinstall */
		if (reason == KDB_REASON_BREAK || reason == KDB_REASON_DEBUG) {
			KDB_STATE_SET(NO_BP_DELAY);
		}
	}

	/* kdb can validly reenter but only for certain well defined conditions */
	if (reason == KDB_REASON_DEBUG
	 && !KDB_STATE(HOLD_CPU)
	 && ss_event)
		KDB_STATE_SET(REENTRY);
	else
		KDB_STATE_CLEAR(REENTRY);

	/* Wait for previous kdb event to completely exit before starting
	 * a new event.
	 */
	while (kdb_previous_event())
		;
	KDB_DEBUG_STATE("kdb 3", reason);

	/*
	 * If kdb is already active, print a message and try to recover.
	 * If recovery is not possible and recursion is allowed or
	 * forced recursion without recovery is set then try to recurse
	 * in kdb.  Not guaranteed to work but it makes an attempt at
	 * debugging the debugger.
	 */
	if (reason != KDB_REASON_SWITCH) {
		if (KDB_IS_RUNNING() && !KDB_STATE(REENTRY)) {
			int recover = 1;
			unsigned long recurse = 0;
			kdb_printf("kdb: Debugger re-entered on cpu %d, new reason = %d\n",
				smp_processor_id(), reason);
			/* Should only re-enter from released cpu */
			if (KDB_STATE(HOLD_CPU)) {
				kdb_printf("     Strange, cpu %d should not be running\n", smp_processor_id());
				recover = 0;
			}
			if (!KDB_STATE(CMD)) {
				kdb_printf("     Not executing a kdb command\n");
				recover = 0;
			}
			if (!KDB_STATE(LONGJMP)) {
				kdb_printf("     No longjmp available for recovery\n");
				recover = 0;
			}
			kdbgetulenv("RECURSE", &recurse);
			if (recurse > 1) {
				kdb_printf("     Forced recursion is set\n");
				recover = 0;
			}
			if (recover) {
				kdb_printf("     Attempting to abort command and recover\n");
#ifdef KDB_HAVE_LONGJMP
				kdba_longjmp(&kdbjmpbuf[smp_processor_id()], 0);
#endif
			}
			if (recurse) {
				if (KDB_STATE(RECURSE)) {
					kdb_printf("     Already in recursive mode\n");
				} else {
					kdb_printf("     Attempting recursive mode\n");
					KDB_STATE_SET(RECURSE);
					KDB_STATE_SET(REENTRY);
					reason2 = KDB_REASON_RECURSE;
					recover = 1;
				}
			}
			if (!recover) {
				kdb_printf("     Cannot recover, allowing event to proceed\n");
				return(0);
			}
		}
	} else if (!KDB_IS_RUNNING()) {
		kdb_printf("kdb: CPU switch without kdb running, I'm confused\n");
		return(0);
	}

	/*
	 * Disable interrupts, breakpoints etc. on this processor
	 * during kdb command processing
	 */
	KDB_STATE_SET(KDB);
	kdba_disableint(&int_state);
	if (!KDB_STATE(KDB_CONTROL)) {
		kdb_bp_remove_local();
		kdba_disable_lbr();
		KDB_STATE_SET(KDB_CONTROL);
	}
	else if (KDB_DEBUG(LBR))
		kdba_print_lbr();

	/*
	 * If not entering the debugger due to CPU switch or single step
	 * reentry, serialize access here.
	 * The processors may race getting to this point - if,
	 * for example, more than one processor hits a breakpoint
	 * at the same time.   We'll serialize access to kdb here -
	 * other processors will loop here, and the NMI from the stop
	 * IPI will take them into kdb as switch candidates.  Once
	 * the initial processor releases the debugger, the rest of
	 * the processors will race for it.
	 */
	if (reason == KDB_REASON_SWITCH
	 || KDB_STATE(REENTRY))
		;	/* drop through */
	else {
		KDB_DEBUG_STATE("kdb 4", reason);
		spin_lock(&kdb_lock);

		while (KDB_IS_RUNNING() || kdb_previous_event()) {
			spin_unlock(&kdb_lock);

			while (KDB_IS_RUNNING() || kdb_previous_event())
				;

			spin_lock(&kdb_lock);
		}
		KDB_DEBUG_STATE("kdb 5", reason);

		kdb_initial_cpu = smp_processor_id();
		spin_unlock(&kdb_lock);
	}

	if (smp_processor_id() == kdb_initial_cpu
	 && !KDB_STATE(REENTRY)) {
		KDB_STATE_CLEAR(HOLD_CPU);
		KDB_STATE_CLEAR(WAIT_IPI);
		/*
		 * Remove the global breakpoints.  This is only done
		 * once from the initial processor on initial entry.
		 */
		kdb_bp_remove_global();

		/*
		 * If SMP, stop other processors.  The other processors
		 * will enter kdb() with KDB_REASON_SWITCH and spin
		 * below.
		 */
		KDB_DEBUG_STATE("kdb 6", reason);
		if (smp_num_cpus > 1) {
			int i;
			for (i = 0; i < NR_CPUS; ++i) {
				if (i != kdb_initial_cpu) {
					KDB_STATE_SET_CPU(HOLD_CPU, i);
					KDB_STATE_SET_CPU(WAIT_IPI, i);
				}
			}
			KDB_DEBUG_STATE("kdb 7", reason);
			smp_kdb_stop();
			KDB_DEBUG_STATE("kdb 8", reason);
		}
	}

	/* Set up a consistent set of process stacks before talking to the user */
	KDB_DEBUG_STATE("kdb 9", result);
	result = kdba_main_loop(reason, reason2, error, db_result, ef);

	KDB_DEBUG_STATE("kdb 10", result);
	kdba_adjust_ip(reason, error, ef);
	KDB_STATE_CLEAR(LONGJMP);
	KDB_DEBUG_STATE("kdb 11", result);

	/* No breakpoints installed for SS */
	if (!KDB_STATE(DOING_SS) &&
	    !KDB_STATE(SSBPT) &&
	    !KDB_STATE(RECURSE)) {
		KDB_DEBUG_STATE("kdb 12", result);
		kdba_enable_lbr();
		kdb_bp_install_local(ef);
		KDB_STATE_CLEAR(NO_BP_DELAY);
		KDB_STATE_CLEAR(KDB_CONTROL);
	}

	KDB_DEBUG_STATE("kdb 13", result);
	kdba_restoreint(&int_state);

	KDB_STATE_CLEAR(KDB);		/* Main kdb state has been cleared */
	KDB_STATE_CLEAR(LEAVING);	/* Elvis has left the building ... */
	KDB_DEBUG_STATE("kdb 14", result);

	if (smp_processor_id() == kdb_initial_cpu &&
	  !KDB_STATE(DOING_SS) &&
	  !KDB_STATE(RECURSE)) {
		/*
		 * (Re)install the global breakpoints.  This is only done
		 * once from the initial processor on final exit.
		 */
		KDB_DEBUG_STATE("kdb 15", reason);
		kdb_bp_install_global(ef);
		/* Wait until all the other processors leave kdb */
		while (kdb_previous_event())
			;
		kdb_initial_cpu = -1;	/* release kdb control */
		KDB_DEBUG_STATE("kdb 16", reason);
	}

	KDB_STATE_CLEAR(RECURSE);
	KDB_DEBUG_STATE("kdb 17", reason);
	return(result != 0);
}

/*
 * kdb_mdr
 *
 *	This function implements the guts of the 'mdr' command.
 *
 *	mdr  <addr arg>,<byte count>
 *
 * Inputs:
 *	addr	Start address
 *	count	Number of bytes
 * Outputs:
 *	None.
 * Returns:
 *	Always 0.  Any errors are detected and printed by kdb_getarea.
 * Locking:
 *	none.
 * Remarks:
 */

static int
kdb_mdr(kdb_machreg_t addr, unsigned int count)
{
	unsigned char c;
	while (count--) {
		if (kdb_getarea(c, addr))
			return(0);
		kdb_printf("%02x", c);
		addr++;
	}
	kdb_printf("\n");
	return(0);
}

/*
 * kdb_md
 *
 *	This function implements the 'md', 'md1', 'md2', 'md4', 'md8'
 *	'mdr' and 'mds' commands.
 *
 *	md|mds  [<addr arg> [<line count> [<radix>]]]
 *	mdWcN	[<addr arg> [<line count> [<radix>]]] 
 *		where W = is the width (1, 2, 4 or 8) and N is the count.
 *		for eg., md1c20 reads 20 bytes, 1 at a time.
 *	mdr  <addr arg>,<byte count>
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_md(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	static kdb_machreg_t last_addr;
	static int last_radix, last_bytesperword, last_repeat;
	int radix = 16, mdcount = 8, bytesperword = sizeof(kdb_machreg_t), repeat;
	int nosect = 0;
	char fmtchar, fmtstr[64];
	kdb_machreg_t addr;
	unsigned long word;
	long offset = 0;
	kdb_symtab_t symtab;
	int symbolic = 0;

	kdbgetintenv("MDCOUNT", &mdcount);
	kdbgetintenv("RADIX", &radix);
	kdbgetintenv("BYTESPERWORD", &bytesperword);

	/* Assume 'md <addr>' and start with environment values */
	repeat = mdcount * 16 / bytesperword;

	if (strcmp(argv[0], "mdr") == 0) {
		if (argc != 2) 
			return KDB_ARGCOUNT;
	} else if (isdigit(argv[0][2])) {
		bytesperword = (int)(argv[0][2] - '0');
		last_bytesperword = bytesperword;
		repeat = mdcount * 16 / bytesperword;
		if (argv[0][3] == 'c') {
			repeat = simple_strtoul(argv[0]+4, NULL, 10);
			mdcount = ((repeat * bytesperword) + 15) / 16;
		}
		last_repeat = repeat;
	}

	if (argc == 0) {
		if (last_addr == 0)
			return KDB_ARGCOUNT;
		addr = last_addr;
		radix = last_radix;
		bytesperword = last_bytesperword;
		repeat = last_repeat;
		mdcount = ((repeat * bytesperword) + 15) / 16;
	} 

	if (argc) {
		kdb_machreg_t val;
		int diag, nextarg = 1;
		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
		if (diag)
			return diag;
		if (argc > nextarg+2)
			return KDB_ARGCOUNT;

		if (argc >= nextarg) {
			diag = kdbgetularg(argv[nextarg], &val);
			if (!diag) {
				mdcount = (int) val;
				repeat = mdcount * 16 / bytesperword;
			}
		}
		if (argc >= nextarg+1) {
			diag = kdbgetularg(argv[nextarg+1], &val);
			if (!diag)
				radix = (int) val;
		}
	}

	if (strcmp(argv[0], "mdr") == 0) {
		return(kdb_mdr(addr, mdcount));
	}

	switch (radix) {
	case 10:
		fmtchar = 'd';
		break;
	case 16:
		fmtchar = 'x';
		break;
	case 8:
		fmtchar = 'o';
		break;
	default:
		return KDB_BADRADIX;
	}

	last_radix = radix;

	if (bytesperword > sizeof(kdb_machreg_t))
		return KDB_BADWIDTH;

	switch (bytesperword) {
	case 8:
		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
		break;
	case 4:
		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
		break;
	case 2:
		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
		break;
	case 1:
		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
		break;
	default:
		return KDB_BADWIDTH;
	}

	last_repeat = repeat;
	last_bytesperword = bytesperword;

	if (strcmp(argv[0], "mds") == 0) {
		symbolic = 1;
		/* Do not save these changes as last_*, they are temporary mds
		 * overrides.
		 */
		bytesperword = sizeof(kdb_machreg_t);
		repeat = mdcount;
		kdbgetintenv("NOSECT", &nosect);
	}

	/* Round address down modulo BYTESPERWORD */

	addr &= ~(bytesperword-1);

	while (repeat > 0) {
		int	num = (symbolic?1 :(16 / bytesperword));
		char	cbuf[32];
		char	*c = cbuf;
		int     i;

		memset(cbuf, '\0', sizeof(cbuf));
		kdb_printf(kdb_machreg_fmt0 " ", addr);

		for(i = 0; i < num && repeat--; i++) {
			if (kdb_getword(&word, addr, bytesperword))
				return 0;

			kdb_printf(fmtstr, word);
			if (symbolic) {
				kdbnearsym(word, &symtab);
			}
			else {
				memset(&symtab, 0, sizeof(symtab));
			}
			if (symtab.sym_name) {
				kdb_symbol_print(word, &symtab, 0);
				if (!nosect) {
					kdb_printf("\n");
					kdb_printf("                       %s %s "
						   kdb_machreg_fmt " " kdb_machreg_fmt " " kdb_machreg_fmt,
						symtab.mod_name,
						symtab.sec_name,
						symtab.sec_start,
						symtab.sym_start,
						symtab.sym_end);
				}
				addr += bytesperword;
			} else {
#define printable_char(addr) ({char __c = '\0'; unsigned long __addr = (addr); kdb_getarea(__c, __addr); isprint(__c) ? __c : '.';})
				switch (bytesperword) {
				case 8:
					*c++ = printable_char(addr++);
					*c++ = printable_char(addr++);
					*c++ = printable_char(addr++);
					*c++ = printable_char(addr++);
				case 4:
					*c++ = printable_char(addr++);
					*c++ = printable_char(addr++);
				case 2:
					*c++ = printable_char(addr++);
				case 1:
					*c++ = printable_char(addr++);
					break;
				}
#undef printable_char
			}
		}
		kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), " ", cbuf);
	}
	last_addr = addr;

	return 0;
}

/*
 * kdb_mm
 *
 *	This function implements the 'mm' command.
 *
 *	mm address-expression new-value
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	mm works on machine words, mmW works on bytes.
 */

int
kdb_mm(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	int diag;
	kdb_machreg_t addr;
	long 	      offset = 0;
	unsigned long contents;
	int nextarg;
	int width;

	if (argv[0][2] && !isdigit(argv[0][2]))
		return KDB_NOTFOUND;

	if (argc < 2) {
		return KDB_ARGCOUNT;
	}

	nextarg = 1;
	if ((diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs)))
		return diag;

	if (nextarg > argc)
		return KDB_ARGCOUNT;

	if ((diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL, regs)))
		return diag;

	if (nextarg != argc + 1)
		return KDB_ARGCOUNT;

	width = argv[0][2] ? (argv[0][2] - '0') : (sizeof(kdb_machreg_t));
	if ((diag = kdb_putword(addr, contents, width)))
		return(diag);

	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);

	return 0;
}

/*
 * kdb_go
 *
 *	This function implements the 'go' command.
 *
 *	go [address-expression]
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	KDB_CMD_GO for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_go(int argc, const char **argv, const char **envp, kdb_eframe_t ef)
{
	kdb_machreg_t addr;
	int diag;
	int nextarg;
	long offset;

	if (argc == 1) {
		nextarg = 1;
		diag = kdbgetaddrarg(argc, argv, &nextarg,
				     &addr, &offset, NULL, ef);
		if (diag)
			return diag;

		kdba_setpc(ef, addr);
	} else if (argc)
		return KDB_ARGCOUNT;

	return KDB_CMD_GO;
}

/*
 * kdb_rd
 *
 *	This function implements the 'rd' command.
 *
 *	rd		display all general registers.
 *	rd  c		display all control registers.
 *	rd  d		display all debug registers.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_rd(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	/*
	 */

	if (argc == 0) {
		return kdba_dumpregs(regs, NULL, NULL);
	}

	if (argc > 2) {
		return KDB_ARGCOUNT;
	}

	return kdba_dumpregs(regs, argv[1], argv[2]);
}

/*
 * kdb_rm
 *
 *	This function implements the 'rm' (register modify)  command.
 *
 *	rm register-name new-contents
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	Currently doesn't allow modification of control or
 *	debug registers, nor does it allow modification
 *	of model-specific registers (MSR).
 */

int
kdb_rm(int argc, const char **argv, const char **envp, kdb_eframe_t ef)
{
	int diag;
	int ind = 0;
	kdb_machreg_t contents;

	if (argc != 2) {
		return KDB_ARGCOUNT;
	}

	/*
	 * Allow presence or absence of leading '%' symbol.
	 */

	if (argv[1][0] == '%')
		ind = 1;

	diag = kdbgetularg(argv[2], &contents);
	if (diag)
		return diag;

	diag = kdba_setregcontents(&argv[1][ind], ef, contents);
	if (diag)
		return diag;

	return 0;
}

#if defined(CONFIG_MAGIC_SYSRQ)
/*
 * kdb_sr
 *
 *	This function implements the 'sr' (SYSRQ key) command which
 *	interfaces to the soi-disant MAGIC SYSRQ functionality.
 *
 *	sr <magic-sysrq-code>
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	None.
 */
int
kdb_sr(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	if (argc != 1) {
		return KDB_ARGCOUNT;
	}

	handle_sysrq(*argv[1], regs, 0, 0);

	return 0;
}
#endif	/* CONFIG_MAGIC_SYSRQ */

/*
 * kdb_ef
 *
 *	This function implements the 'ef' (display exception frame)
 *	command.  This command takes an address and expects to find
 *	an exception frame at that address, formats and prints it.
 *
 *	ef address-expression
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	Not done yet.
 */

int
kdb_ef(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	int diag;
	kdb_machreg_t   addr;
	long		offset;
	int nextarg;

	if (argc == 1) {
		nextarg = 1;
		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
		if (diag)
			return diag;

		return kdba_dumpregs((struct pt_regs *)addr, NULL, NULL);
	}

	return KDB_ARGCOUNT;
}

/*
 * kdb_reboot
 *
 *	This function implements the 'reboot' command.  Reboot the system
 *	immediately.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	Shouldn't return from this function.
 */

int
kdb_reboot(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	machine_restart(0);
	/* NOTREACHED */
	return 0;
}


#if defined(CONFIG_MODULES)
extern struct module *find_module(const char *);
extern void free_module(struct module *, int);

/*
 * kdb_lsmod
 *
 *	This function implements the 'lsmod' command.  Lists currently
 *	loaded kernel modules.
 *
 *	Mostly taken from userland lsmod.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *
 */

int
kdb_lsmod(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	struct module *mod;
	struct module_ref *mr;

	if (argc != 0)
		return KDB_ARGCOUNT;

	kdb_printf("Module                  Size  modstruct     Used by\n");
	for (mod = module_list; mod && mod->next ;mod = mod->next) {
		kdb_printf("%-20s%8lu  0x%p  %4ld ", mod->name, mod->size, (void *)mod,
			(long)atomic_read(&mod->uc.usecount));

		if (mod->flags & MOD_DELETED)
			kdb_printf(" (deleted)");
		else if (mod->flags & MOD_INITIALIZING)
			kdb_printf(" (initializing)");
		else if (!(mod->flags & MOD_RUNNING))
			kdb_printf(" (uninitialized)");
		else {
			if (mod->flags &  MOD_AUTOCLEAN)
				kdb_printf(" (autoclean)");
			if (!(mod->flags & MOD_USED_ONCE))
				kdb_printf(" (unused)");
		}

		if (mod->refs) {
			kdb_printf(" [ ");

			mr = mod->refs;
			while (mr) {
				kdb_printf("%s ", mr->ref->name);
				mr = mr->next_ref;
			}

			kdb_printf("]");
		}

		kdb_printf("\n");
	}

	return 0;
}

/*
 * kdb_rmmod
 *
 *	This function implements the 'rmmod' command.  Removes a given
 *	kernel module.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	Danger: free_module() calls mod->cleanup().  If the cleanup routine
 *	relies on interrupts then it will hang, kdb has interrupts disabled.
 */

int
kdb_rmmod(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	struct module *mod;


	if (argc != 1)
		return KDB_ARGCOUNT;

	kdb_printf("Attempting to remove module: [%s]\n", argv[1]);
	if ((mod = find_module(argv[1])) == NULL) {
		kdb_printf("Unable to find a module by that name\n");
		return 0;
	}

	if (mod->refs != NULL || __MOD_IN_USE(mod)) {
		kdb_printf("Module is in use, unable to unload\n");
		return 0;
	}

	free_module(mod, 0);
	kdb_printf("Module successfully unloaded\n");

	return 0;
}
#endif	/* CONFIG_MODULES */

/*
 * kdb_env
 *
 *	This function implements the 'env' command.  Display the current
 *	environment variables.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_env(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	int i;

	for(i=0; i<__nenv; i++) {
		if (__env[i]) {
			kdb_printf("%s\n", __env[i]);
		}
	}

	if (KDB_DEBUG(MASK))
		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);

	return 0;
}

/*
 * kdb_set
 *
 *	This function implements the 'set' command.  Alter an existing
 *	environment variable or create a new one.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_set(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	int i;
	char *ep;
	size_t varlen, vallen;

	/*
	 * we can be invoked two ways:
	 *   set var=value    argv[1]="var", argv[2]="value"
	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
	 * - if the latter, shift 'em down.
	 */
	if (argc == 3) {
		argv[2] = argv[3];
		argc--;
	}

	if (argc != 2)
		return KDB_ARGCOUNT;

	/*
	 * Check for internal variables
	 */
	if (strcmp(argv[1], "KDBDEBUG") == 0) {
		unsigned int debugflags;
		char *cp;

		debugflags = simple_strtoul(argv[2], &cp, 0);
		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
			kdb_printf("kdb: illegal debug flags '%s'\n",
				    argv[2]);
			return 0;
		}
		kdb_flags = (kdb_flags & ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
			  | (debugflags << KDB_DEBUG_FLAG_SHIFT);

		return 0;
	}

	/*
	 * Tokenizer squashed the '=' sign.  argv[1] is variable
	 * name, argv[2] = value.
	 */
	varlen = strlen(argv[1]);
	vallen = strlen(argv[2]);
	ep = kdballocenv(varlen + vallen + 2);
	if (ep == (char *)0)
		return KDB_ENVBUFFULL;

	sprintf(ep, "%s=%s", argv[1], argv[2]);

	ep[varlen+vallen+1]='\0';

	for(i=0; i<__nenv; i++) {
		if (__env[i]
		 && ((strncmp(__env[i], argv[1], varlen)==0)
		   && ((__env[i][varlen] == '\0')
		    || (__env[i][varlen] == '=')))) {
			__env[i] = ep;
			return 0;
		}
	}

	/*
	 * Wasn't existing variable.  Fit into slot.
	 */
	for(i=0; i<__nenv-1; i++) {
		if (__env[i] == (char *)0) {
			__env[i] = ep;
			return 0;
		}
	}

	return KDB_ENVFULL;
}

/*
 * kdb_cpu
 *
 *	This function implements the 'cpu' command.
 *
 *	cpu	[<cpunum>]
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	KDB_CMD_CPU for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 *	All cpu's should be spinning in kdb().  However just in case
 *	a cpu did not take the smp_kdb_stop NMI, check that a cpu
 *	entered kdb() before passing control to it.
 */

int
kdb_cpu(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	unsigned long cpunum;
	int diag;

	if (argc == 0) {
		int i;

		kdb_printf("Currently on cpu %d\n", smp_processor_id());
		kdb_printf("Available cpus: ");
		for (i=0; i<NR_CPUS; i++) {
			if (cpu_online_map & (1UL << i)) {
				if (i) kdb_printf(", ");
				kdb_printf("%d", i);
				if (!KDB_STATE_CPU(KDB, i))
					kdb_printf("*");
			}
		}
		kdb_printf("\n");
		return 0;
	}

	if (argc != 1)
		return KDB_ARGCOUNT;

	diag = kdbgetularg(argv[1], &cpunum);
	if (diag)
		return diag;

	/*
	 * Validate cpunum
	 */
	if ((cpunum > NR_CPUS)
	 || !(cpu_online_map & (1UL << cpunum))
	 || !KDB_STATE_CPU(KDB, cpunum))
		return KDB_BADCPUNUM;

	kdb_new_cpu = cpunum;

	/*
	 * Switch to other cpu
	 */
	return KDB_CMD_CPU;
}

/*
 * kdb_ps
 *
 *	This function implements the 'ps' command which shows
 *	a list of the active processes.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_ps(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	struct task_struct	*p;

	kdb_printf("%-*s Pid      Parent   [*] cpu  State %-*s Command\n",
		(int)(2*sizeof(void *))+2, "Task Addr",
		(int)(2*sizeof(void *))+2, "Thread");
	for_each_task(p) {
		kdb_printf("0x%p %08d %08d  %1.1d  %3.3d  %s  0x%p%c%s\n",
			   (void *)p, p->pid, p->p_pptr->pid,
			   task_has_cpu(p), p->processor,
			   (p->state == 0)?"run ":(p->state>0)?"stop":"unrn",
			   (void *)(&p->thread),
			   (p == current) ? '*': ' ',
			   p->comm);
	}

	return 0;
}

/*
 * kdb_ll
 *
 *	This function implements the 'll' command which follows a linked
 *	list and executes an arbitrary command for each element.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_ll(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	int diag;
	kdb_machreg_t addr;
	long 	      offset = 0;
	kdb_machreg_t va;
	unsigned long linkoffset;
	int nextarg;

	if (argc != 3) {
		return KDB_ARGCOUNT;
	}

	nextarg = 1;
	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
	if (diag)
		return diag;

	diag = kdbgetularg(argv[2], &linkoffset);
	if (diag)
		return diag;

	/*
	 * Using the starting address as
	 * the first element in the list, and assuming that
	 * the list ends with a null pointer.
	 */

	va = addr;

	while (va) {
		char buf[80];

		sprintf(buf, "%s " kdb_machreg_fmt "\n", argv[3], va);
		diag = kdb_parse(buf, regs);
		if (diag)
			return diag;

		addr = va + linkoffset;
		if (kdb_getword(&va, addr, sizeof(va)))
			return(0);
	}

	return 0;
}

/*
 * kdb_sections_callback
 *
 *	Invoked from kallsyms_sections for each section.
 *
 * Inputs:
 *	prevmod	Previous module name
 *	modname	Module name
 *	secname	Section name
 *	secstart Start of section
 *	secend	End of section
 *	secflags Section flags
 * Outputs:
 *	None.
 * Returns:
 *	Always zero
 * Locking:
 *	none.
 * Remarks:
 */

static int
kdb_sections_callback(void *token, const char *modname, const char *secname,
		      ElfW(Addr) secstart, ElfW(Addr) secend, ElfW(Word) secflags)
{
	const char **prevmod = (const char **)token;
	if (*prevmod != modname) {
		*prevmod = modname;
		kdb_printf("\n%s", modname);
	}
	kdb_printf(" %s " kdb_elfw_addr_fmt0 " " kdb_elfw_addr_fmt0 " 0x%x",
		secname, secstart, secend, secflags);
	return(0);
}

/*
 * kdb_sections
 *
 *	This function implements the 'sections' command which prints the
 *	kernel and module sections.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	Always zero
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_sections(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	char *prev_mod = NULL;
	if (argc != 0) {
		return KDB_ARGCOUNT;
	}
	kallsyms_sections(&prev_mod, kdb_sections_callback);
	kdb_printf("\n");	/* End last module */
	return(0);
}

/*
 * kdb_help
 *
 *	This function implements the 'help' and '?' commands.
 *
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 *	envp	environment vector
 *	regs	registers at time kdb was entered.
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, a kdb diagnostic if error
 * Locking:
 *	none.
 * Remarks:
 */

int
kdb_help(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
	kdbtab_t *kt;

	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
	kdb_printf("----------------------------------------------------------\n");
	for(kt=kdb_commands; kt->cmd_name; kt++) {
		kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
			kt->cmd_usage, kt->cmd_help);
	}
	return 0;
}

/*
 * kdb_register_repeat
 *
 *	This function is used to register a kernel debugger command.
 *
 * Inputs:
 *	cmd	Command name
 *	func	Function to execute the command
 *	usage	A simple usage string showing arguments
 *	help	A simple help string describing command
 *	repeat	Does the command auto repeat on enter?
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, one if a duplicate command.
 * Locking:
 *	none.
 * Remarks:
 *
 */

int
kdb_register_repeat(char *cmd,
		    kdb_func_t func,
		    char *usage,
		    char *help,
		    short minlen,
		    kdb_repeat_t repeat)
{
	int i;
	kdbtab_t *kp;

	/*
	 *  Brute force method to determine duplicates
	 */
	for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd)==0)) {
			kdb_printf("Duplicate kdb command registered: '%s'\n",
				   cmd);
			return 1;
		}
	}

	/*
	 * Insert command into first available location in table
	 */
	for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
		if (kp->cmd_name == NULL) {
			kp->cmd_name   = cmd;
			kp->cmd_func   = func;
			kp->cmd_usage  = usage;
			kp->cmd_help   = help;
			kp->cmd_flags  = 0;
			kp->cmd_minlen = minlen;
			kp->cmd_repeat = repeat;
			break;
		}
	}
	return 0;
}

/*
 * kdb_register
 *
 *	Compatibility register function for commands that do not need to
 *	specify a repeat state.  Equivalent to kdb_register_repeat with
 *	KDB_REPEAT_NONE.
 *
 * Inputs:
 *	cmd	Command name
 *	func	Function to execute the command
 *	usage	A simple usage string showing arguments
 *	help	A simple help string describing command
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, one if a duplicate command.
 * Locking:
 *	none.
 * Remarks:
 *
 */

int
kdb_register(char *cmd,
	     kdb_func_t func,
	     char *usage,
	     char *help,
	     short minlen)
{
	return kdb_register_repeat(cmd, func, usage, help, minlen, KDB_REPEAT_NONE);
}

/*
 * kdb_unregister
 *
 *	This function is used to unregister a kernel debugger command.
 *	It is generally called when a module which implements kdb
 *	commands is unloaded.
 *
 * Inputs:
 *	cmd	Command name
 * Outputs:
 *	None.
 * Returns:
 *	zero for success, one command not registered.
 * Locking:
 *	none.
 * Remarks:
 *
 */

int
kdb_unregister(char *cmd)
{
	int i;
	kdbtab_t *kp;

	/*
	 *  find the command.
	 */
	for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd)==0)) {
			kp->cmd_name = NULL;
			return 0;
		}
	}

	/*
	 * Couldn't find it.
	 */
	return 1;
}

/*
 * kdb_inittab
 *
 *	This function is called by the kdb_init function to initialize
 *	the kdb command table.   It must be called prior to any other
 *	call to kdb_register_repeat.
 *
 * Inputs:
 *	None.
 * Outputs:
 *	None.
 * Returns:
 *	None.
 * Locking:
 *	None.
 * Remarks:
 *
 */

static void __init
kdb_inittab(void)
{
	int i;
	kdbtab_t *kp;

	for(i=0, kp=kdb_commands; i < KDB_MAX_COMMANDS; i++,kp++) {
		kp->cmd_name = NULL;
	}

	kdb_register_repeat("md", kdb_md, "<vaddr>",   "Display Memory Contents", 1, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 	"Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mds", kdb_md, "<vaddr>", 	"Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",   "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("id", kdb_id, "<vaddr>",   "Display Instructions", 1, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("go", kdb_go, "[<vaddr>]", "Continue Execution", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("rd", kdb_rd, "",		"Display Registers", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", "Modify Registers", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("ef", kdb_ef, "<vaddr>",   "Display exception frame", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", "Stack traceback", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("btp", kdb_bt, "<pid>", 	"Display stack for process <pid>", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("bta", kdb_bt, "", 	"Display stack all processes", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("env", kdb_env, "", 	"Show environment variables", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("set", kdb_set, "", 	"Set environment variables", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("help", kdb_help, "", 	"Display Help Message", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("?", kdb_help, "",         "Display Help Message", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>","Switch to new cpu", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("ps", kdb_ps, "", 		"Display active task list", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("reboot", kdb_reboot, "",  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("sections", kdb_sections, "",  "List kernel and module sections", 0, KDB_REPEAT_NONE);
#if defined(CONFIG_MODULES)
	kdb_register_repeat("lsmod", kdb_lsmod, "",	"List loaded kernel modules", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("rmmod", kdb_rmmod, "<modname>", "Remove a kernel module", 1, KDB_REPEAT_NONE);
#endif
#if defined(CONFIG_MAGIC_SYSRQ)
	kdb_register_repeat("sr", kdb_sr, "<key>",	"Magic SysRq key", 0, KDB_REPEAT_NONE);
#endif
}

/*
 * kdb_cmd_init
 *
 *	This function is called by the kdb_init function to execute any
 *	commands defined in kdb_cmds.
 *
 * Inputs:
 *	Commands in *kdb_cmds[];
 * Outputs:
 *	None.
 * Returns:
 *	None.
 * Locking:
 *	None.
 * Remarks:
 *
 */

static void __init
kdb_cmd_init(void)
{
	int i, diag;
	for (i = 0; kdb_cmds[i]; ++i) {
		kdb_printf("kdb_cmd[%d]: %s", i, kdb_cmds[i]);
		diag = kdb_parse(kdb_cmds[i], NULL);
		if (diag)
			kdb_printf("command failed, kdb diag %d\n", diag);
	}
}

/*
 * kdb_panic
 *
 *	Invoked via the panic_notifier_list.
 *
 * Inputs:
 *	None.
 * Outputs:
 *	None.
 * Returns:
 *	Zero.
 * Locking:
 *	None.
 * Remarks:
 *	When this function is called from panic(), the other cpus have already
 *	been stopped.
 *
 */

static int
kdb_panic(struct notifier_block *self, unsigned long command, void *ptr)
{
	kdb(KDB_REASON_PANIC, 0, NULL);
	return(0);
}

static struct notifier_block kdb_block = { kdb_panic, NULL, 0 };

/*
 * kdb_init
 *
 * 	Initialize the kernel debugger environment.
 *
 * Parameters:
 *	None.
 * Returns:
 *	None.
 * Locking:
 *	None.
 * Remarks:
 *	None.
 */

void __init
kdb_init(void)
{
	/*
	 * This must be called before any calls to kdb_printf.
	 */
	kdb_io_init();

	kdb_inittab();		/* Initialize Command Table */
	kdb_initbptab();	/* Initialize Breakpoint Table */
	kdb_id_init();		/* Initialize Disassembler */
	kdba_init();		/* Architecture Dependent Initialization */

	/*
	 * Use printk() to get message in log_buf[];
	 */
	printk("kdb version %d.%d%s by Scott Lurndal, Keith Owens. "\
	       "Copyright SGI, All Rights Reserved\n",
		KDB_MAJOR_VERSION, KDB_MINOR_VERSION, KDB_TEST_VERSION);

	kdb_cmd_init();		/* Preset commands from kdb_cmds */
	kdb(KDB_REASON_SILENT, 0, 0);	/* Activate any preset breakpoints on boot cpu */
	notifier_chain_register(&panic_notifier_list, &kdb_block);
}

EXPORT_SYMBOL(kdb_register);
EXPORT_SYMBOL(kdb_register_repeat);
EXPORT_SYMBOL(kdb_unregister);
EXPORT_SYMBOL(kdb_getarea_size);
EXPORT_SYMBOL(kdb_putarea_size);
EXPORT_SYMBOL(kdb_getword);
EXPORT_SYMBOL(kdb_putword);
EXPORT_SYMBOL(kdbgetularg);
EXPORT_SYMBOL(kdbgetenv);
EXPORT_SYMBOL(kdbgetintenv);
EXPORT_SYMBOL(kdbgetaddrarg);
EXPORT_SYMBOL(kdb);
EXPORT_SYMBOL(kdb_on);
EXPORT_SYMBOL(kdbgetsymval);
EXPORT_SYMBOL(kdbnearsym);
EXPORT_SYMBOL(kdb_printf);
EXPORT_SYMBOL(kdb_symbol_print);