1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
|
/*
* Minimalist Kernel Debugger
*
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) Scott Lurndal (slurn@engr.sgi.com)
* Copyright (C) Scott Foehner (sfoehner@engr.sgi.com)
* Copyright (C) Srinivasa Thirumalachar (sprasad@engr.sgi.com)
* Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
*
* Written March 1999 by Scott Lurndal at Silicon Graphics, Inc.
*
* Modifications from:
* Richard Bass 1999/07/20
* Many bug fixes and enhancements.
* Scott Foehner
* Port to ia64
* Srinivasa Thirumalachar
* RSE support for ia64
* Masahiro Adegawa 1999/12/01
* 'sr' command, active flag in 'ps'
* Scott Lurndal 1999/12/12
* Significantly restructure for linux2.3
* Keith Owens 2000/05/23
* KDB v1.2
* Keith Owens 2000/06/09
* KDB v1.3.
* Rewrite SMP handling.
* Add NMI watchdog from Ted Kline,
* lsmod/rmmod commands from Marc Esipovich <marc@mucom.co.il>
* Stephane Eranian 2000/06/05
* Enabled disassembler support. Added command history support.
*
* Keith Owens 2000/09/16
* KDB v1.4
* kdb=on/off/early at boot, /proc/sys/kernel/kdb.
* Env BTAPROMPT.
*/
#include <linux/config.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/sysrq.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/kdb.h>
#include <linux/kdbprivate.h>
#include <asm/system.h>
#if defined(CONFIG_MODULES)
extern struct module *module_list;
#endif
/*
* Kernel debugger state flags
*/
volatile int kdb_flags;
/*
* kdb_lock protects updates to kdb_initial_cpu. Used to
* single thread processors through the kernel debugger.
*/
spinlock_t kdb_lock = SPIN_LOCK_UNLOCKED;
volatile int kdb_initial_cpu = -1; /* cpu number that owns kdb */
volatile int kdb_nextline = 1;
static volatile int kdb_new_cpu; /* Which cpu to switch to */
volatile int kdb_state[NR_CPUS]; /* Per cpu state */
#ifdef CONFIG_KDB_OFF
int kdb_on = 0; /* Default is off */
#else
int kdb_on = 1; /* Default is on */
#endif /* CONFIG_KDB_OFF */
const char *kdb_diemsg;
#ifdef KDB_HAVE_LONGJMP
/*
* Must have a setjmp buffer per CPU. Switching cpus will
* cause the jump buffer to be setup for the new cpu, and
* subsequent switches (and pager aborts) will use the
* appropriate per-processor values.
*/
kdb_jmp_buf kdbjmpbuf[NR_CPUS];
#endif /* KDB_HAVE_LONGJMP */
/*
* kdb_commands describes the available commands.
*/
static kdbtab_t kdb_commands[KDB_MAX_COMMANDS];
typedef struct _kdbmsg {
int km_diag; /* kdb diagnostic */
char *km_msg; /* Corresponding message text */
} kdbmsg_t;
#define KDBMSG(msgnum, text) \
{ KDB_##msgnum, text }
static kdbmsg_t kdbmsgs[] = {
KDBMSG(NOTFOUND,"Command Not Found"),
KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, 8 is only allowed on 64 bit systems"),
KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
KDBMSG(NOTENV, "Cannot find environment variable"),
KDBMSG(NOENVVALUE, "Environment variable should have value"),
KDBMSG(NOTIMP, "Command not implemented"),
KDBMSG(ENVFULL, "Environment full"),
KDBMSG(ENVBUFFULL, "Environment buffer full"),
KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
KDBMSG(DUPBPT, "Duplicate breakpoint address"),
KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
KDBMSG(BADMODE, "Invalid IDMODE"),
KDBMSG(BADINT, "Illegal numeric value"),
KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
KDBMSG(BADREG, "Invalid register name"),
KDBMSG(BADCPUNUM, "Invalid cpu number"),
KDBMSG(BADLENGTH, "Invalid length field"),
KDBMSG(NOBP, "No Breakpoint exists"),
KDBMSG(BADADDR, "Invalid address"),
};
#undef KDBMSG
static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
/*
* Initial environment. This is all kept static and local to
* this file. We don't want to rely on the memory allocation
* mechanisms in the kernel, so we use a very limited allocate-only
* heap for new and altered environment variables. The entire
* environment is limited to a fixed number of entries (add more
* to __env[] if required) and a fixed amount of heap (add more to
* KDB_ENVBUFSIZE if required).
*/
static char *__env[] = {
#if defined(CONFIG_SMP)
"PROMPT=[%d]kdb> ",
"MOREPROMPT=[%d]more> ",
#else
"PROMPT=kdb> ",
"MOREPROMPT=more> ",
#endif
"RADIX=16",
"LINES=24",
"COLUMNS=80",
"MDCOUNT=8", /* lines of md output */
"BTARGS=5", /* 5 possible args in bt */
KDB_PLATFORM_ENV,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
(char *)0,
};
static const int __nenv = (sizeof(__env) / sizeof(char *));
/*
* kdbgetenv
*
* This function will return the character string value of
* an environment variable.
*
* Parameters:
* match A character string representing an environment variable.
* Outputs:
* None.
* Returns:
* NULL No environment variable matches 'match'
* char* Pointer to string value of environment variable.
* Locking:
* No locking considerations required.
* Remarks:
*/
char *
kdbgetenv(const char *match)
{
char **ep = __env;
int matchlen = strlen(match);
int i;
for(i=0; i<__nenv; i++) {
char *e = *ep++;
if (!e) continue;
if ((strncmp(match, e, matchlen) == 0)
&& ((e[matchlen] == '\0')
||(e[matchlen] == '='))) {
char *cp = strchr(e, '=');
return (cp)?++cp:"";
}
}
return (char *)0;
}
/*
* kdballocenv
*
* This function is used to allocate bytes for environment entries.
*
* Parameters:
* match A character string representing a numeric value
* Outputs:
* *value the unsigned long represntation of the env variable 'match'
* Returns:
* Zero on success, a kdb diagnostic on failure.
* Locking:
* No locking considerations required. Must be called with all
* processors halted.
* Remarks:
* We use a static environment buffer (envbuffer) to hold the values
* of dynamically generated environment variables (see kdb_set). Buffer
* space once allocated is never free'd, so over time, the amount of space
* (currently 512 bytes) will be exhausted if env variables are changed
* frequently.
*/
static char *
kdballocenv(size_t bytes)
{
#define KDB_ENVBUFSIZE 512
static char envbuffer[KDB_ENVBUFSIZE];
static int envbufsize;
char *ep = (char *)0;
if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
ep = &envbuffer[envbufsize];
envbufsize += bytes;
}
return ep;
}
/*
* kdbgetulenv
*
* This function will return the value of an unsigned long-valued
* environment variable.
*
* Parameters:
* match A character string representing a numeric value
* Outputs:
* *value the unsigned long represntation of the env variable 'match'
* Returns:
* Zero on success, a kdb diagnostic on failure.
* Locking:
* No locking considerations required.
* Remarks:
*/
int
kdbgetulenv(const char *match, unsigned long *value)
{
char *ep;
ep = kdbgetenv(match);
if (!ep) return KDB_NOTENV;
if (strlen(ep) == 0) return KDB_NOENVVALUE;
*value = simple_strtoul(ep, 0, 0);
return 0;
}
/*
* kdbgetintenv
*
* This function will return the value of an integer-valued
* environment variable.
*
* Parameters:
* match A character string representing an integer-valued env variable
* Outputs:
* *value the integer representation of the environment variable 'match'
* Returns:
* Zero on success, a kdb diagnostic on failure.
* Locking:
* No locking considerations required.
* Remarks:
*/
int
kdbgetintenv(const char *match, int *value) {
unsigned long val;
int diag;
diag = kdbgetulenv(match, &val);
if (!diag) {
*value = (int) val;
}
return diag;
}
/*
* kdbgetularg
*
* This function will convert a numeric string
* into an unsigned long value.
*
* Parameters:
* arg A character string representing a numeric value
* Outputs:
* *value the unsigned long represntation of arg.
* Returns:
* Zero on success, a kdb diagnostic on failure.
* Locking:
* No locking considerations required.
* Remarks:
*/
int
kdbgetularg(const char *arg, unsigned long *value)
{
char *endp;
unsigned long val;
val = simple_strtoul(arg, &endp, 0);
if (endp == arg) {
/*
* Try base 16, for us folks too lazy to type the
* leading 0x...
*/
val = simple_strtoul(arg, &endp, 16);
if (endp == arg)
return KDB_BADINT;
}
*value = val;
return 0;
}
/*
* kdbgetaddrarg
*
* This function is responsible for parsing an
* address-expression and returning the value of
* the expression, symbol name, and offset to the caller.
*
* The argument may consist of a numeric value (decimal or
* hexidecimal), a symbol name, a register name (preceeded
* by the percent sign), an environment variable with a numeric
* value (preceeded by a dollar sign) or a simple arithmetic
* expression consisting of a symbol name, +/-, and a numeric
* constant value (offset).
*
* Parameters:
* argc - count of arguments in argv
* argv - argument vector
* *nextarg - index to next unparsed argument in argv[]
* regs - Register state at time of KDB entry
* Outputs:
* *value - receives the value of the address-expression
* *offset - receives the offset specified, if any
* *name - receives the symbol name, if any
* *nextarg - index to next unparsed argument in argv[]
*
* Returns:
* zero is returned on success, a kdb diagnostic code is
* returned on error.
*
* Locking:
* No locking requirements.
*
* Remarks:
*
*/
int
kdbgetaddrarg(int argc, const char **argv, int *nextarg,
kdb_machreg_t *value, long *offset,
char **name, kdb_eframe_t ef)
{
kdb_machreg_t addr;
long off = 0;
int positive;
int diag;
int found = 0;
char *symname;
char symbol = '\0';
char *cp;
kdb_symtab_t symtab;
/*
* Process arguments which follow the following syntax:
*
* symbol | numeric-address [+/- numeric-offset]
* %register
* $environment-variable
*/
if (*nextarg > argc) {
return KDB_ARGCOUNT;
}
symname = (char *)argv[*nextarg];
/*
* If there is no whitespace between the symbol
* or address and the '+' or '-' symbols, we
* remember the character and replace it with a
* null so the symbol/value can be properly parsed
*/
if ((cp = strpbrk(symname, "+-")) != NULL) {
symbol = *cp;
*cp++ = '\0';
}
if (symname[0] == '$') {
diag = kdbgetulenv(&symname[1], &addr);
if (diag)
return diag;
} else if (symname[0] == '%') {
diag = kdba_getregcontents(&symname[1], ef, &addr);
if (diag)
return diag;
} else {
found = kdbgetsymval(symname, &symtab);
if (found) {
addr = symtab.sym_start;
} else {
diag = kdbgetularg(argv[*nextarg], &addr);
if (diag)
return diag;
}
}
if (!found)
found = kdbnearsym(addr, &symtab);
(*nextarg)++;
if (name)
*name = symname;
if (value)
*value = addr;
if (offset && name && *name)
*offset = addr - symtab.sym_start;
if ((*nextarg > argc)
&& (symbol == '\0'))
return 0;
/*
* check for +/- and offset
*/
if (symbol == '\0') {
if ((argv[*nextarg][0] != '+')
&& (argv[*nextarg][0] != '-')) {
/*
* Not our argument. Return.
*/
return 0;
} else {
positive = (argv[*nextarg][0] == '+');
(*nextarg)++;
}
} else
positive = (symbol == '+');
/*
* Now there must be an offset!
*/
if ((*nextarg > argc)
&& (symbol == '\0')) {
return KDB_INVADDRFMT;
}
if (!symbol) {
cp = (char *)argv[*nextarg];
(*nextarg)++;
}
diag = kdbgetularg(cp, &off);
if (diag)
return diag;
if (!positive)
off = -off;
if (offset)
*offset += off;
if (value)
*value += off;
return 0;
}
static void
kdb_cmderror(int diag)
{
int i;
if (diag >= 0) {
kdb_printf("no error detected\n");
return;
}
for(i=0; i<__nkdb_err; i++) {
if (kdbmsgs[i].km_diag == diag) {
kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
return;
}
}
kdb_printf("Unknown diag %d\n", -diag);
}
/* The command history feature is not functional at the moment. It
* will be replaced by something that understands editting keys,
* including left, right, insert, delete as well as up, down.
* Keith Owens, November 18 2000
*/
#define KDB_CMD_HISTORY_COUNT 32
#define CMD_BUFLEN 200 /* kdb_printf: max printline size == 256 */
static unsigned int cmd_head, cmd_tail;
static unsigned int cmdptr;
static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
/*
* kdb_parse
*
* Parse the command line, search the command table for a
* matching command and invoke the command function.
*
* Parameters:
* cmdstr The input command line to be parsed.
* regs The registers at the time kdb was entered.
* Outputs:
* None.
* Returns:
* Zero for success, a kdb diagnostic if failure.
* Locking:
* None.
* Remarks:
* Limited to 20 tokens.
*
* Real rudimentary tokenization. Basically only whitespace
* is considered a token delimeter (but special consideration
* is taken of the '=' sign as used by the 'set' command).
*
* The algorithm used to tokenize the input string relies on
* there being at least one whitespace (or otherwise useless)
* character between tokens as the character immediately following
* the token is altered in-place to a null-byte to terminate the
* token string.
*/
#define MAXARGC 20
static int
kdb_parse(char *cmdstr, kdb_eframe_t ef)
{
static char *argv[MAXARGC];
static int argc = 0;
static char cbuf[CMD_BUFLEN];
char *cp, *cpp;
kdbtab_t *tp;
int i;
/*
* First tokenize the command string.
*/
cp = cmdstr;
if (*cp != '\n' && *cp != '\0') {
argc = 0;
cpp = cbuf;
while (*cp) {
/* skip whitespace */
while (isspace(*cp)) cp++;
if ((*cp == '\0') || (*cp == '\n'))
break;
argv[argc++] = cpp;
/* Copy to next whitespace or '=' */
while (*cp && !isspace(*cp)) {
if ((*cpp = *cp++) == '=')
break;
++cpp;
}
*cpp++ = '\0'; /* Squash a ws or '=' character */
}
}
if (!argc)
return 0;
for(tp=kdb_commands, i=0; i < KDB_MAX_COMMANDS; i++,tp++) {
if (tp->cmd_name) {
/*
* If this command is allowed to be abbreviated,
* check to see if this is it.
*/
if (tp->cmd_minlen
&& (strlen(argv[0]) <= tp->cmd_minlen)) {
if (strncmp(argv[0],
tp->cmd_name,
tp->cmd_minlen) == 0) {
break;
}
}
if (strcmp(argv[0], tp->cmd_name)==0) {
break;
}
}
}
/*
* If we don't find a command by this name, see if the first
* few characters of this match any of the known commands.
* e.g., md1c20 should match md.
*/
if (i == KDB_MAX_COMMANDS) {
for(tp=kdb_commands, i=0; i < KDB_MAX_COMMANDS; i++,tp++) {
if (tp->cmd_name) {
if (strncmp(argv[0],
tp->cmd_name,
strlen(tp->cmd_name))==0) {
break;
}
}
}
}
if (i < KDB_MAX_COMMANDS) {
int result;
KDB_STATE_SET(CMD);
result = (*tp->cmd_func)(argc-1,
(const char**)argv,
(const char**)__env,
ef);
KDB_STATE_CLEAR(CMD);
switch (tp->cmd_repeat) {
case KDB_REPEAT_NONE:
argc = 0;
if (argv[0])
*(argv[0]) = '\0';
break;
case KDB_REPEAT_NO_ARGS:
argc = 1;
if (argv[1])
*(argv[1]) = '\0';
break;
case KDB_REPEAT_WITH_ARGS:
break;
}
return result;
}
/*
* If the input with which we were presented does not
* map to an existing command, attempt to parse it as an
* address argument and display the result. Useful for
* obtaining the address of a variable, or the nearest symbol
* to an address contained in a register.
*/
{
kdb_machreg_t value;
char *name = NULL;
long offset;
int nextarg = 0;
if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
&value, &offset, &name, ef)) {
return KDB_NOTFOUND;
}
kdb_printf("%s = ", argv[0]);
kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
kdb_printf("\n");
return 0;
}
}
static int
handle_ctrl_cmd(char *cmd)
{
#define CTRL_P 16
#define CTRL_N 14
/* initial situation */
if (cmd_head == cmd_tail) return 1;
switch(*cmd) {
case '\n':
case CTRL_P:
if (cmdptr != cmd_tail)
cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
strcpy(cmd, cmd_hist[cmdptr]);
return 0;
case CTRL_N:
if (cmdptr != (cmd_head-1))
cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
strcpy(cmd, cmd_hist[cmdptr]);
return 0;
}
return 1;
}
/*
* kdb_local
*
* The main code for kdb. This routine is invoked on a specific
* processor, it is not global. The main kdb() routine ensures
* that only one processor at a time is in this routine. This
* code is called with the real reason code on the first entry
* to a kdb session, thereafter it is called with reason SWITCH,
* even if the user goes back to the original cpu.
*
* Inputs:
* reason The reason KDB was invoked
* error The hardware-defined error code
* ef The exception frame at time of fault/breakpoint. NULL
* for reason SILENT, otherwise valid.
* db_result Result code from the break or debug point.
* Returns:
* 0 KDB was invoked for an event which it wasn't responsible
* 1 KDB handled the event for which it was invoked.
* KDB_CMD_GO User typed 'go'.
* KDB_CMD_CPU User switched to another cpu.
* KDB_CMD_SS Single step.
* KDB_CMD_SSB Single step until branch.
* Locking:
* none
* Remarks:
* none
*/
static int
kdb_local(kdb_reason_t reason, int error, kdb_eframe_t ef, kdb_dbtrap_t db_result)
{
char *cmdbuf;
char cmd[CMD_BUFLEN];
int diag;
typeof (*ef) local_ef;
if (reason != KDB_REASON_DEBUG &&
reason != KDB_REASON_SILENT) {
kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", (void *)current, current->pid);
#if defined(CONFIG_SMP)
kdb_printf("on processor %d ", smp_processor_id());
#endif
}
switch (reason) {
case KDB_REASON_DEBUG:
{
/*
* If re-entering kdb after a single step
* command, don't print the message.
*/
switch(db_result) {
case KDB_DB_BPT:
kdb_printf("\nEntering kdb (0x%p) ", (void *)current);
#if defined(CONFIG_SMP)
kdb_printf("on processor %d ", smp_processor_id());
#endif
kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
break;
case KDB_DB_SSB:
/*
* In the midst of ssb command. Just return.
*/
return KDB_CMD_SSB; /* Continue with SSB command */
break;
case KDB_DB_SS:
break;
case KDB_DB_SSBPT:
return 1; /* kdba_db_trap did the work */
default:
kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
db_result);
break;
}
}
break;
case KDB_REASON_FAULT:
break;
case KDB_REASON_ENTER:
kdb_printf("due to KDB_ENTER()\n");
break;
case KDB_REASON_KEYBOARD:
kdb_printf("due to Keyboard Entry\n");
break;
case KDB_REASON_SWITCH:
kdb_printf("due to cpu switch\n");
break;
case KDB_REASON_CALL:
if (ef) break; /* drop through if regs is not specified */
case KDB_REASON_PANIC:
if (reason == KDB_REASON_CALL)
kdb_printf("due to direct function call\n");
else
kdb_printf("due to panic\n");
/*
* Get a set of registers that defines the current
* context (as of the call to kdb).
*/
memset(&local_ef, 0, sizeof(local_ef));
ef = &local_ef;
kdba_getcurrentframe(ef);
kdba_setpc(ef, (kdb_machreg_t)(&kdb)); /* for traceback */
break;
case KDB_REASON_OOPS:
kdb_printf("Oops: %s\n", kdb_diemsg);
kdb_printf("due to oops @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
kdba_dumpregs(ef, NULL, NULL);
break;
case KDB_REASON_NMI:
kdb_printf("due to NonMaskable Interrupt @ " kdb_machreg_fmt "\n",
kdba_getpc(ef));
kdba_dumpregs(ef, NULL, NULL);
break;
case KDB_REASON_WATCHDOG:
kdb_printf("due to WatchDog Interrupt @ " kdb_machreg_fmt "\n",
kdba_getpc(ef));
kdba_dumpregs(ef, NULL, NULL);
break;
case KDB_REASON_BREAK:
kdb_printf("due to Breakpoint @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
/*
* Determine if this breakpoint is one that we
* are interested in.
*/
if (db_result != KDB_DB_BPT) {
kdb_printf("kdb: error return from kdba_bp_trap: %d\n", db_result);
return 0; /* Not for us, dismiss it */
}
break;
case KDB_REASON_RECURSE:
kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", kdba_getpc(ef));
break;
case KDB_REASON_SILENT:
return KDB_CMD_GO; /* Silent entry, silent exit */
break;
default:
kdb_printf("kdb: unexpected reason code: %d\n", reason);
return 0; /* Not for us, dismiss it */
}
while (1) {
/*
* Initialize pager context.
*/
kdb_nextline = 1;
KDB_STATE_CLEAR(SUPPRESS);
#ifdef KDB_HAVE_LONGJMP
/*
* Use kdba_setjmp/kdba_longjmp to break out of
* the pager early and to attempt to recover from kdb errors.
*/
KDB_STATE_CLEAR(LONGJMP);
if (kdba_setjmp(&kdbjmpbuf[smp_processor_id()])) {
/* Command aborted (usually in pager) */
continue;
}
else
KDB_STATE_SET(LONGJMP);
#endif /* KDB_HAVE_LONGJMP */
do_full_getstr:
#if defined(CONFIG_SMP)
kdb_printf(kdbgetenv("PROMPT"), smp_processor_id());
#else
kdb_printf(kdbgetenv("PROMPT"));
#endif
cmdbuf = cmd_hist[cmd_head];
*cmdbuf = '\0';
/*
* Fetch command from keyboard
*/
cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN,"");
if (*cmdbuf < 32 && *cmdbuf != '\n')
if (handle_ctrl_cmd(cmdbuf))
goto do_full_getstr;
if (*cmdbuf != '\n') {
cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
if (cmd_head == cmd_tail) cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
}
cmdptr = cmd_head;
strcpy(cmd, cmdbuf); /* copy because of destructive parsing */
diag = kdb_parse(cmd, ef);
if (diag == KDB_NOTFOUND) {
kdb_printf("Unknown kdb command: '%s'\n", cmd);
diag = 0;
}
if (diag == KDB_CMD_GO
|| diag == KDB_CMD_CPU
|| diag == KDB_CMD_SS
|| diag == KDB_CMD_SSB)
break;
if (diag)
kdb_cmderror(diag);
}
return(diag);
}
/*
* kdb_print_state
*
* Print the state data for the current processor for debugging.
*
* Inputs:
* text Identifies the debug point
* value Any integer value to be printed, e.g. reason code.
* Returns:
* None.
* Locking:
* none
* Remarks:
* none
*/
void kdb_print_state(const char *text, int value)
{
kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
text, smp_processor_id(), value, kdb_initial_cpu, kdb_state[smp_processor_id()]);
}
/*
* kdb_previous_event
*
* Return a count of cpus that are leaving kdb, i.e. the number
* of processors that are still handling the previous kdb event.
*
* Inputs:
* None.
* Returns:
* Count of cpus in previous event.
* Locking:
* none
* Remarks:
* none
*/
static int
kdb_previous_event(void)
{
int i, leaving = 0;
for (i = 0; i < NR_CPUS; ++i) {
if (KDB_STATE_CPU(LEAVING, i))
++leaving;
}
return(leaving);
}
/*
* kdb_main_loop
*
* The main kdb loop. After initial setup and assignment of the controlling
* cpu, all cpus are in this loop. One cpu is in control and will issue the kdb
* prompt, the others will spin until 'go' or cpu switch.
*
* To get a consistent view of the kernel stacks for all processes, this routine
* is invoked from the main kdb code via an architecture specific routine.
* kdba_main_loop is responsible for making the kernel stacks consistent for all
* processes, there should be no difference between a blocked process and a
* running process as far as kdb is concerned.
*
* Inputs:
* reason The reason KDB was invoked
* error The hardware-defined error code
* reason2 kdb's current reason code. Initially error but can change
* acording to kdb state.
* db_result Result code from break or debug point.
* ef The exception frame at time of fault/breakpoint. If reason
* is KDB_REASON_SILENT or KDB_REASON_PANIC then ef is NULL,
* otherwise it should always be valid.
* Returns:
* 0 KDB was invoked for an event which it wasn't responsible
* 1 KDB handled the event for which it was invoked.
* Locking:
* none
* Remarks:
* none
*/
int
kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
kdb_dbtrap_t db_result, kdb_eframe_t ef)
{
int result = 1;
/* Stay in kdb() until 'go', 'ss[b]' or an error */
while (1) {
int i;
/*
* All processors except the one that is in control
* will spin here.
*/
KDB_DEBUG_STATE("kdb_main_loop 1", reason);
while (KDB_STATE(HOLD_CPU))
;
KDB_STATE_CLEAR(SUPPRESS);
KDB_DEBUG_STATE("kdb_main_loop 2", reason);
if (KDB_STATE(LEAVING))
break; /* Another cpu said 'go' */
/* Still using kdb, this processor is in control */
result = kdb_local(reason2, error, ef, db_result);
KDB_DEBUG_STATE("kdb_main_loop 3", result);
if (result == KDB_CMD_CPU) {
/* Cpu switch, hold the current cpu, release the target one. */
reason2 = KDB_REASON_SWITCH;
KDB_STATE_SET(HOLD_CPU);
KDB_STATE_CLEAR_CPU(HOLD_CPU, kdb_new_cpu);
continue;
}
if (result == KDB_CMD_SS) {
KDB_STATE_SET(DOING_SS);
break;
}
if (result == KDB_CMD_SSB) {
KDB_STATE_SET(DOING_SS);
KDB_STATE_SET(DOING_SSB);
break;
}
if (result && result != 1 && result != KDB_CMD_GO)
kdb_printf("\nUnexpected kdb_local return code %d\n", result);
/*
* All other return codes (including KDB_CMD_GO) from
* kdb_local will end kdb(). Release all other cpus
* which will see KDB_STATE(LEAVING) is set.
*/
for (i = 0; i < NR_CPUS; ++i) {
if (KDB_STATE_CPU(KDB, i))
KDB_STATE_SET_CPU(LEAVING, i);
KDB_STATE_CLEAR_CPU(WAIT_IPI, i);
KDB_STATE_CLEAR_CPU(HOLD_CPU, i);
}
KDB_DEBUG_STATE("kdb_main_loop 4", reason);
break;
}
return(result != 0);
}
/*
* kdb
*
* This function is the entry point for the kernel debugger. It
* provides a command parser and associated support functions to
* allow examination and control of an active kernel.
*
* This function may be invoked directly from any
* point in the kernel by calling with reason == KDB_REASON_CALL
* (XXX - note that the regs aren't set up this way - could
* use a software interrupt to enter kdb to get regs...)
*
* The breakpoint trap code should invoke this function with
* one of KDB_REASON_BREAK (int 03) or KDB_REASON_DEBUG (debug register)
*
* the die_if_kernel function should invoke this function with
* KDB_REASON_OOPS.
*
* the panic function should invoke this function with KDB_REASON_PANIC.
*
* The kernel fault handler should invoke this function with
* reason == KDB_REASON_FAULT and error == trap vector #.
*
* In single step mode, one cpu is released to run without
* breakpoints. Interrupts and NMI are reset to their original values,
* the cpu is allowed to do one instruction which causes a trap
* into kdb with KDB_REASON_DEBUG.
*
* Inputs:
* reason The reason KDB was invoked
* error The hardware-defined error code
* ef The exception frame at time of fault/breakpoint. If reason
* is KDB_REASON_SILENT or KDB_REASON_PANIC then ef is NULL,
* otherwise it should always be valid.
* Returns:
* 0 KDB was invoked for an event which it wasn't responsible
* 1 KDB handled the event for which it was invoked.
* Locking:
* none
* Remarks:
* No assumptions of system state. This function may be invoked
* with arbitrary locks held. It will stop all other processors
* in an SMP environment, disable all interrupts and does not use
* the operating systems keyboard driver.
*
* This code is reentrant but only for cpu switch. Any other
* reentrancy is an error, although kdb will attempt to recover.
*
* At the start of a kdb session the initial processor is running
* kdb() and the other processors can be doing anything. When the
* initial processor calls smp_kdb_stop() the other processors are
* driven through kdb_ipi which calls kdb() with reason SWITCH.
* That brings all processors into this routine, one with a "real"
* reason code, the other with SWITCH.
*
* Because the other processors are driven via smp_kdb_stop(),
* they enter here from the NMI handler. Until the other
* processors exit from here and exit from kdb_ipi, they will not
* take any more NMI requests. The initial cpu will still take NMI.
*
* Multiple race and reentrancy conditions, each with different
* advoidance mechanisms.
*
* Two cpus hit debug points at the same time.
*
* kdb_lock and kdb_initial_cpu ensure that only one cpu gets
* control of kdb. The others spin on kdb_initial_cpu until
* they are driven through NMI into kdb_ipi. When the initial
* cpu releases the others from NMI, they resume trying to get
* kdb_initial_cpu to start a new event.
*
* A cpu is released from kdb and starts a new event before the
* original event has completely ended.
*
* kdb_previous_event() prevents any cpu from entering
* kdb_initial_cpu state until the previous event has completely
* ended on all cpus.
*
* An exception occurs inside kdb.
*
* kdb_initial_cpu detects recursive entry to kdb and attempts
* to recover. The recovery uses longjmp() which means that
* recursive calls to kdb never return. Beware of assumptions
* like
*
* ++depth;
* kdb();
* --depth;
*
* If the kdb call is recursive then longjmp takes over and
* --depth is never executed.
*
* NMI handling.
*
* NMI handling is tricky. The initial cpu is invoked by some kdb event,
* this event could be NMI driven but usually is not. The other cpus are
* driven into kdb() via kdb_ipi which uses NMI so at the start the other
* cpus will not accept NMI. Some operations such as SS release one cpu
* but hold all the others. Releasing a cpu means it drops back to
* whatever it was doing before the kdb event, this means it drops out of
* kdb_ipi and hence out of NMI status. But the software watchdog uses
* NMI and we do not want spurious watchdog calls into kdb. kdba_read()
* resets the watchdog counters in its input polling loop, when a kdb
* command is running it is subject to NMI watchdog events.
*
* Another problem with NMI handling is the NMI used to drive the other
* cpus into kdb cannot be distinguished from the watchdog NMI. State
* flag WAIT_IPI indicates that a cpu is waiting for NMI via kdb_ipi,
* if not set then software NMI is ignored by kdb_ipi.
*
* Cpu switching.
*
* All cpus are in kdb (or they should be), all but one are
* spinning on KDB_STATE(HOLD_CPU). Only one cpu is not in
* HOLD_CPU state, only that cpu can handle commands.
*
*/
int
kdb(kdb_reason_t reason, int error, kdb_eframe_t ef)
{
kdb_intstate_t int_state; /* Interrupt state */
kdb_reason_t reason2 = reason;
int result = 1; /* Default is kdb handled it */
int ss_event;
kdb_dbtrap_t db_result=KDB_DB_NOBPT;
if (!kdb_on)
return 0;
KDB_DEBUG_STATE("kdb 1", reason);
KDB_STATE_CLEAR(SUPPRESS);
/* Filter out userspace breakpoints first, no point in doing all
* the kdb smp fiddling when it is really a gdb trap.
* Save the single step status first, kdba_db_trap clears ss status.
*/
ss_event = reason != KDB_REASON_PANIC && (KDB_STATE(DOING_SS) || KDB_STATE(SSBPT));
if (reason == KDB_REASON_BREAK)
db_result = kdba_bp_trap(ef, error); /* Only call this once */
if (reason == KDB_REASON_DEBUG)
db_result = kdba_db_trap(ef, error); /* Only call this once */
if ((reason == KDB_REASON_BREAK || reason == KDB_REASON_DEBUG)
&& db_result == KDB_DB_NOBPT) {
KDB_DEBUG_STATE("kdb 2", reason);
return 0; /* Not one of mine */
}
/* Turn off single step if it was being used */
if (ss_event) {
kdba_clearsinglestep(ef);
/* Single step after a breakpoint removes the need for a delayed reinstall */
if (reason == KDB_REASON_BREAK || reason == KDB_REASON_DEBUG) {
KDB_STATE_SET(NO_BP_DELAY);
}
}
/* kdb can validly reenter but only for certain well defined conditions */
if (reason == KDB_REASON_DEBUG
&& !KDB_STATE(HOLD_CPU)
&& ss_event)
KDB_STATE_SET(REENTRY);
else
KDB_STATE_CLEAR(REENTRY);
/* Wait for previous kdb event to completely exit before starting
* a new event.
*/
while (kdb_previous_event())
;
KDB_DEBUG_STATE("kdb 3", reason);
/*
* If kdb is already active, print a message and try to recover.
* If recovery is not possible and recursion is allowed or
* forced recursion without recovery is set then try to recurse
* in kdb. Not guaranteed to work but it makes an attempt at
* debugging the debugger.
*/
if (reason != KDB_REASON_SWITCH) {
if (KDB_IS_RUNNING() && !KDB_STATE(REENTRY)) {
int recover = 1;
unsigned long recurse = 0;
kdb_printf("kdb: Debugger re-entered on cpu %d, new reason = %d\n",
smp_processor_id(), reason);
/* Should only re-enter from released cpu */
if (KDB_STATE(HOLD_CPU)) {
kdb_printf(" Strange, cpu %d should not be running\n", smp_processor_id());
recover = 0;
}
if (!KDB_STATE(CMD)) {
kdb_printf(" Not executing a kdb command\n");
recover = 0;
}
if (!KDB_STATE(LONGJMP)) {
kdb_printf(" No longjmp available for recovery\n");
recover = 0;
}
kdbgetulenv("RECURSE", &recurse);
if (recurse > 1) {
kdb_printf(" Forced recursion is set\n");
recover = 0;
}
if (recover) {
kdb_printf(" Attempting to abort command and recover\n");
#ifdef KDB_HAVE_LONGJMP
kdba_longjmp(&kdbjmpbuf[smp_processor_id()], 0);
#endif
}
if (recurse) {
if (KDB_STATE(RECURSE)) {
kdb_printf(" Already in recursive mode\n");
} else {
kdb_printf(" Attempting recursive mode\n");
KDB_STATE_SET(RECURSE);
KDB_STATE_SET(REENTRY);
reason2 = KDB_REASON_RECURSE;
recover = 1;
}
}
if (!recover) {
kdb_printf(" Cannot recover, allowing event to proceed\n");
return(0);
}
}
} else if (!KDB_IS_RUNNING()) {
kdb_printf("kdb: CPU switch without kdb running, I'm confused\n");
return(0);
}
/*
* Disable interrupts, breakpoints etc. on this processor
* during kdb command processing
*/
KDB_STATE_SET(KDB);
kdba_disableint(&int_state);
if (!KDB_STATE(KDB_CONTROL)) {
kdb_bp_remove_local();
kdba_disable_lbr();
KDB_STATE_SET(KDB_CONTROL);
}
else if (KDB_DEBUG(LBR))
kdba_print_lbr();
/*
* If not entering the debugger due to CPU switch or single step
* reentry, serialize access here.
* The processors may race getting to this point - if,
* for example, more than one processor hits a breakpoint
* at the same time. We'll serialize access to kdb here -
* other processors will loop here, and the NMI from the stop
* IPI will take them into kdb as switch candidates. Once
* the initial processor releases the debugger, the rest of
* the processors will race for it.
*/
if (reason == KDB_REASON_SWITCH
|| KDB_STATE(REENTRY))
; /* drop through */
else {
KDB_DEBUG_STATE("kdb 4", reason);
spin_lock(&kdb_lock);
while (KDB_IS_RUNNING() || kdb_previous_event()) {
spin_unlock(&kdb_lock);
while (KDB_IS_RUNNING() || kdb_previous_event())
;
spin_lock(&kdb_lock);
}
KDB_DEBUG_STATE("kdb 5", reason);
kdb_initial_cpu = smp_processor_id();
spin_unlock(&kdb_lock);
}
if (smp_processor_id() == kdb_initial_cpu
&& !KDB_STATE(REENTRY)) {
KDB_STATE_CLEAR(HOLD_CPU);
KDB_STATE_CLEAR(WAIT_IPI);
/*
* Remove the global breakpoints. This is only done
* once from the initial processor on initial entry.
*/
kdb_bp_remove_global();
/*
* If SMP, stop other processors. The other processors
* will enter kdb() with KDB_REASON_SWITCH and spin
* below.
*/
KDB_DEBUG_STATE("kdb 6", reason);
if (smp_num_cpus > 1) {
int i;
for (i = 0; i < NR_CPUS; ++i) {
if (i != kdb_initial_cpu) {
KDB_STATE_SET_CPU(HOLD_CPU, i);
KDB_STATE_SET_CPU(WAIT_IPI, i);
}
}
KDB_DEBUG_STATE("kdb 7", reason);
smp_kdb_stop();
KDB_DEBUG_STATE("kdb 8", reason);
}
}
/* Set up a consistent set of process stacks before talking to the user */
KDB_DEBUG_STATE("kdb 9", result);
result = kdba_main_loop(reason, reason2, error, db_result, ef);
KDB_DEBUG_STATE("kdb 10", result);
kdba_adjust_ip(reason, error, ef);
KDB_STATE_CLEAR(LONGJMP);
KDB_DEBUG_STATE("kdb 11", result);
/* No breakpoints installed for SS */
if (!KDB_STATE(DOING_SS) &&
!KDB_STATE(SSBPT) &&
!KDB_STATE(RECURSE)) {
KDB_DEBUG_STATE("kdb 12", result);
kdba_enable_lbr();
kdb_bp_install_local(ef);
KDB_STATE_CLEAR(NO_BP_DELAY);
KDB_STATE_CLEAR(KDB_CONTROL);
}
KDB_DEBUG_STATE("kdb 13", result);
kdba_restoreint(&int_state);
KDB_STATE_CLEAR(KDB); /* Main kdb state has been cleared */
KDB_STATE_CLEAR(LEAVING); /* Elvis has left the building ... */
KDB_DEBUG_STATE("kdb 14", result);
if (smp_processor_id() == kdb_initial_cpu &&
!KDB_STATE(DOING_SS) &&
!KDB_STATE(RECURSE)) {
/*
* (Re)install the global breakpoints. This is only done
* once from the initial processor on final exit.
*/
KDB_DEBUG_STATE("kdb 15", reason);
kdb_bp_install_global(ef);
/* Wait until all the other processors leave kdb */
while (kdb_previous_event())
;
kdb_initial_cpu = -1; /* release kdb control */
KDB_DEBUG_STATE("kdb 16", reason);
}
KDB_STATE_CLEAR(RECURSE);
KDB_DEBUG_STATE("kdb 17", reason);
return(result != 0);
}
/*
* kdb_mdr
*
* This function implements the guts of the 'mdr' command.
*
* mdr <addr arg>,<byte count>
*
* Inputs:
* addr Start address
* count Number of bytes
* Outputs:
* None.
* Returns:
* Always 0. Any errors are detected and printed by kdb_getarea.
* Locking:
* none.
* Remarks:
*/
static int
kdb_mdr(kdb_machreg_t addr, unsigned int count)
{
unsigned char c;
while (count--) {
if (kdb_getarea(c, addr))
return(0);
kdb_printf("%02x", c);
addr++;
}
kdb_printf("\n");
return(0);
}
/*
* kdb_md
*
* This function implements the 'md', 'md1', 'md2', 'md4', 'md8'
* 'mdr' and 'mds' commands.
*
* md|mds [<addr arg> [<line count> [<radix>]]]
* mdWcN [<addr arg> [<line count> [<radix>]]]
* where W = is the width (1, 2, 4 or 8) and N is the count.
* for eg., md1c20 reads 20 bytes, 1 at a time.
* mdr <addr arg>,<byte count>
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_md(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
static kdb_machreg_t last_addr;
static int last_radix, last_bytesperword, last_repeat;
int radix = 16, mdcount = 8, bytesperword = sizeof(kdb_machreg_t), repeat;
int nosect = 0;
char fmtchar, fmtstr[64];
kdb_machreg_t addr;
unsigned long word;
long offset = 0;
kdb_symtab_t symtab;
int symbolic = 0;
kdbgetintenv("MDCOUNT", &mdcount);
kdbgetintenv("RADIX", &radix);
kdbgetintenv("BYTESPERWORD", &bytesperword);
/* Assume 'md <addr>' and start with environment values */
repeat = mdcount * 16 / bytesperword;
if (strcmp(argv[0], "mdr") == 0) {
if (argc != 2)
return KDB_ARGCOUNT;
} else if (isdigit(argv[0][2])) {
bytesperword = (int)(argv[0][2] - '0');
last_bytesperword = bytesperword;
repeat = mdcount * 16 / bytesperword;
if (argv[0][3] == 'c') {
repeat = simple_strtoul(argv[0]+4, NULL, 10);
mdcount = ((repeat * bytesperword) + 15) / 16;
}
last_repeat = repeat;
}
if (argc == 0) {
if (last_addr == 0)
return KDB_ARGCOUNT;
addr = last_addr;
radix = last_radix;
bytesperword = last_bytesperword;
repeat = last_repeat;
mdcount = ((repeat * bytesperword) + 15) / 16;
}
if (argc) {
kdb_machreg_t val;
int diag, nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
if (diag)
return diag;
if (argc > nextarg+2)
return KDB_ARGCOUNT;
if (argc >= nextarg) {
diag = kdbgetularg(argv[nextarg], &val);
if (!diag) {
mdcount = (int) val;
repeat = mdcount * 16 / bytesperword;
}
}
if (argc >= nextarg+1) {
diag = kdbgetularg(argv[nextarg+1], &val);
if (!diag)
radix = (int) val;
}
}
if (strcmp(argv[0], "mdr") == 0) {
return(kdb_mdr(addr, mdcount));
}
switch (radix) {
case 10:
fmtchar = 'd';
break;
case 16:
fmtchar = 'x';
break;
case 8:
fmtchar = 'o';
break;
default:
return KDB_BADRADIX;
}
last_radix = radix;
if (bytesperword > sizeof(kdb_machreg_t))
return KDB_BADWIDTH;
switch (bytesperword) {
case 8:
sprintf(fmtstr, "%%16.16l%c ", fmtchar);
break;
case 4:
sprintf(fmtstr, "%%8.8l%c ", fmtchar);
break;
case 2:
sprintf(fmtstr, "%%4.4l%c ", fmtchar);
break;
case 1:
sprintf(fmtstr, "%%2.2l%c ", fmtchar);
break;
default:
return KDB_BADWIDTH;
}
last_repeat = repeat;
last_bytesperword = bytesperword;
if (strcmp(argv[0], "mds") == 0) {
symbolic = 1;
/* Do not save these changes as last_*, they are temporary mds
* overrides.
*/
bytesperword = sizeof(kdb_machreg_t);
repeat = mdcount;
kdbgetintenv("NOSECT", &nosect);
}
/* Round address down modulo BYTESPERWORD */
addr &= ~(bytesperword-1);
while (repeat > 0) {
int num = (symbolic?1 :(16 / bytesperword));
char cbuf[32];
char *c = cbuf;
int i;
memset(cbuf, '\0', sizeof(cbuf));
kdb_printf(kdb_machreg_fmt0 " ", addr);
for(i = 0; i < num && repeat--; i++) {
if (kdb_getword(&word, addr, bytesperword))
return 0;
kdb_printf(fmtstr, word);
if (symbolic) {
kdbnearsym(word, &symtab);
}
else {
memset(&symtab, 0, sizeof(symtab));
}
if (symtab.sym_name) {
kdb_symbol_print(word, &symtab, 0);
if (!nosect) {
kdb_printf("\n");
kdb_printf(" %s %s "
kdb_machreg_fmt " " kdb_machreg_fmt " " kdb_machreg_fmt,
symtab.mod_name,
symtab.sec_name,
symtab.sec_start,
symtab.sym_start,
symtab.sym_end);
}
addr += bytesperword;
} else {
#define printable_char(addr) ({char __c = '\0'; unsigned long __addr = (addr); kdb_getarea(__c, __addr); isprint(__c) ? __c : '.';})
switch (bytesperword) {
case 8:
*c++ = printable_char(addr++);
*c++ = printable_char(addr++);
*c++ = printable_char(addr++);
*c++ = printable_char(addr++);
case 4:
*c++ = printable_char(addr++);
*c++ = printable_char(addr++);
case 2:
*c++ = printable_char(addr++);
case 1:
*c++ = printable_char(addr++);
break;
}
#undef printable_char
}
}
kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), " ", cbuf);
}
last_addr = addr;
return 0;
}
/*
* kdb_mm
*
* This function implements the 'mm' command.
*
* mm address-expression new-value
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* mm works on machine words, mmW works on bytes.
*/
int
kdb_mm(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int diag;
kdb_machreg_t addr;
long offset = 0;
unsigned long contents;
int nextarg;
int width;
if (argv[0][2] && !isdigit(argv[0][2]))
return KDB_NOTFOUND;
if (argc < 2) {
return KDB_ARGCOUNT;
}
nextarg = 1;
if ((diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs)))
return diag;
if (nextarg > argc)
return KDB_ARGCOUNT;
if ((diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL, regs)))
return diag;
if (nextarg != argc + 1)
return KDB_ARGCOUNT;
width = argv[0][2] ? (argv[0][2] - '0') : (sizeof(kdb_machreg_t));
if ((diag = kdb_putword(addr, contents, width)))
return(diag);
kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
return 0;
}
/*
* kdb_go
*
* This function implements the 'go' command.
*
* go [address-expression]
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* KDB_CMD_GO for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_go(int argc, const char **argv, const char **envp, kdb_eframe_t ef)
{
kdb_machreg_t addr;
int diag;
int nextarg;
long offset;
if (argc == 1) {
nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg,
&addr, &offset, NULL, ef);
if (diag)
return diag;
kdba_setpc(ef, addr);
} else if (argc)
return KDB_ARGCOUNT;
return KDB_CMD_GO;
}
/*
* kdb_rd
*
* This function implements the 'rd' command.
*
* rd display all general registers.
* rd c display all control registers.
* rd d display all debug registers.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_rd(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
/*
*/
if (argc == 0) {
return kdba_dumpregs(regs, NULL, NULL);
}
if (argc > 2) {
return KDB_ARGCOUNT;
}
return kdba_dumpregs(regs, argv[1], argv[2]);
}
/*
* kdb_rm
*
* This function implements the 'rm' (register modify) command.
*
* rm register-name new-contents
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Currently doesn't allow modification of control or
* debug registers, nor does it allow modification
* of model-specific registers (MSR).
*/
int
kdb_rm(int argc, const char **argv, const char **envp, kdb_eframe_t ef)
{
int diag;
int ind = 0;
kdb_machreg_t contents;
if (argc != 2) {
return KDB_ARGCOUNT;
}
/*
* Allow presence or absence of leading '%' symbol.
*/
if (argv[1][0] == '%')
ind = 1;
diag = kdbgetularg(argv[2], &contents);
if (diag)
return diag;
diag = kdba_setregcontents(&argv[1][ind], ef, contents);
if (diag)
return diag;
return 0;
}
#if defined(CONFIG_MAGIC_SYSRQ)
/*
* kdb_sr
*
* This function implements the 'sr' (SYSRQ key) command which
* interfaces to the soi-disant MAGIC SYSRQ functionality.
*
* sr <magic-sysrq-code>
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* None.
*/
int
kdb_sr(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
if (argc != 1) {
return KDB_ARGCOUNT;
}
handle_sysrq(*argv[1], regs, 0, 0);
return 0;
}
#endif /* CONFIG_MAGIC_SYSRQ */
/*
* kdb_ef
*
* This function implements the 'ef' (display exception frame)
* command. This command takes an address and expects to find
* an exception frame at that address, formats and prints it.
*
* ef address-expression
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Not done yet.
*/
int
kdb_ef(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int diag;
kdb_machreg_t addr;
long offset;
int nextarg;
if (argc == 1) {
nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
if (diag)
return diag;
return kdba_dumpregs((struct pt_regs *)addr, NULL, NULL);
}
return KDB_ARGCOUNT;
}
/*
* kdb_reboot
*
* This function implements the 'reboot' command. Reboot the system
* immediately.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Shouldn't return from this function.
*/
int
kdb_reboot(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
machine_restart(0);
/* NOTREACHED */
return 0;
}
#if defined(CONFIG_MODULES)
extern struct module *find_module(const char *);
extern void free_module(struct module *, int);
/*
* kdb_lsmod
*
* This function implements the 'lsmod' command. Lists currently
* loaded kernel modules.
*
* Mostly taken from userland lsmod.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*
*/
int
kdb_lsmod(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
struct module *mod;
struct module_ref *mr;
if (argc != 0)
return KDB_ARGCOUNT;
kdb_printf("Module Size modstruct Used by\n");
for (mod = module_list; mod && mod->next ;mod = mod->next) {
kdb_printf("%-20s%8lu 0x%p %4ld ", mod->name, mod->size, (void *)mod,
(long)atomic_read(&mod->uc.usecount));
if (mod->flags & MOD_DELETED)
kdb_printf(" (deleted)");
else if (mod->flags & MOD_INITIALIZING)
kdb_printf(" (initializing)");
else if (!(mod->flags & MOD_RUNNING))
kdb_printf(" (uninitialized)");
else {
if (mod->flags & MOD_AUTOCLEAN)
kdb_printf(" (autoclean)");
if (!(mod->flags & MOD_USED_ONCE))
kdb_printf(" (unused)");
}
if (mod->refs) {
kdb_printf(" [ ");
mr = mod->refs;
while (mr) {
kdb_printf("%s ", mr->ref->name);
mr = mr->next_ref;
}
kdb_printf("]");
}
kdb_printf("\n");
}
return 0;
}
/*
* kdb_rmmod
*
* This function implements the 'rmmod' command. Removes a given
* kernel module.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Danger: free_module() calls mod->cleanup(). If the cleanup routine
* relies on interrupts then it will hang, kdb has interrupts disabled.
*/
int
kdb_rmmod(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
struct module *mod;
if (argc != 1)
return KDB_ARGCOUNT;
kdb_printf("Attempting to remove module: [%s]\n", argv[1]);
if ((mod = find_module(argv[1])) == NULL) {
kdb_printf("Unable to find a module by that name\n");
return 0;
}
if (mod->refs != NULL || __MOD_IN_USE(mod)) {
kdb_printf("Module is in use, unable to unload\n");
return 0;
}
free_module(mod, 0);
kdb_printf("Module successfully unloaded\n");
return 0;
}
#endif /* CONFIG_MODULES */
/*
* kdb_env
*
* This function implements the 'env' command. Display the current
* environment variables.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_env(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int i;
for(i=0; i<__nenv; i++) {
if (__env[i]) {
kdb_printf("%s\n", __env[i]);
}
}
if (KDB_DEBUG(MASK))
kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
return 0;
}
/*
* kdb_set
*
* This function implements the 'set' command. Alter an existing
* environment variable or create a new one.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_set(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int i;
char *ep;
size_t varlen, vallen;
/*
* we can be invoked two ways:
* set var=value argv[1]="var", argv[2]="value"
* set var = value argv[1]="var", argv[2]="=", argv[3]="value"
* - if the latter, shift 'em down.
*/
if (argc == 3) {
argv[2] = argv[3];
argc--;
}
if (argc != 2)
return KDB_ARGCOUNT;
/*
* Check for internal variables
*/
if (strcmp(argv[1], "KDBDEBUG") == 0) {
unsigned int debugflags;
char *cp;
debugflags = simple_strtoul(argv[2], &cp, 0);
if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
kdb_printf("kdb: illegal debug flags '%s'\n",
argv[2]);
return 0;
}
kdb_flags = (kdb_flags & ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
| (debugflags << KDB_DEBUG_FLAG_SHIFT);
return 0;
}
/*
* Tokenizer squashed the '=' sign. argv[1] is variable
* name, argv[2] = value.
*/
varlen = strlen(argv[1]);
vallen = strlen(argv[2]);
ep = kdballocenv(varlen + vallen + 2);
if (ep == (char *)0)
return KDB_ENVBUFFULL;
sprintf(ep, "%s=%s", argv[1], argv[2]);
ep[varlen+vallen+1]='\0';
for(i=0; i<__nenv; i++) {
if (__env[i]
&& ((strncmp(__env[i], argv[1], varlen)==0)
&& ((__env[i][varlen] == '\0')
|| (__env[i][varlen] == '=')))) {
__env[i] = ep;
return 0;
}
}
/*
* Wasn't existing variable. Fit into slot.
*/
for(i=0; i<__nenv-1; i++) {
if (__env[i] == (char *)0) {
__env[i] = ep;
return 0;
}
}
return KDB_ENVFULL;
}
/*
* kdb_cpu
*
* This function implements the 'cpu' command.
*
* cpu [<cpunum>]
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* KDB_CMD_CPU for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* All cpu's should be spinning in kdb(). However just in case
* a cpu did not take the smp_kdb_stop NMI, check that a cpu
* entered kdb() before passing control to it.
*/
int
kdb_cpu(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
unsigned long cpunum;
int diag;
if (argc == 0) {
int i;
kdb_printf("Currently on cpu %d\n", smp_processor_id());
kdb_printf("Available cpus: ");
for (i=0; i<NR_CPUS; i++) {
if (cpu_online_map & (1UL << i)) {
if (i) kdb_printf(", ");
kdb_printf("%d", i);
if (!KDB_STATE_CPU(KDB, i))
kdb_printf("*");
}
}
kdb_printf("\n");
return 0;
}
if (argc != 1)
return KDB_ARGCOUNT;
diag = kdbgetularg(argv[1], &cpunum);
if (diag)
return diag;
/*
* Validate cpunum
*/
if ((cpunum > NR_CPUS)
|| !(cpu_online_map & (1UL << cpunum))
|| !KDB_STATE_CPU(KDB, cpunum))
return KDB_BADCPUNUM;
kdb_new_cpu = cpunum;
/*
* Switch to other cpu
*/
return KDB_CMD_CPU;
}
/*
* kdb_ps
*
* This function implements the 'ps' command which shows
* a list of the active processes.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_ps(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
struct task_struct *p;
kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
(int)(2*sizeof(void *))+2, "Task Addr",
(int)(2*sizeof(void *))+2, "Thread");
for_each_task(p) {
kdb_printf("0x%p %08d %08d %1.1d %3.3d %s 0x%p%c%s\n",
(void *)p, p->pid, p->p_pptr->pid,
task_has_cpu(p), p->processor,
(p->state == 0)?"run ":(p->state>0)?"stop":"unrn",
(void *)(&p->thread),
(p == current) ? '*': ' ',
p->comm);
}
return 0;
}
/*
* kdb_ll
*
* This function implements the 'll' command which follows a linked
* list and executes an arbitrary command for each element.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_ll(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int diag;
kdb_machreg_t addr;
long offset = 0;
kdb_machreg_t va;
unsigned long linkoffset;
int nextarg;
if (argc != 3) {
return KDB_ARGCOUNT;
}
nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL, regs);
if (diag)
return diag;
diag = kdbgetularg(argv[2], &linkoffset);
if (diag)
return diag;
/*
* Using the starting address as
* the first element in the list, and assuming that
* the list ends with a null pointer.
*/
va = addr;
while (va) {
char buf[80];
sprintf(buf, "%s " kdb_machreg_fmt "\n", argv[3], va);
diag = kdb_parse(buf, regs);
if (diag)
return diag;
addr = va + linkoffset;
if (kdb_getword(&va, addr, sizeof(va)))
return(0);
}
return 0;
}
/*
* kdb_sections_callback
*
* Invoked from kallsyms_sections for each section.
*
* Inputs:
* prevmod Previous module name
* modname Module name
* secname Section name
* secstart Start of section
* secend End of section
* secflags Section flags
* Outputs:
* None.
* Returns:
* Always zero
* Locking:
* none.
* Remarks:
*/
static int
kdb_sections_callback(void *token, const char *modname, const char *secname,
ElfW(Addr) secstart, ElfW(Addr) secend, ElfW(Word) secflags)
{
const char **prevmod = (const char **)token;
if (*prevmod != modname) {
*prevmod = modname;
kdb_printf("\n%s", modname);
}
kdb_printf(" %s " kdb_elfw_addr_fmt0 " " kdb_elfw_addr_fmt0 " 0x%x",
secname, secstart, secend, secflags);
return(0);
}
/*
* kdb_sections
*
* This function implements the 'sections' command which prints the
* kernel and module sections.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* Always zero
* Locking:
* none.
* Remarks:
*/
int
kdb_sections(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
char *prev_mod = NULL;
if (argc != 0) {
return KDB_ARGCOUNT;
}
kallsyms_sections(&prev_mod, kdb_sections_callback);
kdb_printf("\n"); /* End last module */
return(0);
}
/*
* kdb_help
*
* This function implements the 'help' and '?' commands.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
*/
int
kdb_help(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
kdbtab_t *kt;
kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
kdb_printf("----------------------------------------------------------\n");
for(kt=kdb_commands; kt->cmd_name; kt++) {
kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
kt->cmd_usage, kt->cmd_help);
}
return 0;
}
/*
* kdb_register_repeat
*
* This function is used to register a kernel debugger command.
*
* Inputs:
* cmd Command name
* func Function to execute the command
* usage A simple usage string showing arguments
* help A simple help string describing command
* repeat Does the command auto repeat on enter?
* Outputs:
* None.
* Returns:
* zero for success, one if a duplicate command.
* Locking:
* none.
* Remarks:
*
*/
int
kdb_register_repeat(char *cmd,
kdb_func_t func,
char *usage,
char *help,
short minlen,
kdb_repeat_t repeat)
{
int i;
kdbtab_t *kp;
/*
* Brute force method to determine duplicates
*/
for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
if (kp->cmd_name && (strcmp(kp->cmd_name, cmd)==0)) {
kdb_printf("Duplicate kdb command registered: '%s'\n",
cmd);
return 1;
}
}
/*
* Insert command into first available location in table
*/
for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
if (kp->cmd_name == NULL) {
kp->cmd_name = cmd;
kp->cmd_func = func;
kp->cmd_usage = usage;
kp->cmd_help = help;
kp->cmd_flags = 0;
kp->cmd_minlen = minlen;
kp->cmd_repeat = repeat;
break;
}
}
return 0;
}
/*
* kdb_register
*
* Compatibility register function for commands that do not need to
* specify a repeat state. Equivalent to kdb_register_repeat with
* KDB_REPEAT_NONE.
*
* Inputs:
* cmd Command name
* func Function to execute the command
* usage A simple usage string showing arguments
* help A simple help string describing command
* Outputs:
* None.
* Returns:
* zero for success, one if a duplicate command.
* Locking:
* none.
* Remarks:
*
*/
int
kdb_register(char *cmd,
kdb_func_t func,
char *usage,
char *help,
short minlen)
{
return kdb_register_repeat(cmd, func, usage, help, minlen, KDB_REPEAT_NONE);
}
/*
* kdb_unregister
*
* This function is used to unregister a kernel debugger command.
* It is generally called when a module which implements kdb
* commands is unloaded.
*
* Inputs:
* cmd Command name
* Outputs:
* None.
* Returns:
* zero for success, one command not registered.
* Locking:
* none.
* Remarks:
*
*/
int
kdb_unregister(char *cmd)
{
int i;
kdbtab_t *kp;
/*
* find the command.
*/
for (i=0, kp=kdb_commands; i<KDB_MAX_COMMANDS; i++, kp++) {
if (kp->cmd_name && (strcmp(kp->cmd_name, cmd)==0)) {
kp->cmd_name = NULL;
return 0;
}
}
/*
* Couldn't find it.
*/
return 1;
}
/*
* kdb_inittab
*
* This function is called by the kdb_init function to initialize
* the kdb command table. It must be called prior to any other
* call to kdb_register_repeat.
*
* Inputs:
* None.
* Outputs:
* None.
* Returns:
* None.
* Locking:
* None.
* Remarks:
*
*/
static void __init
kdb_inittab(void)
{
int i;
kdbtab_t *kp;
for(i=0, kp=kdb_commands; i < KDB_MAX_COMMANDS; i++,kp++) {
kp->cmd_name = NULL;
}
kdb_register_repeat("md", kdb_md, "<vaddr>", "Display Memory Contents", 1, KDB_REPEAT_NO_ARGS);
kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
kdb_register_repeat("mds", kdb_md, "<vaddr>", "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
kdb_register_repeat("id", kdb_id, "<vaddr>", "Display Instructions", 1, KDB_REPEAT_NO_ARGS);
kdb_register_repeat("go", kdb_go, "[<vaddr>]", "Continue Execution", 1, KDB_REPEAT_NONE);
kdb_register_repeat("rd", kdb_rd, "", "Display Registers", 1, KDB_REPEAT_NONE);
kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", "Modify Registers", 0, KDB_REPEAT_NONE);
kdb_register_repeat("ef", kdb_ef, "<vaddr>", "Display exception frame", 0, KDB_REPEAT_NONE);
kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", "Stack traceback", 1, KDB_REPEAT_NONE);
kdb_register_repeat("btp", kdb_bt, "<pid>", "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
kdb_register_repeat("bta", kdb_bt, "", "Display stack all processes", 0, KDB_REPEAT_NONE);
kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
kdb_register_repeat("env", kdb_env, "", "Show environment variables", 0, KDB_REPEAT_NONE);
kdb_register_repeat("set", kdb_set, "", "Set environment variables", 0, KDB_REPEAT_NONE);
kdb_register_repeat("help", kdb_help, "", "Display Help Message", 1, KDB_REPEAT_NONE);
kdb_register_repeat("?", kdb_help, "", "Display Help Message", 0, KDB_REPEAT_NONE);
kdb_register_repeat("cpu", kdb_cpu, "<cpunum>","Switch to new cpu", 0, KDB_REPEAT_NONE);
kdb_register_repeat("ps", kdb_ps, "", "Display active task list", 0, KDB_REPEAT_NONE);
kdb_register_repeat("reboot", kdb_reboot, "", "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
kdb_register_repeat("sections", kdb_sections, "", "List kernel and module sections", 0, KDB_REPEAT_NONE);
#if defined(CONFIG_MODULES)
kdb_register_repeat("lsmod", kdb_lsmod, "", "List loaded kernel modules", 0, KDB_REPEAT_NONE);
kdb_register_repeat("rmmod", kdb_rmmod, "<modname>", "Remove a kernel module", 1, KDB_REPEAT_NONE);
#endif
#if defined(CONFIG_MAGIC_SYSRQ)
kdb_register_repeat("sr", kdb_sr, "<key>", "Magic SysRq key", 0, KDB_REPEAT_NONE);
#endif
}
/*
* kdb_cmd_init
*
* This function is called by the kdb_init function to execute any
* commands defined in kdb_cmds.
*
* Inputs:
* Commands in *kdb_cmds[];
* Outputs:
* None.
* Returns:
* None.
* Locking:
* None.
* Remarks:
*
*/
static void __init
kdb_cmd_init(void)
{
int i, diag;
for (i = 0; kdb_cmds[i]; ++i) {
kdb_printf("kdb_cmd[%d]: %s", i, kdb_cmds[i]);
diag = kdb_parse(kdb_cmds[i], NULL);
if (diag)
kdb_printf("command failed, kdb diag %d\n", diag);
}
}
/*
* kdb_panic
*
* Invoked via the panic_notifier_list.
*
* Inputs:
* None.
* Outputs:
* None.
* Returns:
* Zero.
* Locking:
* None.
* Remarks:
* When this function is called from panic(), the other cpus have already
* been stopped.
*
*/
static int
kdb_panic(struct notifier_block *self, unsigned long command, void *ptr)
{
kdb(KDB_REASON_PANIC, 0, NULL);
return(0);
}
static struct notifier_block kdb_block = { kdb_panic, NULL, 0 };
/*
* kdb_init
*
* Initialize the kernel debugger environment.
*
* Parameters:
* None.
* Returns:
* None.
* Locking:
* None.
* Remarks:
* None.
*/
void __init
kdb_init(void)
{
/*
* This must be called before any calls to kdb_printf.
*/
kdb_io_init();
kdb_inittab(); /* Initialize Command Table */
kdb_initbptab(); /* Initialize Breakpoint Table */
kdb_id_init(); /* Initialize Disassembler */
kdba_init(); /* Architecture Dependent Initialization */
/*
* Use printk() to get message in log_buf[];
*/
printk("kdb version %d.%d%s by Scott Lurndal, Keith Owens. "\
"Copyright SGI, All Rights Reserved\n",
KDB_MAJOR_VERSION, KDB_MINOR_VERSION, KDB_TEST_VERSION);
kdb_cmd_init(); /* Preset commands from kdb_cmds */
kdb(KDB_REASON_SILENT, 0, 0); /* Activate any preset breakpoints on boot cpu */
notifier_chain_register(&panic_notifier_list, &kdb_block);
}
EXPORT_SYMBOL(kdb_register);
EXPORT_SYMBOL(kdb_register_repeat);
EXPORT_SYMBOL(kdb_unregister);
EXPORT_SYMBOL(kdb_getarea_size);
EXPORT_SYMBOL(kdb_putarea_size);
EXPORT_SYMBOL(kdb_getword);
EXPORT_SYMBOL(kdb_putword);
EXPORT_SYMBOL(kdbgetularg);
EXPORT_SYMBOL(kdbgetenv);
EXPORT_SYMBOL(kdbgetintenv);
EXPORT_SYMBOL(kdbgetaddrarg);
EXPORT_SYMBOL(kdb);
EXPORT_SYMBOL(kdb_on);
EXPORT_SYMBOL(kdbgetsymval);
EXPORT_SYMBOL(kdbnearsym);
EXPORT_SYMBOL(kdb_printf);
EXPORT_SYMBOL(kdb_symbol_print);
|