1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/* $Id: fault.c,v 1.62 1996/04/25 06:09:26 davem Exp $
* fault.c: Page fault handlers for the Sparc.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/tasks.h>
#include <linux/smp.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/openprom.h>
#include <asm/idprom.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/memreg.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/smp.h>
#include <asm/traps.h>
#include <asm/kdebug.h>
#define ELEMENTS(arr) (sizeof (arr)/sizeof (arr[0]))
extern struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
extern int prom_node_root;
extern void die_if_kernel(char *,struct pt_regs *);
struct linux_romvec *romvec;
/* At boot time we determine these two values necessary for setting
* up the segment maps and page table entries (pte's).
*/
int num_segmaps, num_contexts;
int invalid_segment;
/* various Virtual Address Cache parameters we find at boot time... */
int vac_size, vac_linesize, vac_do_hw_vac_flushes;
int vac_entries_per_context, vac_entries_per_segment;
int vac_entries_per_page;
/* Nice, simple, prom library does all the sweating for us. ;) */
int prom_probe_memory (void)
{
register struct linux_mlist_v0 *mlist;
register unsigned long bytes, base_paddr, tally;
register int i;
i = 0;
mlist= *prom_meminfo()->v0_available;
bytes = tally = mlist->num_bytes;
base_paddr = (unsigned long) mlist->start_adr;
sp_banks[0].base_addr = base_paddr;
sp_banks[0].num_bytes = bytes;
while (mlist->theres_more != (void *) 0){
i++;
mlist = mlist->theres_more;
bytes = mlist->num_bytes;
tally += bytes;
if (i >= SPARC_PHYS_BANKS-1) {
printk ("The machine has more banks that this kernel can support\n"
"Increase the SPARC_PHYS_BANKS setting (currently %d)\n",
SPARC_PHYS_BANKS);
i = SPARC_PHYS_BANKS-1;
break;
}
sp_banks[i].base_addr = (unsigned long) mlist->start_adr;
sp_banks[i].num_bytes = mlist->num_bytes;
}
i++;
sp_banks[i].base_addr = 0xdeadbeef;
sp_banks[i].num_bytes = 0;
/* Now mask all bank sizes on a page boundary, it is all we can
* use anyways.
*/
for(i=0; sp_banks[i].num_bytes != 0; i++)
sp_banks[i].num_bytes &= PAGE_MASK;
return tally;
}
/* Traverse the memory lists in the prom to see how much physical we
* have.
*/
unsigned long
probe_memory(void)
{
int total;
total = prom_probe_memory();
/* Oh man, much nicer, keep the dirt in promlib. */
return total;
}
extern void sun4c_complete_all_stores(void);
/* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
unsigned long svaddr, unsigned long aerr,
unsigned long avaddr)
{
sun4c_complete_all_stores();
printk("FAULT: NMI received\n");
printk("SREGS: Synchronous Error %08lx\n", serr);
printk(" Synchronous Vaddr %08lx\n", svaddr);
printk(" Asynchronous Error %08lx\n", aerr);
printk(" Asynchronous Vaddr %08lx\n", avaddr);
printk("REGISTER DUMP:\n");
show_regs(regs);
prom_halt();
}
asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
unsigned long address)
{
struct vm_area_struct *vma;
int from_user = !(regs->psr & PSR_PS);
#if 0
printk("CPU[%d]: f<pid=%d,tf=%d,wr=%d,addr=%08lx",
smp_processor_id(), current->pid, text_fault,
write, address);
printk(",pc=%08lx> ", regs->pc);
#endif
if(text_fault)
address = regs->pc;
/* Now actually handle the fault. Do kernel faults special,
* because on the sun4c we could have faulted trying to read
* the vma area of the task and without the following code
* we'd fault recursively until all our stack is gone. ;-(
*/
if(!from_user && address >= KERNBASE) {
#ifdef __SMP__
printk("CPU[%d]: Kernel faults at addr=%08lx\n",
smp_processor_id(), address);
while(1)
;
#else
quick_kernel_fault(address);
return;
#endif
}
vma = find_vma(current, address);
if(!vma)
goto bad_area;
if(vma->vm_start <= address)
goto good_area;
if(!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if(expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
if(write) {
if(!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
/* Allow reads even for write-only mappings */
if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
handle_mm_fault(vma, address, write);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
if(from_user) {
#if 0
printk("%s [%d]: segfaults at %08lx pc=%08lx\n",
current->comm, current->pid, address, regs->pc);
#endif
current->tss.sig_address = address;
current->tss.sig_desc = SUBSIG_NOMAPPING;
send_sig(SIGSEGV, current, 1);
return;
}
if((unsigned long) address < PAGE_SIZE) {
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
} else
printk(KERN_ALERT "Unable to handle kernel paging request");
printk(" at virtual address %08lx\n",address);
printk(KERN_ALERT "current->mm->context = %08lx\n",
(unsigned long) current->mm->context);
printk(KERN_ALERT "current->mm->pgd = %08lx\n",
(unsigned long) current->mm->pgd);
die_if_kernel("Oops", regs);
}
/* This always deals with user addresses. */
inline void force_user_fault(unsigned long address, int write)
{
struct vm_area_struct *vma;
vma = find_vma(current, address);
if(!vma)
goto bad_area;
if(vma->vm_start <= address)
goto good_area;
if(!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if(expand_stack(vma, address))
goto bad_area;
good_area:
if(write)
if(!(vma->vm_flags & VM_WRITE))
goto bad_area;
else
if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
handle_mm_fault(vma, address, write);
return;
bad_area:
current->tss.sig_address = address;
current->tss.sig_desc = SUBSIG_NOMAPPING;
send_sig(SIGSEGV, current, 1);
return;
}
void window_overflow_fault(void)
{
unsigned long sp = current->tss.rwbuf_stkptrs[0];
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 1);
force_user_fault(sp, 1);
}
void window_underflow_fault(unsigned long sp)
{
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 0);
force_user_fault(sp, 0);
}
void window_ret_fault(struct pt_regs *regs)
{
unsigned long sp = regs->u_regs[UREG_FP];
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 0);
force_user_fault(sp, 0);
}
|