1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
|
/* sun4c.c: Doing in software what should be done in hardware.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/vaddrs.h>
#include <asm/idprom.h>
#include <asm/machines.h>
#include <asm/memreg.h>
#include <asm/processor.h>
extern int num_segmaps, num_contexts;
/* Flushing the cache. */
struct sun4c_vac_props sun4c_vacinfo;
static int ctxflushes, segflushes, pageflushes;
/* convert a virtual address to a physical address and vice
versa. Easy on the 4c */
static unsigned long sun4c_v2p(unsigned long vaddr)
{
return(vaddr - PAGE_OFFSET);
}
static unsigned long sun4c_p2v(unsigned long vaddr)
{
return(vaddr + PAGE_OFFSET);
}
/* Invalidate every sun4c cache line tag. */
void sun4c_flush_all(void)
{
unsigned long begin, end;
if(sun4c_vacinfo.on)
panic("SUN4C: AIEEE, trying to invalidate vac while"
" it is on.");
/* Clear 'valid' bit in all cache line tags */
begin = AC_CACHETAGS;
end = (AC_CACHETAGS + sun4c_vacinfo.num_bytes);
while(begin < end) {
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (begin), "i" (ASI_CONTROL));
begin += sun4c_vacinfo.linesize;
}
}
/* Blow the entire current context out of the virtual cache. */
static inline void sun4c_flush_context(void)
{
unsigned long vaddr;
ctxflushes++;
if(sun4c_vacinfo.do_hwflushes) {
for(vaddr=0; vaddr < sun4c_vacinfo.num_bytes; vaddr+=PAGE_SIZE)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (vaddr), "i" (ASI_HWFLUSHCONTEXT));
} else {
int incr = sun4c_vacinfo.linesize;
for(vaddr=0; vaddr < sun4c_vacinfo.num_bytes; vaddr+=incr)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (vaddr), "i" (ASI_FLUSHCTX));
}
}
/* Scrape the segment starting at ADDR from the virtual cache. */
static inline void sun4c_flush_segment(unsigned long addr)
{
unsigned long end;
segflushes++;
addr &= SUN4C_REAL_PGDIR_MASK;
end = (addr + sun4c_vacinfo.num_bytes);
if(sun4c_vacinfo.do_hwflushes) {
for( ; addr < end; addr += PAGE_SIZE)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_HWFLUSHSEG));
} else {
int incr = sun4c_vacinfo.linesize;
for( ; addr < end; addr += incr)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_FLUSHSEG));
}
}
/* Bolix one page from the virtual cache. */
static inline void sun4c_flush_page(unsigned long addr)
{
addr &= PAGE_MASK;
pageflushes++;
if(sun4c_vacinfo.do_hwflushes) {
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_HWFLUSHPAGE));
} else {
unsigned long end = addr + PAGE_SIZE;
int incr = sun4c_vacinfo.linesize;
for( ; addr < end; addr += incr)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_FLUSHPG));
}
}
/* The sun4c's do have an on chip store buffer. And the way you
* clear them out isn't so obvious. The only way I can think of
* to accomplish this is to read the current context register,
* store the same value there, then do a bunch of nops for the
* pipeline to clear itself completely. This is only used for
* dealing with memory errors, so it is not that critical.
*/
void sun4c_complete_all_stores(void)
{
volatile int _unused;
_unused = sun4c_get_context();
sun4c_set_context(_unused);
nop(); nop(); nop(); nop();
nop(); nop(); nop(); nop();
/* Is that enough? */
}
/* Bootup utility functions. */
static inline void sun4c_init_clean_segmap(unsigned char pseg)
{
unsigned long vaddr;
sun4c_put_segmap(0, pseg);
for(vaddr = 0; vaddr < SUN4C_REAL_PGDIR_SIZE; vaddr+=PAGE_SIZE)
sun4c_put_pte(vaddr, 0);
sun4c_put_segmap(0, invalid_segment);
}
static inline void sun4c_init_clean_mmu(unsigned long kernel_end)
{
unsigned long vaddr;
unsigned char savectx, ctx;
savectx = sun4c_get_context();
kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end);
for(ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
for(vaddr = 0; vaddr < 0x20000000; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for(vaddr = 0xe0000000; vaddr < KERNBASE; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for(vaddr = kernel_end; vaddr < KADB_DEBUGGER_BEGVM; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for(vaddr = LINUX_OPPROM_ENDVM; vaddr; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
}
sun4c_set_context(ctx);
}
void sun4c_probe_vac(void)
{
int propval;
sun4c_disable_vac();
sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node,
"vac-size", 65536);
sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node,
"vac-linesize", 16);
sun4c_vacinfo.num_lines =
(sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize);
switch(sun4c_vacinfo.linesize) {
case 16:
sun4c_vacinfo.log2lsize = 4;
break;
case 32:
sun4c_vacinfo.log2lsize = 5;
break;
default:
prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n",
sun4c_vacinfo.linesize);
prom_halt();
};
propval = prom_getintdefault(prom_root_node, "vac_hwflush", -1);
sun4c_vacinfo.do_hwflushes = (propval == -1 ?
prom_getintdefault(prom_root_node,
"vac-hwflush", 0) :
propval);
if(sun4c_vacinfo.num_bytes != 65536) {
prom_printf("WEIRD Sun4C VAC cache size, tell davem");
prom_halt();
}
sun4c_flush_all();
sun4c_enable_vac();
}
static void sun4c_probe_mmu(void)
{
num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128);
num_contexts = prom_getintdefault(prom_root_node, "mmu-nctx", 0x8);
}
static inline void sun4c_init_ss2_cache_bug(void)
{
extern unsigned long start;
if(idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) {
/* Whee.. */
printk("SS2 cache bug detected, uncaching trap table page\n");
sun4c_flush_page((unsigned int) &start);
sun4c_put_pte(((unsigned long) &start),
(sun4c_get_pte((unsigned long) &start) | _SUN4C_PAGE_NOCACHE));
}
}
static inline unsigned long sun4c_init_alloc_dvma_pages(unsigned long start_mem)
{
unsigned long addr, pte;
for(addr = DVMA_VADDR; addr < DVMA_END; addr += PAGE_SIZE) {
pte = (start_mem - PAGE_OFFSET) >> PAGE_SHIFT;
pte |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_WRITE | _SUN4C_PAGE_NOCACHE);
sun4c_put_pte(addr, pte);
start_mem += PAGE_SIZE;
}
return start_mem;
}
/* TLB management. */
struct sun4c_mmu_entry {
struct sun4c_mmu_entry *next;
struct sun4c_mmu_entry *prev;
unsigned long vaddr;
unsigned char pseg;
unsigned char locked;
};
static struct sun4c_mmu_entry mmu_entry_pool[256];
static void sun4c_init_mmu_entry_pool(void)
{
int i;
for(i=0; i < 256; i++) {
mmu_entry_pool[i].pseg = i;
mmu_entry_pool[i].next = 0;
mmu_entry_pool[i].prev = 0;
mmu_entry_pool[i].vaddr = 0;
mmu_entry_pool[i].locked = 0;
}
mmu_entry_pool[invalid_segment].locked = 1;
}
static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on,
unsigned long bits_off)
{
unsigned long start, end;
end = vaddr + SUN4C_REAL_PGDIR_SIZE;
for(start = vaddr; start < end; start += PAGE_SIZE)
if(sun4c_get_pte(start) & _SUN4C_PAGE_VALID)
sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) &
~bits_off);
}
static inline void sun4c_init_map_kernelprom(unsigned long kernel_end)
{
unsigned long vaddr;
unsigned char pseg, ctx;
for(vaddr = KADB_DEBUGGER_BEGVM;
vaddr < LINUX_OPPROM_ENDVM;
vaddr += SUN4C_REAL_PGDIR_SIZE) {
pseg = sun4c_get_segmap(vaddr);
if(pseg != invalid_segment) {
mmu_entry_pool[pseg].locked = 1;
for(ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, vaddr, pseg);
fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0);
}
}
for(vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) {
pseg = sun4c_get_segmap(vaddr);
mmu_entry_pool[pseg].locked = 1;
for(ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, vaddr, pseg);
fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE);
}
}
static void sun4c_init_lock_area(unsigned long start, unsigned long end)
{
int i, ctx;
while(start < end) {
for(i=0; i < invalid_segment; i++)
if(!mmu_entry_pool[i].locked)
break;
mmu_entry_pool[i].locked = 1;
sun4c_init_clean_segmap(i);
for(ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, start, mmu_entry_pool[i].pseg);
start += SUN4C_REAL_PGDIR_SIZE;
}
}
struct sun4c_mmu_ring {
struct sun4c_mmu_entry ringhd;
int num_entries;
};
static struct sun4c_mmu_ring sun4c_context_ring[16]; /* used user entries */
static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */
static struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */
static struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */
static inline void sun4c_init_rings(void)
{
int i;
for(i=0; i<16; i++) {
sun4c_context_ring[i].ringhd.next =
sun4c_context_ring[i].ringhd.prev =
&sun4c_context_ring[i].ringhd;
sun4c_context_ring[i].num_entries = 0;
}
sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev =
&sun4c_ufree_ring.ringhd;
sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev =
&sun4c_kernel_ring.ringhd;
sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev =
&sun4c_kfree_ring.ringhd;
sun4c_ufree_ring.num_entries = sun4c_kernel_ring.num_entries =
sun4c_kfree_ring.num_entries = 0;
}
static inline void add_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *head = &ring->ringhd;
entry->prev = head;
(entry->next = head->next)->prev = entry;
head->next = entry;
ring->num_entries++;
}
static inline void remove_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *next = entry->next;
(next->prev = entry->prev)->next = next;
ring->num_entries--;
}
static inline void recycle_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *head = &ring->ringhd;
struct sun4c_mmu_entry *next = entry->next;
(next->prev = entry->prev)->next = next;
entry->prev = head; (entry->next = head->next)->prev = entry;
head->next = entry;
/* num_entries stays the same */
}
static inline void free_user_entry(int ctx, struct sun4c_mmu_entry *entry)
{
remove_ring(sun4c_context_ring+ctx, entry);
add_ring(&sun4c_ufree_ring, entry);
}
static inline void assign_user_entry(int ctx, struct sun4c_mmu_entry *entry)
{
remove_ring(&sun4c_ufree_ring, entry);
add_ring(sun4c_context_ring+ctx, entry);
}
static inline void free_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring)
{
remove_ring(ring, entry);
add_ring(&sun4c_kfree_ring, entry);
}
static inline void assign_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring)
{
remove_ring(ring, entry);
add_ring(&sun4c_kernel_ring, entry);
}
static inline void reassign_kernel_entry(struct sun4c_mmu_entry *entry)
{
recycle_ring(&sun4c_kernel_ring, entry);
}
static void sun4c_init_fill_kernel_ring(int howmany)
{
int i;
while(howmany) {
for(i=0; i < invalid_segment; i++)
if(!mmu_entry_pool[i].locked)
break;
mmu_entry_pool[i].locked = 1;
sun4c_init_clean_segmap(i);
add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]);
howmany--;
}
}
static void sun4c_init_fill_user_ring(void)
{
int i;
for(i=0; i < invalid_segment; i++) {
if(mmu_entry_pool[i].locked)
continue;
sun4c_init_clean_segmap(i);
add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]);
}
}
static inline void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry)
{
int savectx, ctx;
savectx = sun4c_get_context();
flush_user_windows();
sun4c_flush_segment(kentry->vaddr);
for(ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(kentry->vaddr, invalid_segment);
}
sun4c_set_context(savectx);
}
static inline void sun4c_kernel_map(struct sun4c_mmu_entry *kentry)
{
int savectx, ctx;
savectx = sun4c_get_context();
flush_user_windows();
for(ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(kentry->vaddr, kentry->pseg);
}
sun4c_set_context(savectx);
}
static inline void sun4c_user_unmap(struct sun4c_mmu_entry *uentry)
{
sun4c_flush_segment(uentry->vaddr);
sun4c_put_segmap(uentry->vaddr, invalid_segment);
}
static inline void sun4c_user_map(struct sun4c_mmu_entry *uentry)
{
unsigned long start = uentry->vaddr;
unsigned long end = start + SUN4C_REAL_PGDIR_SIZE;
sun4c_put_segmap(uentry->vaddr, uentry->pseg);
while(start < end) {
sun4c_put_pte(start, 0);
start += PAGE_SIZE;
}
}
static inline void sun4c_demap_context(struct sun4c_mmu_ring *crp, unsigned char ctx)
{
struct sun4c_mmu_entry *this_entry, *next_entry;
int savectx = sun4c_get_context();
this_entry = crp->ringhd.next;
flush_user_windows();
sun4c_set_context(ctx);
while(crp->num_entries) {
next_entry = this_entry->next;
sun4c_user_unmap(this_entry);
free_user_entry(ctx, this_entry);
this_entry = next_entry;
}
sun4c_set_context(savectx);
}
static inline void sun4c_demap_one(struct sun4c_mmu_ring *crp, unsigned char ctx)
{
struct sun4c_mmu_entry *entry = crp->ringhd.next;
int savectx = sun4c_get_context();
flush_user_windows();
sun4c_set_context(ctx);
sun4c_user_unmap(entry);
free_user_entry(ctx, entry);
sun4c_set_context(savectx);
}
/* Using this method to free up mmu entries eliminates a lot of
* potential races since we have a kernel that incurs tlb
* replacement faults. There may be performance penalties.
*/
static inline struct sun4c_mmu_entry *sun4c_user_strategy(void)
{
struct sun4c_mmu_ring *rp = 0;
unsigned char mmuhog, i, ctx = 0;
/* If some are free, return first one. */
if(sun4c_ufree_ring.num_entries)
return sun4c_ufree_ring.ringhd.next;
/* Else free one up. */
mmuhog = 0;
for(i=0; i < num_contexts; i++) {
if(sun4c_context_ring[i].num_entries > mmuhog) {
rp = &sun4c_context_ring[i];
mmuhog = rp->num_entries;
ctx = i;
}
}
sun4c_demap_one(rp, ctx);
return sun4c_ufree_ring.ringhd.next;
}
static inline struct sun4c_mmu_entry *sun4c_kernel_strategy(void)
{
struct sun4c_mmu_entry *this_entry;
/* If some are free, return first one. */
if(sun4c_kfree_ring.num_entries)
return sun4c_kfree_ring.ringhd.next;
/* Else free one up. */
this_entry = sun4c_kernel_ring.ringhd.prev;
sun4c_kernel_unmap(this_entry);
free_kernel_entry(this_entry, &sun4c_kernel_ring);
return sun4c_kfree_ring.ringhd.next;
}
static inline void alloc_user_segment(unsigned long address, unsigned char ctx)
{
struct sun4c_mmu_entry *entry;
address &= SUN4C_REAL_PGDIR_MASK;
entry = sun4c_user_strategy();
assign_user_entry(ctx, entry);
entry->vaddr = address;
sun4c_user_map(entry);
}
static inline void alloc_kernel_segment(unsigned long address)
{
struct sun4c_mmu_entry *entry;
address &= SUN4C_REAL_PGDIR_MASK;
entry = sun4c_kernel_strategy();
assign_kernel_entry(entry, &sun4c_kfree_ring);
entry->vaddr = address;
sun4c_kernel_map(entry);
}
/* XXX Just like kernel tlb replacement we'd like to have a low level
* XXX equivalent for user faults which need not go through the mm
* XXX subsystem just to load a mmu entry. But this might not be as
* XXX feasible since we need to go through the kernel page tables
* XXX for this process, which we currently don't lock into the mmu
* XXX so we would fault with traps off... must think about this...
*/
static void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
unsigned long flags;
save_flags(flags); cli();
address &= PAGE_MASK;
if(sun4c_get_segmap(address) == invalid_segment)
alloc_user_segment(address, sun4c_get_context());
sun4c_put_pte(address, pte_val(pte));
restore_flags(flags);
}
/* READ THIS: If you put any diagnostic printing code in any of the kernel
* fault handling code you will lose badly. This is the most
* delicate piece of code in the entire kernel, atomicity of
* kernel tlb replacement must be guaranteed. This is why we
* have separate user and kernel allocation rings to alleviate
* as many bad interactions as possible.
*
* XXX Someday make this into a fast in-window trap handler to avoid
* XXX any and all races. *High* priority, also for performance.
*/
static void sun4c_quick_kernel_fault(unsigned long address)
{
unsigned long end, flags;
save_flags(flags); cli();
address &= SUN4C_REAL_PGDIR_MASK;
end = address + SUN4C_REAL_PGDIR_SIZE;
if(sun4c_get_segmap(address) == invalid_segment)
alloc_kernel_segment(address);
if(address < SUN4C_VMALLOC_START) {
unsigned long pte;
pte = (address - PAGE_OFFSET) >> PAGE_SHIFT;
pte |= pgprot_val(SUN4C_PAGE_KERNEL);
/* Stupid pte tricks... */
while(address < end) {
sun4c_put_pte(address, pte++);
address += PAGE_SIZE;
}
} else {
pte_t *ptep;
ptep = (pte_t *) (PAGE_MASK & pgd_val(swapper_pg_dir[address>>SUN4C_PGDIR_SHIFT]));
ptep = (ptep + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1)));
while(address < end) {
sun4c_put_pte(address, pte_val(*ptep++));
address += PAGE_SIZE;
}
}
restore_flags(flags);
}
/*
* 4 page buckets for task struct and kernel stack allocation.
*
* TASK_STACK_BEGIN
* bucket[0]
* bucket[1]
* [ ... ]
* bucket[NR_TASKS-1]
* TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASKS)
*
* Each slot looks like:
*
* page 1 -- task struct
* page 2 -- unmapped, for stack redzone (maybe use for pgd)
* page 3/4 -- kernel stack
*/
struct task_bucket {
struct task_struct task;
char _unused1[PAGE_SIZE - sizeof(struct task_struct)];
char kstack[(PAGE_SIZE*3)];
};
struct task_bucket *sun4c_bucket[NR_TASKS];
#define BUCKET_EMPTY ((struct task_bucket *) 0)
#define BUCKET_SIZE (PAGE_SIZE << 2)
#define BUCKET_SHIFT 14 /* log2(sizeof(struct task_bucket)) */
#define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT))
#define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR)
#define BUCKET_PTE(page) \
((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL))
#define BUCKET_PTE_PAGE(pte) \
(PAGE_OFFSET + (((pte) & 0xffff) << PAGE_SHIFT))
static inline void get_task_segment(unsigned long addr)
{
struct sun4c_mmu_entry *stolen;
unsigned long flags;
save_flags(flags); cli();
addr &= SUN4C_REAL_PGDIR_MASK;
stolen = sun4c_user_strategy();
remove_ring(&sun4c_ufree_ring, stolen);
stolen->vaddr = addr;
sun4c_kernel_map(stolen);
restore_flags(flags);
}
static inline void free_task_segment(unsigned long addr)
{
struct sun4c_mmu_entry *entry;
unsigned long flags;
unsigned char pseg;
save_flags(flags); cli();
addr &= SUN4C_REAL_PGDIR_MASK;
pseg = sun4c_get_segmap(addr);
entry = &mmu_entry_pool[pseg];
sun4c_flush_segment(addr);
sun4c_kernel_unmap(entry);
add_ring(&sun4c_ufree_ring, entry);
restore_flags(flags);
}
static inline void garbage_collect(int entry)
{
int start, end;
/* 16 buckets per segment... */
entry &= ~15;
start = entry;
for(end = (start + 16); start < end; start++)
if(sun4c_bucket[start] != BUCKET_EMPTY)
return;
/* Entire segment empty, release it. */
free_task_segment(BUCKET_ADDR(entry));
}
static struct task_struct *sun4c_alloc_task_struct(void)
{
unsigned long addr, page;
int entry;
page = get_free_page(GFP_KERNEL);
if(!page)
return (struct task_struct *) 0;
/* XXX Bahh, linear search too slow, use hash
* XXX table in final implementation. Or
* XXX keep track of first free when we free
* XXX a bucket... anything but this.
*/
for(entry = 0; entry < NR_TASKS; entry++)
if(sun4c_bucket[entry] == BUCKET_EMPTY)
break;
if(entry == NR_TASKS) {
free_page(page);
return (struct task_struct *) 0;
}
addr = BUCKET_ADDR(entry);
sun4c_bucket[entry] = (struct task_bucket *) addr;
if(sun4c_get_segmap(addr) == invalid_segment)
get_task_segment(addr);
sun4c_put_pte(addr, BUCKET_PTE(page));
return (struct task_struct *) addr;
}
static unsigned long sun4c_alloc_kernel_stack(struct task_struct *tsk)
{
unsigned long saddr = (unsigned long) tsk;
unsigned long page[3];
if(!saddr)
return 0;
page[0] = get_free_page(GFP_KERNEL);
if(!page[0])
return 0;
page[1] = get_free_page(GFP_KERNEL);
if(!page[1]) {
free_page(page[0]);
return 0;
}
page[2] = get_free_page(GFP_KERNEL);
if(!page[2]) {
free_page(page[0]);
free_page(page[1]);
return 0;
}
saddr += PAGE_SIZE;
sun4c_put_pte(saddr, BUCKET_PTE(page[0]));
sun4c_put_pte(saddr + PAGE_SIZE, BUCKET_PTE(page[1]));
sun4c_put_pte(saddr + (PAGE_SIZE<<1), BUCKET_PTE(page[2]));
return saddr;
}
static void sun4c_free_kernel_stack(unsigned long stack)
{
unsigned long page[3];
page[0] = BUCKET_PTE_PAGE(sun4c_get_pte(stack));
page[1] = BUCKET_PTE_PAGE(sun4c_get_pte(stack+PAGE_SIZE));
page[2] = BUCKET_PTE_PAGE(sun4c_get_pte(stack+(PAGE_SIZE<<1)));
sun4c_flush_segment(stack & SUN4C_REAL_PGDIR_MASK);
sun4c_put_pte(stack, 0);
sun4c_put_pte(stack + PAGE_SIZE, 0);
sun4c_put_pte(stack + (PAGE_SIZE<<1), 0);
free_page(page[0]);
free_page(page[1]);
free_page(page[2]);
}
static void sun4c_free_task_struct(struct task_struct *tsk)
{
unsigned long tsaddr = (unsigned long) tsk;
unsigned long page = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr));
int entry = BUCKET_NUM(tsaddr);
sun4c_flush_segment(tsaddr & SUN4C_REAL_PGDIR_MASK);
sun4c_put_pte(tsaddr, 0);
sun4c_bucket[entry] = BUCKET_EMPTY;
free_page(page);
garbage_collect(entry);
}
static void sun4c_init_buckets(void)
{
int entry;
if(sizeof(struct task_bucket) != (PAGE_SIZE << 2)) {
prom_printf("task bucket not 4 pages!\n");
prom_halt();
}
for(entry = 0; entry < NR_TASKS; entry++)
sun4c_bucket[entry] = BUCKET_EMPTY;
}
static unsigned long sun4c_iobuffer_start;
static unsigned long sun4c_iobuffer_end;
static unsigned long *sun4c_iobuffer_map;
static int iobuffer_map_size;
/*
* Alias our pages so they do not cause a trap.
* Also one page may be aliased into several I/O areas and we may
* finish these I/O separately.
*/
static char *sun4c_lockarea(char *vaddr, unsigned long size)
{
unsigned long base, scan;
unsigned long npages;
unsigned long vpage;
unsigned long pte;
unsigned long apage;
npages = (((unsigned long)vaddr & ~PAGE_MASK) +
size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
scan = 0;
for (;;) {
scan = find_next_zero_bit(sun4c_iobuffer_map,
iobuffer_map_size, scan);
if ((base = scan) + npages > iobuffer_map_size) goto abend;
for (;;) {
if (scan >= base + npages) goto found;
if (test_bit(scan, sun4c_iobuffer_map)) break;
scan++;
}
}
found:
vpage = ((unsigned long) vaddr) & PAGE_MASK;
for (scan = base; scan < base+npages; scan++) {
pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT);
pte |= pgprot_val(SUN4C_PAGE_KERNEL);
pte |= _SUN4C_PAGE_NOCACHE;
set_bit(scan, sun4c_iobuffer_map);
apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start;
sun4c_flush_page(vpage);
sun4c_put_pte(apage, pte);
vpage += PAGE_SIZE;
}
return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start +
(((unsigned long) vaddr) & ~PAGE_MASK));
abend:
printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size);
panic("Out of iobuffer table");
return 0;
}
static void sun4c_unlockarea(char *vaddr, unsigned long size)
{
unsigned long vpage, npages;
vpage = (unsigned long)vaddr & PAGE_MASK;
npages = (((unsigned long)vaddr & ~PAGE_MASK) +
size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
while (npages != 0) {
--npages;
sun4c_put_pte(vpage, 0);
clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT,
sun4c_iobuffer_map);
vpage += PAGE_SIZE;
}
}
/* Note the scsi code at init time passes to here buffers
* which sit on the kernel stack, those are already locked
* by implication and fool the page locking code above
* if passed to by mistake.
*/
static char *sun4c_get_scsi_one(char *bufptr, unsigned long len, struct linux_sbus *sbus)
{
unsigned long page;
page = ((unsigned long) bufptr) & PAGE_MASK;
if(page > high_memory)
return bufptr; /* already locked */
return sun4c_lockarea(bufptr, len);
}
static void sun4c_get_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus)
{
while(sz >= 0) {
sg[sz].alt_addr = sun4c_lockarea(sg[sz].addr, sg[sz].len);
sz--;
}
}
static void sun4c_release_scsi_one(char *bufptr, unsigned long len, struct linux_sbus *sbus)
{
unsigned long page = (unsigned long) bufptr;
if(page < sun4c_iobuffer_start)
return; /* On kernel stack or similar, see above */
sun4c_unlockarea(bufptr, len);
}
static void sun4c_release_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus)
{
while(sz >= 0) {
sun4c_unlockarea(sg[sz].alt_addr, sg[sz].len);
sg[sz].alt_addr = 0;
sz--;
}
}
#define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
struct vm_area_struct sun4c_kstack_vma;
static unsigned long sun4c_init_lock_areas(unsigned long start_mem)
{
unsigned long sun4c_taskstack_start;
unsigned long sun4c_taskstack_end;
int bitmap_size;
sun4c_init_buckets();
sun4c_taskstack_start = SUN4C_LOCK_VADDR;
sun4c_taskstack_end = (sun4c_taskstack_start +
(TASK_ENTRY_SIZE * NR_TASKS));
if(sun4c_taskstack_end >= SUN4C_LOCK_END) {
prom_printf("Too many tasks, decrease NR_TASKS please.\n");
prom_halt();
}
sun4c_iobuffer_start = SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end);
sun4c_iobuffer_end = SUN4C_LOCK_END;
bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT;
bitmap_size = (bitmap_size + 7) >> 3;
bitmap_size = LONG_ALIGN(bitmap_size);
iobuffer_map_size = bitmap_size << 3;
sun4c_iobuffer_map = (unsigned long *) start_mem;
memset((void *) start_mem, 0, bitmap_size);
start_mem += bitmap_size;
/* Now get us some mmu entries for I/O maps. */
sun4c_init_lock_area(sun4c_iobuffer_start, sun4c_iobuffer_end);
sun4c_kstack_vma.vm_mm = init_task.mm;
sun4c_kstack_vma.vm_start = sun4c_taskstack_start;
sun4c_kstack_vma.vm_end = sun4c_taskstack_end;
sun4c_kstack_vma.vm_page_prot = PAGE_SHARED;
sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC;
insert_vm_struct(&init_task, &sun4c_kstack_vma);
return start_mem;
}
/* Cache flushing on the sun4c. */
static void sun4c_flush_cache_all(void)
{
unsigned long start, end;
/* Clear all tags in the sun4c cache.
* The cache is write through so this is safe.
*/
start = AC_CACHETAGS;
end = start + sun4c_vacinfo.num_bytes;
flush_user_windows();
while(start < end) {
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (start), "i" (ASI_CONTROL));
start += sun4c_vacinfo.linesize;
}
}
static void sun4c_flush_cache_mm(struct mm_struct *mm)
{
unsigned long flags;
int octx;
#ifndef __SMP__
if(mm->context != NO_CONTEXT) {
#endif
octx = sun4c_get_context();
save_flags(flags); cli();
flush_user_windows();
sun4c_set_context(mm->context);
sun4c_flush_context();
sun4c_set_context(octx);
restore_flags(flags);
#ifndef __SMP__
}
#endif
}
static void sun4c_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end)
{
unsigned long flags;
int size, octx;
#ifndef __SMP__
if(mm->context != NO_CONTEXT) {
#endif
size = start - end;
flush_user_windows();
if(size >= sun4c_vacinfo.num_bytes)
goto flush_it_all;
save_flags(flags); cli();
octx = sun4c_get_context();
sun4c_set_context(mm->context);
if(size <= (PAGE_SIZE << 1)) {
start &= PAGE_MASK;
while(start < end) {
sun4c_flush_page(start);
start += PAGE_SIZE;
};
} else {
start &= SUN4C_REAL_PGDIR_MASK;
while(start < end) {
sun4c_flush_segment(start);
start += SUN4C_REAL_PGDIR_SIZE;
}
}
sun4c_set_context(octx);
restore_flags(flags);
#ifndef __SMP__
}
#endif
return;
flush_it_all:
/* Cache size bounded flushing, thank you. */
sun4c_flush_cache_all();
}
static void sun4c_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
unsigned long flags;
int octx;
struct mm_struct *mm = vma->vm_mm;
/* Sun4c has no separate I/D caches so cannot optimize for non
* text page flushes.
*/
#ifndef __SMP__
if(mm->context != NO_CONTEXT) {
#endif
octx = sun4c_get_context();
save_flags(flags); cli();
flush_user_windows();
sun4c_set_context(mm->context);
sun4c_flush_page(page);
sun4c_set_context(octx);
restore_flags(flags);
#ifndef __SMP__
}
#endif
}
/* Sun4c cache is write-through, so no need to validate main memory
* during a page copy in kernel space.
*/
static void sun4c_flush_page_to_ram(unsigned long page)
{
}
/* TLB flushing on the sun4c. These routines count on the cache
* flushing code to flush the user register windows so that we need
* not do so when we get here.
*/
static void sun4c_flush_tlb_all(void)
{
struct sun4c_mmu_entry *this_entry, *next_entry;
unsigned long flags;
int savectx, ctx;
save_flags(flags); cli();
this_entry = sun4c_kernel_ring.ringhd.next;
savectx = sun4c_get_context();
while(sun4c_kernel_ring.num_entries) {
next_entry = this_entry->next;
for(ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(this_entry->vaddr, invalid_segment);
}
free_kernel_entry(this_entry, &sun4c_kernel_ring);
this_entry = next_entry;
}
sun4c_set_context(savectx);
restore_flags(flags);
}
static void sun4c_flush_tlb_mm(struct mm_struct *mm)
{
struct sun4c_mmu_entry *this_entry, *next_entry;
struct sun4c_mmu_ring *crp;
int savectx, ctx;
#ifndef __SMP__
if(mm->context != NO_CONTEXT) {
#endif
crp = &sun4c_context_ring[mm->context];
savectx = sun4c_get_context();
ctx = mm->context;
this_entry = crp->ringhd.next;
sun4c_set_context(mm->context);
while(crp->num_entries) {
next_entry = this_entry->next;
sun4c_user_unmap(this_entry);
free_user_entry(ctx, this_entry);
this_entry = next_entry;
}
sun4c_set_context(savectx);
#ifndef __SMP__
}
#endif
}
static void sun4c_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end)
{
struct sun4c_mmu_entry *this_entry;
unsigned char pseg, savectx;
#ifndef __SMP__
if(mm->context == NO_CONTEXT)
return;
#endif
flush_user_windows();
savectx = sun4c_get_context();
sun4c_set_context(mm->context);
start &= SUN4C_REAL_PGDIR_MASK;
while(start < end) {
pseg = sun4c_get_segmap(start);
if(pseg == invalid_segment)
goto next_one;
this_entry = &mmu_entry_pool[pseg];
sun4c_put_segmap(this_entry->vaddr, invalid_segment);
free_user_entry(mm->context, this_entry);
next_one:
start += SUN4C_REAL_PGDIR_SIZE;
}
sun4c_set_context(savectx);
}
static void sun4c_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
int savectx;
#ifndef __SMP__
if(mm->context != NO_CONTEXT) {
#endif
savectx = sun4c_get_context();
sun4c_set_context(mm->context);
page &= PAGE_MASK;
if(sun4c_get_pte(page) & _SUN4C_PAGE_VALID)
sun4c_put_pte(page, 0);
sun4c_set_context(savectx);
#ifndef __SMP__
}
#endif
}
/* Sun4c mmu hardware doesn't update the dirty bit in the pte's
* for us, so we do it in software.
*/
static void sun4c_set_pte(pte_t *ptep, pte_t pte)
{
if((pte_val(pte) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_DIRTY)) ==
_SUN4C_PAGE_WRITE)
pte_val(pte) |= _SUN4C_PAGE_DIRTY;
*ptep = pte;
}
/* static */ void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr,
int bus_type, int rdonly)
{
unsigned long page_entry;
page_entry = ((physaddr >> PAGE_SHIFT) & 0xffff);
page_entry |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_WRITE |
_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_IO);
if(rdonly)
page_entry &= (~_SUN4C_PAGE_WRITE);
sun4c_flush_page(virt_addr);
sun4c_put_pte(virt_addr, page_entry);
}
static inline void sun4c_alloc_context(struct mm_struct *mm)
{
struct ctx_list *ctxp;
ctxp = ctx_free.next;
if(ctxp != &ctx_free) {
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
mm->context = ctxp->ctx_number;
ctxp->ctx_mm = mm;
return;
}
ctxp = ctx_used.next;
if(ctxp->ctx_mm == current->mm)
ctxp = ctxp->next;
if(ctxp == &ctx_used)
panic("out of mmu contexts");
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
ctxp->ctx_mm->context = NO_CONTEXT;
ctxp->ctx_mm = mm;
mm->context = ctxp->ctx_number;
sun4c_demap_context(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number);
}
#if some_day_soon /* We need some tweaking to start using this */
extern void force_user_fault(unsigned long, int);
void sun4c_switch_heuristic(struct pt_regs *regs)
{
unsigned long sp = regs->u_regs[UREG_FP];
unsigned long sp2 = sp + REGWIN_SZ - 0x8;
force_user_fault(regs->pc, 0);
force_user_fault(sp, 0);
if((sp&PAGE_MASK) != (sp2&PAGE_MASK))
force_user_fault(sp2, 0);
}
#endif
static void sun4c_switch_to_context(struct task_struct *tsk)
{
/* Kernel threads can execute in any context and so can tasks
* sleeping in the middle of exiting. If this task has already
* been allocated a piece of the mmu realestate, just jump to
* it.
*/
if((tsk->tss.flags & SPARC_FLAG_KTHREAD) ||
(tsk->flags & PF_EXITING))
return;
if(tsk->mm->context == NO_CONTEXT)
sun4c_alloc_context(tsk->mm);
sun4c_set_context(tsk->mm->context);
}
static void sun4c_flush_hook(void)
{
if(current->tss.flags & SPARC_FLAG_KTHREAD) {
sun4c_alloc_context(current->mm);
sun4c_set_context(current->mm->context);
}
}
static void sun4c_exit_hook(void)
{
struct ctx_list *ctx_old;
struct mm_struct *mm = current->mm;
if(mm->context != NO_CONTEXT) {
sun4c_demap_context(&sun4c_context_ring[mm->context], mm->context);
ctx_old = ctx_list_pool + mm->context;
remove_from_ctx_list(ctx_old);
add_to_free_ctxlist(ctx_old);
mm->context = NO_CONTEXT;
}
}
static char s4cinfo[512];
static char *sun4c_mmu_info(void)
{
int used_user_entries, i;
used_user_entries = 0;
for(i=0; i < num_contexts; i++)
used_user_entries += sun4c_context_ring[i].num_entries;
sprintf(s4cinfo, "vacsize\t\t: %d bytes\n"
"vachwflush\t: %s\n"
"vaclinesize\t: %d bytes\n"
"mmuctxs\t\t: %d\n"
"mmupsegs\t: %d\n"
"usedpsegs\t: %d\n"
"ufreepsegs\t: %d\n"
"context\t\t: %d flushes\n"
"segment\t\t: %d flushes\n"
"page\t\t: %d flushes\n",
sun4c_vacinfo.num_bytes,
(sun4c_vacinfo.do_hwflushes ? "yes" : "no"),
sun4c_vacinfo.linesize,
num_contexts,
(invalid_segment + 1),
used_user_entries,
sun4c_ufree_ring.num_entries,
ctxflushes, segflushes, pageflushes);
return s4cinfo;
}
/* Nothing below here should touch the mmu hardware nor the mmu_entry
* data structures.
*/
static unsigned int sun4c_pmd_align(unsigned int addr) { return SUN4C_PMD_ALIGN(addr); }
static unsigned int sun4c_pgdir_align(unsigned int addr) { return SUN4C_PGDIR_ALIGN(addr); }
/* First the functions which the mid-level code uses to directly
* manipulate the software page tables. Some defines since we are
* emulating the i386 page directory layout.
*/
#define PGD_PRESENT 0x001
#define PGD_RW 0x002
#define PGD_USER 0x004
#define PGD_ACCESSED 0x020
#define PGD_DIRTY 0x040
#define PGD_TABLE (PGD_PRESENT | PGD_RW | PGD_USER | PGD_ACCESSED | PGD_DIRTY)
static unsigned long sun4c_vmalloc_start(void)
{
return SUN4C_VMALLOC_START;
}
static int sun4c_pte_none(pte_t pte) { return !pte_val(pte); }
static int sun4c_pte_present(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_VALID; }
static void sun4c_pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
static int sun4c_pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
static int sun4c_pmd_bad(pmd_t pmd)
{
return (pmd_val(pmd) & ~PAGE_MASK) != PGD_TABLE || pmd_val(pmd) > high_memory;
}
static int sun4c_pmd_present(pmd_t pmd) { return pmd_val(pmd) & PGD_PRESENT; }
static void sun4c_pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = 0; }
static int sun4c_pgd_none(pgd_t pgd) { return 0; }
static int sun4c_pgd_bad(pgd_t pgd) { return 0; }
static int sun4c_pgd_present(pgd_t pgd) { return 1; }
static void sun4c_pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static int sun4c_pte_write(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_WRITE; }
static int sun4c_pte_dirty(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_DIRTY; }
static int sun4c_pte_young(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_REF; }
static pte_t sun4c_pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_WRITE; return pte; }
static pte_t sun4c_pte_mkclean(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_DIRTY; return pte; }
static pte_t sun4c_pte_mkold(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_REF; return pte; }
static pte_t sun4c_pte_mkwrite(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_WRITE; return pte; }
static pte_t sun4c_pte_mkdirty(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_DIRTY; return pte; }
static pte_t sun4c_pte_mkyoung(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_REF; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static pte_t sun4c_mk_pte(unsigned long page, pgprot_t pgprot)
{
return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot));
}
static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
{
return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot));
}
static pte_t sun4c_pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _SUN4C_PAGE_CHG_MASK) | pgprot_val(newprot));
}
static unsigned long sun4c_pte_page(pte_t pte)
{
return (PAGE_OFFSET + ((pte_val(pte) & 0xffff) << (PAGE_SHIFT)));
}
static unsigned long sun4c_pmd_page(pmd_t pmd)
{
return (pmd_val(pmd) & PAGE_MASK);
}
/* to find an entry in a page-table-directory */
static pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> SUN4C_PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
static pte_t *sun4c_pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) sun4c_pmd_page(*dir) + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1));
}
/* Update the root mmu directory. */
static void sun4c_update_rootmmu_dir(struct task_struct *tsk, pgd_t *pgdir)
{
}
/* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any, and marks the page tables reserved.
*/
static void sun4c_pte_free_kernel(pte_t *pte)
{
free_page((unsigned long) pte);
}
static pte_t *sun4c_pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1);
if (sun4c_pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
if (sun4c_pmd_none(*pmd)) {
if (page) {
pmd_val(*pmd) = PGD_TABLE | (unsigned long) page;
return page + address;
}
pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
free_page((unsigned long) page);
}
if (sun4c_pmd_bad(*pmd)) {
printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd));
pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
return (pte_t *) sun4c_pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
static void sun4c_pmd_free_kernel(pmd_t *pmd)
{
pmd_val(*pmd) = 0;
}
static pmd_t *sun4c_pmd_alloc_kernel(pgd_t *pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
static void sun4c_pte_free(pte_t *pte)
{
free_page((unsigned long) pte);
}
static pte_t *sun4c_pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1);
if (sun4c_pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
if (sun4c_pmd_none(*pmd)) {
if (page) {
pmd_val(*pmd) = PGD_TABLE | (unsigned long) page;
return page + address;
}
pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
free_page((unsigned long) page);
}
if (sun4c_pmd_bad(*pmd)) {
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
return (pte_t *) sun4c_pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
static void sun4c_pmd_free(pmd_t * pmd)
{
pmd_val(*pmd) = 0;
}
static pmd_t *sun4c_pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
static void sun4c_pgd_free(pgd_t *pgd)
{
free_page((unsigned long) pgd);
}
static pgd_t *sun4c_pgd_alloc(void)
{
return (pgd_t *) get_free_page(GFP_KERNEL);
}
#define SUN4C_KERNEL_BUCKETS 16
extern unsigned long free_area_init(unsigned long, unsigned long);
extern unsigned long sparc_context_init(unsigned long, int);
extern unsigned long end;
unsigned long sun4c_paging_init(unsigned long start_mem, unsigned long end_mem)
{
int i, cnt;
unsigned long kernel_end;
kernel_end = (unsigned long) &end;
kernel_end += (SUN4C_REAL_PGDIR_SIZE * 3);
kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end);
sun4c_probe_mmu();
invalid_segment = (num_segmaps - 1);
sun4c_init_mmu_entry_pool();
sun4c_init_rings();
sun4c_init_map_kernelprom(kernel_end);
sun4c_init_clean_mmu(kernel_end);
sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS);
sun4c_init_lock_area(IOBASE_VADDR, IOBASE_END);
sun4c_init_lock_area(DVMA_VADDR, DVMA_END);
start_mem = sun4c_init_lock_areas(start_mem);
sun4c_init_fill_user_ring();
sun4c_set_context(0);
memset(swapper_pg_dir, 0, PAGE_SIZE);
memset(pg0, 0, PAGE_SIZE);
/* Save work later. */
pgd_val(swapper_pg_dir[SUN4C_VMALLOC_START>>SUN4C_PGDIR_SHIFT]) =
PGD_TABLE | (unsigned long) pg0;
sun4c_init_ss2_cache_bug();
start_mem = PAGE_ALIGN(start_mem);
start_mem = sun4c_init_alloc_dvma_pages(start_mem);
start_mem = sparc_context_init(start_mem, num_contexts);
start_mem = free_area_init(start_mem, end_mem);
cnt = 0;
for(i = 0; i < num_segmaps; i++)
if(mmu_entry_pool[i].locked)
cnt++;
printk("SUN4C: %d mmu entries for the kernel\n", cnt);
return start_mem;
}
/* Load up routines and constants for sun4c mmu */
void ld_mmu_sun4c(void)
{
printk("Loading sun4c MMU routines\n");
/* First the constants */
pmd_shift = SUN4C_PMD_SHIFT;
pmd_size = SUN4C_PMD_SIZE;
pmd_mask = SUN4C_PMD_MASK;
pgdir_shift = SUN4C_PGDIR_SHIFT;
pgdir_size = SUN4C_PGDIR_SIZE;
pgdir_mask = SUN4C_PGDIR_MASK;
ptrs_per_pte = SUN4C_PTRS_PER_PTE;
ptrs_per_pmd = SUN4C_PTRS_PER_PMD;
ptrs_per_pgd = SUN4C_PTRS_PER_PGD;
page_none = SUN4C_PAGE_NONE;
page_shared = SUN4C_PAGE_SHARED;
page_copy = SUN4C_PAGE_COPY;
page_readonly = SUN4C_PAGE_READONLY;
page_kernel = SUN4C_PAGE_KERNEL;
pg_iobits = _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_IO | _SUN4C_PAGE_VALID
| _SUN4C_PAGE_WRITE | _SUN4C_PAGE_DIRTY;
/* Functions */
#ifndef __SMP__
flush_cache_all = sun4c_flush_cache_all;
flush_cache_mm = sun4c_flush_cache_mm;
flush_cache_range = sun4c_flush_cache_range;
flush_cache_page = sun4c_flush_cache_page;
flush_tlb_all = sun4c_flush_tlb_all;
flush_tlb_mm = sun4c_flush_tlb_mm;
flush_tlb_range = sun4c_flush_tlb_range;
flush_tlb_page = sun4c_flush_tlb_page;
#else
local_flush_cache_all = sun4c_flush_cache_all;
local_flush_cache_mm = sun4c_flush_cache_mm;
local_flush_cache_range = sun4c_flush_cache_range;
local_flush_cache_page = sun4c_flush_cache_page;
local_flush_tlb_all = sun4c_flush_tlb_all;
local_flush_tlb_mm = sun4c_flush_tlb_mm;
local_flush_tlb_range = sun4c_flush_tlb_range;
local_flush_tlb_page = sun4c_flush_tlb_page;
flush_cache_all = smp_flush_cache_all;
flush_cache_mm = smp_flush_cache_mm;
flush_cache_range = smp_flush_cache_range;
flush_cache_page = smp_flush_cache_page;
flush_tlb_all = smp_flush_tlb_all;
flush_tlb_mm = smp_flush_tlb_mm;
flush_tlb_range = smp_flush_tlb_range;
flush_tlb_page = smp_flush_tlb_page;
#endif
flush_page_to_ram = sun4c_flush_page_to_ram;
set_pte = sun4c_set_pte;
switch_to_context = sun4c_switch_to_context;
pmd_align = sun4c_pmd_align;
pgdir_align = sun4c_pgdir_align;
vmalloc_start = sun4c_vmalloc_start;
pte_page = sun4c_pte_page;
pmd_page = sun4c_pmd_page;
sparc_update_rootmmu_dir = sun4c_update_rootmmu_dir;
pte_none = sun4c_pte_none;
pte_present = sun4c_pte_present;
pte_clear = sun4c_pte_clear;
pmd_none = sun4c_pmd_none;
pmd_bad = sun4c_pmd_bad;
pmd_present = sun4c_pmd_present;
pmd_clear = sun4c_pmd_clear;
pgd_none = sun4c_pgd_none;
pgd_bad = sun4c_pgd_bad;
pgd_present = sun4c_pgd_present;
pgd_clear = sun4c_pgd_clear;
mk_pte = sun4c_mk_pte;
mk_pte_io = sun4c_mk_pte_io;
pte_modify = sun4c_pte_modify;
pgd_offset = sun4c_pgd_offset;
pmd_offset = sun4c_pmd_offset;
pte_offset = sun4c_pte_offset;
pte_free_kernel = sun4c_pte_free_kernel;
pmd_free_kernel = sun4c_pmd_free_kernel;
pte_alloc_kernel = sun4c_pte_alloc_kernel;
pmd_alloc_kernel = sun4c_pmd_alloc_kernel;
pte_free = sun4c_pte_free;
pte_alloc = sun4c_pte_alloc;
pmd_free = sun4c_pmd_free;
pmd_alloc = sun4c_pmd_alloc;
pgd_free = sun4c_pgd_free;
pgd_alloc = sun4c_pgd_alloc;
pte_write = sun4c_pte_write;
pte_dirty = sun4c_pte_dirty;
pte_young = sun4c_pte_young;
pte_wrprotect = sun4c_pte_wrprotect;
pte_mkclean = sun4c_pte_mkclean;
pte_mkold = sun4c_pte_mkold;
pte_mkwrite = sun4c_pte_mkwrite;
pte_mkdirty = sun4c_pte_mkdirty;
pte_mkyoung = sun4c_pte_mkyoung;
update_mmu_cache = sun4c_update_mmu_cache;
mmu_exit_hook = sun4c_exit_hook;
mmu_flush_hook = sun4c_flush_hook;
mmu_lockarea = sun4c_lockarea;
mmu_unlockarea = sun4c_unlockarea;
mmu_get_scsi_one = sun4c_get_scsi_one;
mmu_get_scsi_sgl = sun4c_get_scsi_sgl;
mmu_release_scsi_one = sun4c_release_scsi_one;
mmu_release_scsi_sgl = sun4c_release_scsi_sgl;
mmu_v2p = sun4c_v2p;
mmu_p2v = sun4c_p2v;
/* Task struct and kernel stack allocating/freeing. */
alloc_kernel_stack = sun4c_alloc_kernel_stack;
alloc_task_struct = sun4c_alloc_task_struct;
free_kernel_stack = sun4c_free_kernel_stack;
free_task_struct = sun4c_free_task_struct;
quick_kernel_fault = sun4c_quick_kernel_fault;
mmu_info = sun4c_mmu_info;
/* These should _never_ get called with two level tables. */
pgd_set = 0;
pgd_page = 0;
}
|