| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 
 | #ifndef _ASM_SEGMENT_H
#define _ASM_SEGMENT_H
#include <linux/string.h>
/*
 * This is a gcc optimization barrier, which essentially
 * inserts a sequence point in the gcc RTL tree that gcc
 * can't move code around. This is needed when we enter
 * or exit a critical region (in this case around user-level
 * accesses that may sleep, and we can't let gcc optimize
 * global state around them).
 */
#define __gcc_barrier() __asm__ __volatile__("": : :"memory")
/*
 * Uh, these should become the main single-value transfer routines..
 * They automatically use the right size if we just have the right
 * pointer type..
 */
#define put_user(x,ptr) __put_user((unsigned long)(x),(ptr),sizeof(*(ptr)))
#define get_user(ptr) ((__typeof__(*(ptr)))__get_user((ptr),sizeof(*(ptr))))
/*
 * This is a silly but good way to make sure that
 * the __put_user function is indeed always optimized,
 * and that we use the correct sizes..
 */
extern int bad_user_access_length(void);
/* I should make this use unaligned transfers etc.. */
static inline void __put_user(unsigned long x, void * y, int size)
{
	__gcc_barrier();
	switch (size) {
		case 1:
			*(char *) y = x;
			break;
		case 2:
			*(short *) y = x;
			break;
		case 4:
			*(int *) y = x;
			break;
		case 8:
			*(long *) y = x;
			break;
		default:
			bad_user_access_length();
	}
	__gcc_barrier();
}
/* I should make this use unaligned transfers etc.. */
static inline unsigned long __get_user(const void * y, int size)
{
	unsigned long result;
	__gcc_barrier();
	switch (size) {
		case 1:
			result = *(unsigned char *) y;
			break;
		case 2:
			result = *(unsigned short *) y;
			break;
		case 4:
			result = *(unsigned int *) y;
			break;
		case 8:
			result = *(unsigned long *) y;
			break;
		default:
			result = bad_user_access_length();
	}
	__gcc_barrier();
	return result;
}
#define get_fs_byte(addr) get_user((unsigned char *)(addr))
#define get_fs_word(addr) get_user((unsigned short *)(addr))
#define get_fs_long(addr) get_user((unsigned int *)(addr))
#define get_fs_quad(addr) get_user((unsigned long *)(addr))
#define put_fs_byte(x,addr) put_user((x),(char *)(addr))
#define put_fs_word(x,addr) put_user((x),(short *)(addr))
#define put_fs_long(x,addr) put_user((x),(int *)(addr))
#define put_fs_quad(x,addr) put_user((x),(long *)(addr))
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
{
	__gcc_barrier();
	memcpy(to, from, n);
	__gcc_barrier();
}
static inline void memcpy_tofs(void * to, const void * from, unsigned long n)
{
	__gcc_barrier();
	memcpy(to, from, n);
	__gcc_barrier();
}
/*
 * The fs value determines whether argument validity checking should be
 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 * get_fs() == KERNEL_DS, checking is bypassed.
 *
 * For historical reasons, these macros are grossly misnamed.
 */
#define KERNEL_DS	0
#define USER_DS		1
#define get_fs()  (current->tss.flags & 0x1)
#define set_fs(x) (current->tss.flags = (current->tss.flags & ~0x1) | ((x) & 0x1))
static inline unsigned long get_ds(void)
{
	return 0;
}
#endif /* _ASM_SEGMENT_H */
 |