1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*
* linux/fs/nfs/flushd.c
*
* For each NFS mount, there is a separate cache object that contains
* a hash table of all clusters. With this cache, an async RPC task
* (`flushd') is associated, which wakes up occasionally to inspect
* its list of dirty buffers.
* (Note that RPC tasks aren't kernel threads. Take a look at the
* rpciod code to understand what they are).
*
* Inside the cache object, we also maintain a count of the current number
* of dirty pages, which may not exceed a certain threshold.
* (FIXME: This threshold should be configurable).
*
* The code is streamlined for what I think is the prevalent case for
* NFS traffic, which is sequential write access without concurrent
* access by different processes.
*
* Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
*
* Rewritten 6/3/2000 by Trond Myklebust
* Copyright (C) 1999, 2000, Trond Myklebust <trond.myklebust@fys.uio.no>
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/malloc.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/sched.h>
#include <linux/sunrpc/auth.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/sched.h>
#include <linux/nfs.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_fs_sb.h>
#include <linux/nfs_flushd.h>
#include <linux/nfs_mount.h>
/*
* Various constants
*/
#define NFSDBG_FACILITY NFSDBG_PAGECACHE
/*
* This is the wait queue all cluster daemons sleep on
*/
static struct rpc_wait_queue flushd_queue = RPC_INIT_WAITQ("nfs_flushd");
/*
* Local function declarations.
*/
static void nfs_flushd(struct rpc_task *);
static void nfs_flushd_exit(struct rpc_task *);
int nfs_reqlist_init(struct nfs_server *server)
{
struct nfs_reqlist *cache;
struct rpc_task *task;
int status = 0;
dprintk("NFS: writecache_init\n");
cache = server->rw_requests;
if (cache->task)
return 0;
/* Create the RPC task */
status = -ENOMEM;
task = rpc_new_task(server->client, NULL, RPC_TASK_ASYNC);
if (!task)
goto out_err;
task->tk_calldata = server;
cache->task = task;
/* Run the task */
cache->runat = jiffies;
cache->auth = server->client->cl_auth;
task->tk_action = nfs_flushd;
task->tk_exit = nfs_flushd_exit;
rpc_execute(task);
return 0;
out_err:
return status;
}
void nfs_reqlist_exit(struct nfs_server *server)
{
struct nfs_reqlist *cache;
cache = server->rw_requests;
if (!cache)
return;
dprintk("NFS: reqlist_exit (ptr %p rpc %p)\n", cache, cache->task);
while (cache->task || cache->inodes) {
if (!cache->task) {
nfs_reqlist_init(server);
} else {
cache->task->tk_status = -ENOMEM;
rpc_wake_up_task(cache->task);
}
interruptible_sleep_on_timeout(&cache->request_wait, 1 * HZ);
}
}
int nfs_reqlist_alloc(struct nfs_server *server)
{
struct nfs_reqlist *cache;
if (server->rw_requests)
return 0;
cache = (struct nfs_reqlist *)kmalloc(sizeof(*cache), GFP_KERNEL);
if (!cache)
return -ENOMEM;
memset(cache, 0, sizeof(*cache));
server->rw_requests = cache;
return 0;
}
void nfs_reqlist_free(struct nfs_server *server)
{
if (server->rw_requests) {
kfree(server->rw_requests);
server->rw_requests = NULL;
}
}
void nfs_wake_flushd()
{
rpc_wake_up_status(&flushd_queue, -ENOMEM);
}
static void inode_append_flushd(struct inode *inode)
{
struct nfs_reqlist *cache = NFS_REQUESTLIST(inode);
struct inode **q;
if (NFS_FLAGS(inode) & NFS_INO_FLUSH)
return;
inode->u.nfs_i.hash_next = NULL;
q = &cache->inodes;
while (*q)
q = &(*q)->u.nfs_i.hash_next;
*q = inode;
/* Note: we increase the inode i_count in order to prevent
* it from disappearing when on the flush list
*/
NFS_FLAGS(inode) |= NFS_INO_FLUSH;
inode->i_count++;
}
void inode_remove_flushd(struct inode *inode)
{
struct nfs_reqlist *cache = NFS_REQUESTLIST(inode);
struct inode **q;
if (!(NFS_FLAGS(inode) & NFS_INO_FLUSH))
return;
q = &cache->inodes;
while (*q && *q != inode)
q = &(*q)->u.nfs_i.hash_next;
if (*q) {
*q = inode->u.nfs_i.hash_next;
NFS_FLAGS(inode) &= ~NFS_INO_FLUSH;
iput(inode);
}
}
void inode_schedule_scan(struct inode *inode, unsigned long time)
{
struct nfs_reqlist *cache = NFS_REQUESTLIST(inode);
struct rpc_task *task;
unsigned long mintimeout;
if (time_after(NFS_NEXTSCAN(inode), time))
NFS_NEXTSCAN(inode) = time;
mintimeout = jiffies + 1 * HZ;
if (time_before(mintimeout, NFS_NEXTSCAN(inode)))
mintimeout = NFS_NEXTSCAN(inode);
inode_append_flushd(inode);
task = cache->task;
if (!task) {
nfs_reqlist_init(NFS_SERVER(inode));
} else {
if (time_after(cache->runat, mintimeout))
rpc_wake_up_task(task);
}
}
static void
nfs_flushd(struct rpc_task *task)
{
struct nfs_server *server;
struct nfs_reqlist *cache;
struct inode *inode, *next;
unsigned long delay = jiffies + NFS_WRITEBACK_LOCKDELAY;
int flush = (task->tk_status == -ENOMEM);
dprintk("NFS: %4d flushd starting\n", task->tk_pid);
server = (struct nfs_server *) task->tk_calldata;
cache = server->rw_requests;
next = cache->inodes;
cache->inodes = NULL;
while ((inode = next) != NULL) {
next = next->u.nfs_i.hash_next;
inode->u.nfs_i.hash_next = NULL;
NFS_FLAGS(inode) &= ~NFS_INO_FLUSH;
if (flush) {
nfs_pagein_inode(inode, 0, 0);
nfs_sync_file(inode, NULL, 0, 0, FLUSH_AGING);
} else if (time_after(jiffies, NFS_NEXTSCAN(inode))) {
NFS_NEXTSCAN(inode) = jiffies + NFS_WRITEBACK_LOCKDELAY;
nfs_pagein_timeout(inode);
nfs_flush_timeout(inode, FLUSH_AGING);
#ifdef CONFIG_NFS_V3
nfs_commit_timeout(inode, FLUSH_AGING);
#endif
}
if (nfs_have_writebacks(inode) || nfs_have_read(inode)) {
inode_append_flushd(inode);
if (time_after(delay, NFS_NEXTSCAN(inode)))
delay = NFS_NEXTSCAN(inode);
}
iput(inode);
}
dprintk("NFS: %4d flushd back to sleep\n", task->tk_pid);
if (time_after(jiffies + 1 * HZ, delay))
delay = 1 * HZ;
else
delay = delay - jiffies;
task->tk_status = 0;
task->tk_action = nfs_flushd;
task->tk_timeout = delay;
cache->runat = jiffies + task->tk_timeout;
if (!cache->nr_requests && !cache->inodes) {
cache->task = NULL;
task->tk_action = NULL;
} else
rpc_sleep_on(&flushd_queue, task, NULL, NULL);
}
static void
nfs_flushd_exit(struct rpc_task *task)
{
struct nfs_server *server;
struct nfs_reqlist *cache;
server = (struct nfs_server *) task->tk_calldata;
cache = server->rw_requests;
if (cache->task == task)
cache->task = NULL;
wake_up(&cache->request_wait);
}
|