File: cs4281.c

package info (click to toggle)
kernel-source-2.2.19 2.2.19.1-4woody1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 92,100 kB
  • ctags: 276,892
  • sloc: ansic: 1,710,384; asm: 58,709; makefile: 10,198; sh: 2,398; perl: 907; tcl: 570; lisp: 218; cpp: 186; awk: 133; sed: 72
file content (2412 lines) | stat: -rw-r--r-- 90,420 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
//*****************************************************************************
//
//      "cs4281.c" --  Cirrus Logic-Crystal CS4281 linux audio driver.
//
//      Copyright (C) 2000  Cirrus Logic Corp.  
//            -- adapted from drivers by Thomas Sailer, 
//            -- but don't bug him; Problems should go to:
//            -- gw boynton (wesb@crystal.cirrus.com) or
//            -- tom woller (twoller@crystal.cirrus.com).
//
//      This program is free software; you can redistribute it and/or modify
//      it under the terms of the GNU General Public License as published by
//      the Free Software Foundation; either version 2 of the License, or
//      (at your option) any later version.
//
//      This program is distributed in the hope that it will be useful,
//      but WITHOUT ANY WARRANTY; without even the implied warranty of
//      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//      GNU General Public License for more details.
//
//      You should have received a copy of the GNU General Public License
//      along with this program; if not, write to the Free Software
//      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// Module command line parameters:
//   none
//
//  Supported devices:
//  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
//  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
//  /dev/midi   simple MIDI UART interface, no ioctl
//
//
//

// *****************************************************************************

#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/malloc.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <asm/spinlock.h>
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include <linux/vmalloc.h>
#include "dm.h"
#include "cs4281_hwdefs.h"

EXPORT_NO_SYMBOLS;

#undef OSS_DOCUMENTED_MIXER_SEMANTICS

// --------------------------------------------------------------------- 

#ifndef PCI_VENDOR_ID_CIRRUS
#define PCI_VENDOR_ID_CIRRUS          0x1013
#endif
#ifndef PCI_DEVICE_ID_CRYSTAL_CS4281
#define PCI_DEVICE_ID_CRYSTAL_CS4281  0x6005
#endif

#define CS4281_MAGIC  ((PCI_DEVICE_ID_CRYSTAL_CS4281<<16) | PCI_VENDOR_ID_CIRRUS)

#include <linux/version.h>

// MIDI buffer sizes 
#define MIDIINBUF  500
#define MIDIOUTBUF 500

#define FMODE_MIDI_SHIFT 3
#define FMODE_MIDI_READ  (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)


struct cs4281_state {
        // magic 
        unsigned int magic;

        // we keep the cards in a linked list 
        struct cs4281_state *next;

        // pcidev is needed to turn off the DDMA controller at driver shutdown 
        struct pci_dev *pcidev;

        // soundcore stuff 
        int dev_audio;
        int dev_mixer;
        int dev_midi;
// *wb*    int dev_dmfm;

        // hardware resources 
// *wb*    unsigned long iobase, sbbase, vcbase, ddmabase, mpubase, gpbase; // long for SPARC   
        unsigned int pBA0phys, pBA1phys;
        char *pBA0, *pBA1; 
        unsigned int irq;

        // mixer registers 
        struct {
                unsigned short vol[10];
                unsigned int recsrc;
                unsigned int modcnt;
                unsigned short micpreamp;
        } mix;

        // wave stuff   // Note that play & record formats must be the same *wb.
        unsigned fmt;
        unsigned channels;
        unsigned rate;
        unsigned char clkdiv;
        unsigned ena;

        spinlock_t lock;
        struct semaphore open_sem;
        mode_t open_mode;
        wait_queue_head_t open_wait;

        struct dmabuf {
                void *rawbuf;            // Physical address of  
                unsigned buforder;       // Log base 2 of 'rawbuf' size in bytes..
                unsigned numfrag;        // # of 'fragments' in the buffer.
                unsigned fragshift;      // Log base 2 of fragment size.
                unsigned hwptr, swptr;
                unsigned total_bytes;    // # bytes process since open.
                int count;
                unsigned error; // over/underrun 
                wait_queue_head_t wait;
                // redundant, but makes calculations easier 
                unsigned fragsize;       // 2**fragshift..
                unsigned dmasize;        // 2**buforder.
                unsigned fragsamples;
                // OSS stuff 
                unsigned mapped:1;       // Buffer mapped in cs4281_mmap()?
                unsigned ready:1;        // prog_dmabuf_dac()/adc() successful?
                unsigned endcleared:1;
                unsigned ossfragshift;
                int ossmaxfrags;
                unsigned subdivision;
        } dma_dac, dma_adc;

        // midi stuff 
        struct {
                unsigned ird, iwr, icnt;
                unsigned ord, owr, ocnt;
                wait_queue_head_t iwait;
                wait_queue_head_t owait;
                struct timer_list timer;
                unsigned char ibuf[MIDIINBUF];
                unsigned char obuf[MIDIOUTBUF];
        } midi;

};


static struct cs4281_state *devs = NULL;
// --------------------------------------------------------------------- 
//
//		Hardware Interfaces For the CS4281
//


//******************************************************************************
// "delayus()-- Delay for the specified # of microseconds.
//******************************************************************************
static void delayus(u32 delay)
{
	u32 j;   
	if(delay > 9999)
	{
		j = (delay * HZ)/1000000;   /* calculate delay in jiffies  */
		if(j<1) 
			j=1;               /* minimum one jiffy. */
		current->state = TASK_UNINTERRUPTIBLE;  
		schedule_timeout(j);       
	}
	else
		udelay(delay);
	return;                      
}


//******************************************************************************
// "cs4281_read_ac97" -- Reads a word from the specified location in the
//               CS4281's address space(based on the BA0 register).
//
// 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
// 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 register,
//                                            0h for reads.
// 3. Write ACCTL = Control Register = 460h for initiating the write
// 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
// 5. if DCV not cleared, break and return error
// 6. Read ACSTS = Status Register = 464h, check VSTS bit
//****************************************************************************
static int cs4281_read_ac97(struct cs4281_state *card, u32 offset, u32 *value)
{
	u32 count, status;

        // Make sure that there is not data sitting
        // around from a previous uncompleted access.
        // ACSDA = Status Data Register = 47Ch
	status = readl(card->pBA0+BA0_ACSDA);

        // Setup the AC97 control registers on the CS4281 to send the
        // appropriate command to the AC97 to perform the read.
        // ACCAD = Command Address Register = 46Ch
        // ACCDA = Command Data Register = 470h
        // ACCTL = Control Register = 460h
        // bit DCV - will clear when process completed
        // bit CRW - Read command
        // bit VFRM - valid frame enabled
        // bit ESYN - ASYNC generation enabled

        // Get the actual AC97 register from the offset
	writel(offset - BA0_AC97_RESET, card->pBA0+BA0_ACCAD);
	writel(0, card->pBA0+BA0_ACCDA);
	writel(ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN, card->pBA0+BA0_ACCTL);

         // Wait for the read to occur.
	for(count = 0; count < 10; count++)
	{
		// First, we want to wait for a short time.
		udelay(25);

		// Now, check to see if the read has completed.
        	// ACCTL = 460h, DCV should be reset by now and 460h = 17h
        	if( !(readl(card->pBA0+BA0_ACCTL) & ACCTL_DCV))
			break;
	}

         // Make sure the read completed.
	if(readl(card->pBA0+BA0_ACCTL) & ACCTL_DCV)
 	       return 1;

         // Wait for the valid status bit to go active.
	for(count = 0; count < 10; count++)
	{
        	// Read the AC97 status register.
        	// ACSTS = Status Register = 464h
        	status = readl(card->pBA0+BA0_ACSTS);

		// See if we have valid status.
        	// VSTS - Valid Status
        	if(status & ACSTS_VSTS)
        		break;
		// Wait for a short while.
        	udelay(25);
	}

         // Make sure we got valid status.
	if(!(status & ACSTS_VSTS))
        	return 1;

	// Read the data returned from the AC97 register.
	// ACSDA = Status Data Register = 474h
	*value = readl(card->pBA0+BA0_ACSDA);

	// Success.
	return(0);
}


//****************************************************************************
//
// "cs4281_write_ac97()"-- writes a word to the specified location in the
// CS461x's address space (based on the part's base address zero register).
//
// 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
// 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 reg.
// 3. Write ACCTL = Control Register = 460h for initiating the write
// 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
// 5. if DCV not cleared, break and return error
//
//****************************************************************************
static int cs4281_write_ac97(struct cs4281_state *card, u32 offset, u32 value)
{
	u32 count, status;

         // Setup the AC97 control registers on the CS4281 to send the
         // appropriate command to the AC97 to perform the read.
         // ACCAD = Command Address Register = 46Ch
         // ACCDA = Command Data Register = 470h
         // ACCTL = Control Register = 460h
         // set DCV - will clear when process completed
         // reset CRW - Write command
         // set VFRM - valid frame enabled
         // set ESYN - ASYNC generation enabled
         // set RSTN - ARST# inactive, AC97 codec not reset

         // Get the actual AC97 register from the offset

	writel(offset - BA0_AC97_RESET, card->pBA0+BA0_ACCAD);
	writel(value, card->pBA0+BA0_ACCDA);
	writel(ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN, card->pBA0+BA0_ACCTL);

         // Wait for the write to occur.
	for(count = 0; count < 10; count++)
	{
		// First, we want to wait for a short time.
        	udelay(25);
		// Now, check to see if the write has completed.
		// ACCTL = 460h, DCV should be reset by now and 460h = 07h
		status = readl(card->pBA0+BA0_ACCTL);
		if(!(status & ACCTL_DCV))
			break;
	}

        // Make sure the write completed.
	if(status & ACCTL_DCV)
	        return 1;
	// Success.
	return 0;
}


//******************************************************************************
// "Init4281()" -- Bring up the part.
//******************************************************************************
static int cs4281_hw_init(struct cs4281_state *card)
{
	u32 ac97_slotid;
	u32 temp1, temp2;

	//***************************************
	//  Set up the Sound System Configuration
	//***************************************

         // Set the 'Configuration Write Protect' register
         // to 4281h.  Allows vendor-defined configuration
         // space between 0e4h and 0ffh to be written.

	writel(0x4281, card->pBA0+BA0_CWPR);                       // (3e0h)

         // (0), Blast the clock control register to zero so that the
         // PLL starts out in a known state, and blast the master serial
         // port control register to zero so that the serial ports also
         // start out in a known state.

	writel(0, card->pBA0+BA0_CLKCR1);                          // (400h)
	writel(0, card->pBA0+BA0_SERMC);                           // (420h)


         // (1), Make ESYN go to zero to turn off
         // the Sync pulse on the AC97 link.

	writel(0, card->pBA0+BA0_ACCTL);
	udelay(50);


         // (2) Drive the ARST# pin low for a minimum of 1uS (as defined in
         // the AC97 spec) and then drive it high.  This is done for non
         // AC97 modes since there might be logic external to the CS461x
         // that uses the ARST# line for a reset.

	writel(0, card->pBA0+BA0_SPMC);                            // (3ech)
	udelay(100);
	writel(SPMC_RSTN, card->pBA0+BA0_SPMC);
	delayus(50000);     // Wait 50 ms for ABITCLK to become stable.

        // (3) Turn on the Sound System Clocks.
	writel(CLKCR1_PLLP, card->pBA0+BA0_CLKCR1);                // (400h)
	delayus(50000);     // Wait for the PLL to stabilize.
	// Turn on clocking of the core (CLKCR1(400h) = 0x00000030)
	writel(CLKCR1_PLLP | CLKCR1_SWCE, card->pBA0+BA0_CLKCR1);

        // (4) Power on everything for now..
	writel(0x7E, card->pBA0 + BA0_SSPM);                       // (740h)

        // (5) Wait for clock stabilization.
	for(temp1=0; temp1<1000;  temp1++)
	{
		udelay(1000);
		if(readl(card->pBA0+BA0_CLKCR1) & CLKCR1_DLLRDY)
			break;
	}
	if(!(readl(card->pBA0+BA0_CLKCR1) & CLKCR1_DLLRDY))
	{
		printk(KERN_ERR "cs4281: DLLRDY failed!\n");
		return -EIO;
	}

	// (6) Enable ASYNC generation.
	writel(ACCTL_ESYN, card->pBA0+BA0_ACCTL);                  // (460h)

	// Now wait 'for a short while' to allow the  AC97
	// part to start generating bit clock. (so we don't
	// Try to start the PLL without an input clock.)
	delayus(50000);

        // Set the serial port timing configuration, so that the
        // clock control circuit gets its clock from the right place.
	writel(SERMC_PTC_AC97, card->pBA0+BA0_SERMC);              // (420h)=2.

        // (7) Wait for the codec ready signal from the AC97 codec.

	for(temp1=0; temp1<1000; temp1++)
	{
		// Delay a mil to let things settle out and
		// to prevent retrying the read too quickly.
		udelay(1000);
		if( readl(card->pBA0+BA0_ACSTS) & ACSTS_CRDY )	// If ready,  (464h)
			break;                                  //   exit the 'for' loop.
	}
	if( !(readl(card->pBA0+BA0_ACSTS) & ACSTS_CRDY) )       // If never came ready,
	{
        	printk(KERN_ERR "cs4281: ACSTS never came ready!\n");
        	return -EIO;                                //   exit initialization.
	}

         // (8) Assert the 'valid frame' signal so we can
         // begin sending commands to the AC97 codec.
	writel(ACCTL_VFRM | ACCTL_ESYN, card->pBA0+BA0_ACCTL);   // (460h)

         // (9), Wait until CODEC calibration is finished.
         // Print an error message if it doesn't.
	for(temp1 = 0; temp1 < 1000; temp1++)
	{
		delayus(10000);
		// Read the AC97 Powerdown Control/Status Register.
		cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp2);
		if( (temp2 & 0x0000000F) == 0x0000000F )
			break;
	}
	if ( (temp2 & 0x0000000F) != 0x0000000F )
	{
		printk(KERN_ERR "cs4281: Codec failed to calibrate.  Status = %.8x.\n", temp2);
		return -EIO;
	}

         // (10), Set the serial port timing configuration, so that the
         // clock control circuit gets its clock from the right place.
	writel(SERMC_PTC_AC97, card->pBA0+BA0_SERMC);              // (420h)=2.


         // (11) Wait until we've sampled input slots 3 & 4 as valid, meaning
         // that the codec is pumping ADC data across the AC link.
	for(temp1=0; temp1<1000; temp1++)
	{
        	// Delay a mil to let things settle out and
        	// to prevent retrying the read too quickly.
        	delayus(1000);    //(test)

        	// Read the input slot valid register;  See
        	// if input slots 3 and 4 are valid yet.
        	if( (readl(card->pBA0+BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4) ) ==  (ACISV_ISV3 | ACISV_ISV4))
			break;    // Exit the 'for' if slots are valid.
	}
       	// If we never got valid data, exit initialization.
	if( (readl(card->pBA0+BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4) ) != (ACISV_ISV3 | ACISV_ISV4))
	{
       		printk(KERN_ERR "cs4281: Never got valid data!\n");
       		return -EIO;     // If no valid data, exit initialization.
	}

	// (12), Start digital data transfer of audio data to the codec.
	writel(ACOSV_SLV3 | ACOSV_SLV4, card->pBA0+BA0_ACOSV);             // (468h)


        //**************************************
        // Unmute the Master and Alternate
        // (headphone) volumes.  Set to max.
        //**************************************
	cs4281_write_ac97(card,BA0_AC97_HEADPHONE_VOLUME, 0);
	cs4281_write_ac97(card,BA0_AC97_MASTER_VOLUME, 0);

        //******************************************
        // Power on the DAC(AddDACUser()from main())
        //******************************************
	cs4281_read_ac97(card,BA0_AC97_POWERDOWN, &temp1);
	cs4281_write_ac97(card,BA0_AC97_POWERDOWN, temp1 &= 0xfdff);

        // Wait until we sample a DAC ready state.
	for(temp2=0; temp2<32; temp2++)
	{
		// Let's wait a mil to let things settle.
		delayus(1000);
		// Read the current state of the power control reg.
        	cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
		// If the DAC ready state bit is set, stop waiting.
		if(temp1 & 0x2)
        		break;
	}

        //******************************************
        // Power on the ADC(AddADCUser()from main())
        //******************************************
	cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
	cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfeff);

        // Wait until we sample ADC ready state.
	for(temp2=0; temp2<32; temp2++)
	{
		// Let's wait a mil to let things settle.
		delayus(1000);
        	// Read the current state of the power control reg.
        	cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
		// If the ADC ready state bit is set, stop waiting.
		if(temp1 & 0x1)
        		break;
	}
	// Set up 4281 Register contents that
	// don't change for boot duration.

	// For playback, we map AC97 slot 3 and 4(Left
	// & Right PCM playback) to DMA Channel 0.
	// Set the fifo to be 15 bytes at offset zero.

	ac97_slotid = 0x01000f00;	// FCR0.RS[4:0]=1(=>slot4, right PCM playback).
        				// FCR0.LS[4:0]=0(=>slot3, left PCM playback).
                                 	// FCR0.SZ[6-0]=15; FCR0.OF[6-0]=0.
	writel(ac97_slotid, card->pBA0 + BA0_FCR0);                 // (180h)
	writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR0);      // Turn on FIFO Enable.

        // For capture, we map AC97 slot 10 and 11(Left
        // and Right PCM Record) to DMA Channel 1.
        // Set the fifo to be 15 bytes at offset sixteen.
	ac97_slotid = 0x0B0A0f10;	// FCR1.RS[4:0]=11(=>slot11, right PCM record).
               				// FCR1.LS[4:0]=10(=>slot10, left PCM record).
					// FCR1.SZ[6-0]=15; FCR1.OF[6-0]=16.
	writel(ac97_slotid | FCRn_PSH, card->pBA0 + BA0_FCR1);      // (184h)
	writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR1);      // Turn on FIFO Enable.

        // Map the Playback SRC to the same AC97 slots(3 & 4--
        // --Playback left & right)as DMA channel 0.
        // Map the record SRC to the same AC97 slots(10 & 11--
        // -- Record left & right) as DMA channel 1.

	ac97_slotid = 0x0b0a0100;	// SCRSA.PRSS[4:0]=1(=>slot4, right PCM playback).
					// SCRSA.PLSS[4:0]=0(=>slot3, left PCM playback).
					// SCRSA.CRSS[4:0]=11(=>slot11, right PCM record)
					// SCRSA.CLSS[4:0]=10(=>slot10, left PCM record).
	writel(ac97_slotid, card->pBA0 + BA0_SRCSA);                // (75ch)

        // Set 'Half Terminal Count Interrupt Enable' and 'Terminal
        // Count Interrupt Enable' in DMA Control Registers 0 & 1.
        // Set 'MSK' flag to 1 to keep the DMA engines paused.
	temp1 = (DCRn_HTCIE | DCRn_TCIE | DCRn_MSK);	 // (00030001h)
	writel(temp1, card->pBA0 + BA0_DCR0);            // (154h
	writel(temp1, card->pBA0 + BA0_DCR1);            // (15ch)

        // Set 'Auto-Initialize Control' to 'enabled'; For playback,
        // set 'Transfer Type Control'(TR[1:0]) to 'read transfer',
        // for record, set Transfer Type Control to 'write transfer'.
        // All other bits set to zero;  Some will be changed @ transfer start.
	temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_READ);   // (20000018h)
	writel(temp1, card->pBA0 + BA0_DMR0);            // (150h)
	temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE);  // (20000014h)
	writel(temp1, card->pBA0 + BA0_DMR1);            // (158h)

        // Enable DMA interrupts generally, and
        // DMA0 & DMA1 interrupts specifically.
	temp1 = readl(card->pBA0 + BA0_HIMR) &  0xfffbfcff;
	writel(temp1, card->pBA0+BA0_HIMR);
	return 0;
}


//******************************************************************************
// "cs4281_play_rate()" --
//******************************************************************************
static void cs4281_play_rate(struct cs4281_state *card, u32 playrate)
{
	u32 DACSRvalue = 1;

         // Based on the sample rate, program the DACSR register.
	if(playrate == 8000)
        	DACSRvalue = 5;
	if(playrate == 11025)
		DACSRvalue = 4;
	else if(playrate == 22050)
        	DACSRvalue = 2;
	else if(playrate == 44100)
	        DACSRvalue = 1;
	else if((playrate <= 48000) && (playrate >= 6023))
        	DACSRvalue = 24576000/(playrate*16);
	else if(playrate < 6023)
		// Not allowed by open.
		return;
	else if(playrate > 48000)
		// Not allowed by open.
		return;
         //  Write the 'sample rate select code'
         //  to the 'DAC Sample Rate' register.
	writel(DACSRvalue, card->pBA0 + BA0_DACSR);           // (744h)
}

//******************************************************************************
// "cs481_record_rate()" -- Initialize the record sample rate converter.
//******************************************************************************
static void cs481_record_rate(struct cs4281_state *card, u32 outrate)
{
	u32 ADCSRvalue = 1;

         //
         // Based on the sample rate, program the ADCSR register
         //
	if(outrate == 8000)
        	ADCSRvalue = 5;
	if(outrate == 11025)
	        ADCSRvalue = 4;
	else if(outrate == 22050)
		ADCSRvalue = 2;
	else if(outrate == 44100)
		ADCSRvalue = 1;
	else if((outrate <= 48000) && (outrate >= 6023))
		ADCSRvalue = 24576000/(outrate*16);
	else if(outrate < 6023)
	{
		// Not allowed by open.
		return;
	}
	else if(outrate > 48000)
	{
	        // Not allowed by open.
	        return;
	}
        //  Write the 'sample rate select code
	//  to the 'ADC Sample Rate' register.
	writel(ADCSRvalue, card->pBA0 + BA0_ADCSR);           // (748h)
}



static void stop_dac(struct cs4281_state *s)
{
        unsigned long flags;
        unsigned temp1;

        spin_lock_irqsave(&s->lock, flags);
        s->ena &= ~FMODE_WRITE;
        temp1 = readl(s->pBA0+ BA0_DCR0) | DCRn_MSK;     
        writel(temp1, s->pBA0+BA0_DCR0);         

        spin_unlock_irqrestore(&s->lock, flags);
}


static void start_dac(struct cs4281_state *s)
{
        unsigned long flags;
        unsigned temp1;

        spin_lock_irqsave(&s->lock, flags);
        if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
              s->dma_dac.count > 0) && s->dma_dac.ready)      {
                s->ena |= FMODE_WRITE;
                temp1 = readl(s->pBA0+BA0_DCR0) & ~DCRn_MSK;     // Clear DMA0 channel mask.
                writel(temp1, s->pBA0+BA0_DCR0);                 // Start DMA'ing.
                writel(HICR_IEV | HICR_CHGM, s->pBA0+BA0_HICR);     // Enable interrupts.              
        
                writel(7, s->pBA0+BA0_PPRVC);
                writel(7, s->pBA0+BA0_PPLVC);
        
        }
        spin_unlock_irqrestore(&s->lock, flags);
}


static void stop_adc(struct cs4281_state *s)
{
        unsigned long flags;
        unsigned temp1;

        spin_lock_irqsave(&s->lock, flags);
        s->ena &= ~FMODE_READ;
        temp1 = readl(s->pBA0+ BA0_DCR1) | DCRn_MSK;     
        writel(temp1, s->pBA0+BA0_DCR1);
        spin_unlock_irqrestore(&s->lock, flags);
}


static void start_adc(struct cs4281_state *s)
{
        unsigned long flags;
        unsigned temp1;

        spin_lock_irqsave(&s->lock, flags);
        if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped
              || s->dma_adc.count <= 
                 (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
              && s->dma_adc.ready)
        {
                s->ena |= FMODE_READ;
                temp1 = readl(s->pBA0+BA0_DCR1) & ~ DCRn_MSK;         // Clear DMA1 channel mask bit.
                writel(temp1, s->pBA0+BA0_DCR1);                      // Start recording
                writel(HICR_IEV | HICR_CHGM, s->pBA0+BA0_HICR);       // Enable interrupts.
        }
        spin_unlock_irqrestore(&s->lock, flags);

}


// --------------------------------------------------------------------- 
#define DMABUF_DEFAULTORDER (15-PAGE_SHIFT)     // == 3(for PC), = log base 2( buff sz = 32k).
#define DMABUF_MINORDER 1                       // ==> min buffer size = 8K.


static void dealloc_dmabuf(struct dmabuf *db)
{
        unsigned long map, mapend;

        if (db->rawbuf) {
                // Undo prog_dmabuf()'s marking the pages as reserved 
                mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
                for (map = MAP_NR(db->rawbuf); map <= mapend; map++)
                        clear_bit(PG_reserved, &mem_map[map].flags);
                free_pages((unsigned long)db->rawbuf, db->buforder);
        }
        db->rawbuf = NULL;
        db->mapped = db->ready = 0;
}


static int prog_dmabuf(struct cs4281_state *s, struct dmabuf *db, int gfp_mask)
{
        int order;
        unsigned bytespersec, temp1;
        unsigned bufs, sample_shift = 0;
        unsigned long map, mapend;

        db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
        if (!db->rawbuf) {
                db->ready = db->mapped = 0;
                for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
                        if ((db->rawbuf = (void *)__get_free_pages(gfp_mask, order)))
                                break;
                if (!db->rawbuf)
                        return -ENOMEM;
                db->buforder = order;
                // Now mark the pages as reserved; otherwise the 
                // remap_page_range() in cs4281_mmap doesn't work.
                // 1. get index to last page in mem_map array for rawbuf.
                mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
                
                     // 2. mark each physical page in range as 'reserved'.
                for (map = MAP_NR(db->rawbuf); map <= mapend; map++)
                        set_bit(PG_reserved, &mem_map[map].flags);
        }
        if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
                sample_shift++;
        if (s->channels > 1)
                sample_shift++;
        bytespersec = s->rate << sample_shift;
        bufs = PAGE_SIZE << db->buforder;


#define INTERRUPT_RATE_MS       100                      // Interrupt rate in milliseconds.
        db->numfrag = 2;
        temp1 = bytespersec/(1000/INTERRUPT_RATE_MS);    // Nominal frag size(bytes/interrupt)
        db->fragshift = 8;                               // Min 256 bytes.
        while( 1 << db->fragshift  < temp1)              // Calc power of 2 frag size.
                db->fragshift +=1;
        db->fragsize = 1 << db->fragshift;               
        db->dmasize = db->fragsize * 2;
 
                // If the calculated size is larger than the allocated
                //  buffer, divide the allocated buffer into 2 fragments.
        if(db->dmasize > bufs) {
                db->numfrag = 2;                                 // Two fragments.
                db->fragsize = bufs >> 1;                        // Each 1/2 the alloc'ed buffer.
                db->fragsamples = db->fragsize >> sample_shift;  // # samples/fragment.
                db->dmasize =  bufs;                             // Use all the alloc'ed buffer.
                
                db->fragshift = 0;                               // Calculate 'fragshift'.
                temp1 = db->fragsize;                            // update_ptr() uses it 
                while( (temp1 >>=1) > 1)                         // to calc 'total-bytes'
                     db->fragshift +=1;                          // returned in DSP_GETI/OPTR. 
        }
        return 0;
}    


static int prog_dmabuf_adc(struct cs4281_state *s)
{
        unsigned long va;
        unsigned count;      
        int c;
        stop_adc(s);
        if ((c = prog_dmabuf(s, &s->dma_adc, GFP_KERNEL | GFP_DMA)))
                return c;
             
        va = virt_to_bus(s->dma_adc.rawbuf);
        
        count = s->dma_adc.dmasize;       
       
        if(s->fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
                count /= 2;                      // 16-bit.
                        
        if(s->channels > 1)
                count /= 2;                      // Assume stereo.
          
        writel(va, s->pBA0+BA0_DBA1);            // Set buffer start address.
        writel(count-1, s->pBA0+BA0_DBC1);       // Set count. 
        s->dma_adc.ready = 1;
        return 0;
}


static int prog_dmabuf_dac(struct cs4281_state *s)
{
        unsigned long va;
        unsigned count;
        int c;
        stop_dac(s);
        if ((c = prog_dmabuf(s, &s->dma_dac, GFP_KERNEL)))
                return c;
        memset(s->dma_dac.rawbuf, (s->fmt & (AFMT_U8 | AFMT_U16_LE))
                                   ? 0x80 : 0, s->dma_dac.dmasize);      

        va = virt_to_bus(s->dma_dac.rawbuf);

        count = s->dma_dac.dmasize;       
        if(s->fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
                count /= 2;                      // 16-bit.
      
        if(s->channels > 1)
                count /= 2;                      // Assume stereo.
           
        writel(va, s->pBA0+BA0_DBA0);               // Set buffer start address.
        writel(count-1, s->pBA0+BA0_DBC0);       // Set count.             

        s->dma_dac.ready = 1;
        return 0;
}


static void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c)
{
        if (bptr + len > bsize) {
                unsigned x = bsize - bptr;
                memset(((char *)buf) + bptr, c, x);
                bptr = 0;
                len -= x;
        }
        memset(((char *)buf) + bptr, c, len);
}



// call with spinlock held! 
static void cs4281_update_ptr(struct cs4281_state *s)
{
        int diff;
        unsigned hwptr, va;

        // update ADC pointer 
        if (s->ena & FMODE_READ) {
                hwptr = readl(s->pBA0+BA0_DCA1);          // Read capture DMA address.
                va = virt_to_bus(s->dma_adc.rawbuf);
                //trw added fix  hwptr -= (unsigned)s->dma_adc.rawbuf;
                hwptr -= (unsigned)va;                 
                diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
                s->dma_adc.hwptr = hwptr;
                s->dma_adc.total_bytes += diff;
                s->dma_adc.count += diff;
                if (s->dma_adc.mapped) {
                        if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                                wake_up(&s->dma_adc.wait);
                } else {
                        if (s->dma_adc.count > 0)
                                wake_up(&s->dma_adc.wait);
                }
        }
        // update DAC pointer 
	//
	// check for end of buffer, means that we are going to wait for another interrupt
	// to allow silence to fill the fifos on the part, to keep pops down to a minimum.
	//
        if (s->ena & FMODE_WRITE)
	{
                hwptr = readl(s->pBA0+BA0_DCA0);          // Read play DMA address.
                va = virt_to_bus(s->dma_dac.rawbuf);
                hwptr -= (unsigned)va;
                diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
                s->dma_dac.hwptr = hwptr;
                s->dma_dac.total_bytes += diff;
                if (s->dma_dac.mapped) {
                        s->dma_dac.count += diff;
                        if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                                wake_up(&s->dma_dac.wait);
                } else {
                        s->dma_dac.count -= diff;
                        if (s->dma_dac.count <= 0) {
			//
			// fill with silence, and do not shut down the DAC.
			// Continue to play silence until the _release.
			//
				memset(s->dma_dac.rawbuf, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, 
					s->dma_dac.dmasize); 
                        } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize
                                                         && !s->dma_dac.endcleared) {
                                clear_advance(s->dma_dac.rawbuf, 
                                              s->dma_dac.dmasize, s->dma_dac.swptr,
                                              s->dma_dac.fragsize,
                                              (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0);
                                s->dma_dac.endcleared = 1;
                        }
                        if (s->dma_dac.count < (signed)s->dma_dac.dmasize)
                                wake_up(&s->dma_dac.wait);
                }
        }
}


// --------------------------------------------------------------------- 

static void prog_codec(struct cs4281_state *s)
{
        unsigned long flags;
        unsigned temp1, format;

        spin_lock_irqsave(&s->lock, flags);
        temp1 = readl(s->pBA0+BA0_DCR0);
        writel(temp1 | DCRn_MSK, s->pBA0+BA0_DCR0);   // Stop play DMA, if active.
        temp1 = readl(s->pBA0+BA0_DCR1);
        writel(temp1 | DCRn_MSK, s->pBA0+BA0_DCR1);   // Stop capture DMA, if active.
 
        // program sampling rates  
        // Note, for CS4281, capture & play rates can be set independently.
        cs481_record_rate(s, s->rate); 
               
        // program ADC parameters 
        format = DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE;
        if(s->fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
        if(s->fmt & (AFMT_S16_BE | AFMT_U16_BE))  // Big-endian?
                format |= DMRn_BEND;  
                if(s->fmt & (AFMT_U16_LE  | AFMT_U16_BE)) 
                        format |= DMRn_USIGN;         // Unsigned.      
        }          
        else
                format |= DMRn_SIZE8 | DMRn_USIGN;    // 8-bit, unsigned
        if(s->channels < 2)
                format |= DMRn_MONO;

        writel(format, s->pBA0+BA0_DMR1);       
       
  
        // program DAC parameters 
        format = DMRn_DMA | DMRn_AUTO | DMRn_TR_READ;
        if(s->fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
                if(s->fmt & (AFMT_S16_BE | AFMT_U16_BE))  
                        format |= DMRn_BEND;          // Big Endian.
                if(s->fmt & (AFMT_U16_LE  | AFMT_U16_BE)) 
                        format |= DMRn_USIGN;         // Unsigned.      
        }          
        else
                format |= DMRn_SIZE8 | DMRn_USIGN;    // 8-bit, unsigned
        
        if(s->channels < 2)
                format |= DMRn_MONO;

        writel(format, s->pBA0+BA0_DMR0);       
        cs4281_play_rate(s, s->rate);

        s->ena = 0;     // Neither writing or reading.
        spin_unlock_irqrestore(&s->lock, flags);
}


// --------------------------------------------------------------------- 

static const char invalid_magic[] = KERN_CRIT "cs4281: invalid magic value\n";

#define VALIDATE_STATE(s)                         \
({                                                \
        if (!(s) || (s)->magic != CS4281_MAGIC) { \
                printk(invalid_magic);            \
                return -ENXIO;                    \
        }                                         \
})

// --------------------------------------------------------------------- 


static int mixer_ioctl(struct cs4281_state *s, unsigned int cmd, unsigned long arg)
{
	// Index to mixer_src[] is value of AC97 Input Mux Select Reg.
	// Value of array member is recording source Device ID Mask.
        static const unsigned int mixer_src[8] = {
                SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
                SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
        };
             
        // Index of mixtable1[] member is Device ID 
        // and must be <= SOUND_MIXER_NRDEVICES.
        // Value of array member is index into s->mix.vol[]
        static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
                [SOUND_MIXER_PCM]     = 1,   // voice 
                [SOUND_MIXER_LINE1]   = 2,   // AUX
                [SOUND_MIXER_CD]      = 3,   // CD 
                [SOUND_MIXER_LINE]    = 4,   // Line 
                [SOUND_MIXER_SYNTH]   = 5,   // FM
                [SOUND_MIXER_MIC]     = 6,   // Mic 
                [SOUND_MIXER_SPEAKER] = 7,   // Speaker 
                [SOUND_MIXER_RECLEV]  = 8,   // Recording level 
                [SOUND_MIXER_VOLUME]  = 9    // Master Volume 
        };
        
        
        static const unsigned mixreg[] = {
                BA0_AC97_PCM_OUT_VOLUME,
                BA0_AC97_AUX_VOLUME, 
                BA0_AC97_CD_VOLUME, 
                BA0_AC97_LINE_IN_VOLUME
        };
        unsigned char l, r, rl, rr, vidx;
        unsigned char attentbl[11] = {63,42,26,17,14,11,8,6,4,2,0};
        unsigned temp1;
        int i, val;

        VALIDATE_STATE(s);
 
        if (cmd == SOUND_MIXER_PRIVATE1) {
                // enable/disable/query mixer preamp 
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val != -1) {
                        cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
                        temp1 = val ? (temp1 | 0x40) : (temp1 & 0xffbf);
                        cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);
                }
                cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
                val = (temp1 & 0x40) ? 1 : 0;
                return put_user(val, (int *)arg);
        }
        if (cmd == SOUND_MIXER_PRIVATE2) {
                // enable/disable/query spatializer 
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val != -1) {
                        temp1 = (val & 0x3f) >> 2;
                        cs4281_write_ac97(s, BA0_AC97_3D_CONTROL, temp1);
                        cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE, &temp1);
                        cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE,temp1 | 0x2000);
                }
                cs4281_read_ac97(s, BA0_AC97_3D_CONTROL, &temp1);
                return put_user((temp1 << 2) | 3, (int *)arg);
        }
        if (cmd == SOUND_MIXER_INFO) {
                mixer_info info;
                strncpy(info.id, "CS4281", sizeof(info.id));
                strncpy(info.name, "Crystal CS4281", sizeof(info.name));
                info.modify_counter = s->mix.modcnt;
                if (copy_to_user((void *)arg, &info, sizeof(info)))
                        return -EFAULT;
                return 0;
        }
        if (cmd == SOUND_OLD_MIXER_INFO) {
                _old_mixer_info info;
                strncpy(info.id, "CS4281", sizeof(info.id));
                strncpy(info.name, "Crystal CS4281", sizeof(info.name));
                if (copy_to_user((void *)arg, &info, sizeof(info)))
                        return -EFAULT;
                return 0;
        }
        if (cmd == OSS_GETVERSION)
                return put_user(SOUND_VERSION, (int *)arg);
        
        if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
                return -EINVAL;
        
             // If ioctl has only the IOC_READ bit(bit 31)
             // on, process the only-read commands. 
        if (_SIOC_DIR(cmd) == _SIOC_READ) {
                switch (_IOC_NR(cmd)) {
                case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source 
                    cs4281_read_ac97(s, BA0_AC97_RECORD_SELECT, &temp1);
                    return put_user(mixer_src[temp1 & 7], (int *)arg);

                case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device 
                        return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
                                        SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
                                        SOUND_MASK_VOLUME | SOUND_MASK_RECLEV |
                                        SOUND_MASK_SPEAKER, (int *)arg);

                case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source 
                        return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD 
                                      | SOUND_MASK_VOLUME | SOUND_MASK_LINE1, (int *)arg);

                case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo 
                        return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
                                        SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
                                        SOUND_MASK_VOLUME | SOUND_MASK_RECLEV, (int *)arg);

                case SOUND_MIXER_CAPS:
                        return put_user(SOUND_CAP_EXCL_INPUT, (int *)arg);

                default:
                        i = _IOC_NR(cmd);
                        if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
                                return -EINVAL;
                        return put_user(s->mix.vol[vidx-1], (int *)arg);
                }
        }
        
             // If ioctl doesn't have both the IOC_READ and 
             // the IOC_WRITE bit set, return invalid.
        if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
                return -EINVAL;
        
             // Increment the count of volume writes.
        s->mix.modcnt++;
             
             // Isolate the command; it must be a write.
        switch (_IOC_NR(cmd)) {
        
        case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source 
                get_user_ret(val, (int *)arg, -EFAULT);
                i = hweight32(val);                 // i = # bits on in val.
                if (i != 1)                         // One & only 1 bit must be on.
                        return 0;
                for(i=0; i<sizeof(mixer_src)/sizeof(int); i++) {
                        if(val == mixer_src[i]) {
                                temp1 = (i << 8) | i;  
                                cs4281_write_ac97(s, BA0_AC97_RECORD_SELECT, temp1);
                                return 0;
                        }
                }
                return 0;

        case SOUND_MIXER_VOLUME:
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if(l > 100)
                        l = 100;                    // Max soundcard.h vol is 100.
                if(l < 6) {
                        rl = 63;
                        l  = 0;
                }
                else 
                        rl = attentbl[(10*l)/100];  // Convert 0-100 vol to 63-0 atten.
                        
                        r = (val >> 8) & 0xff;
                        if (r > 100)
                                r = 100;            // Max right volume is 100, too
                        if(r < 6) {
                                rr = 63;
                                r  = 0;
                        }
                        else 
                               rr = attentbl[(10*r)/100];   // Convert volume to attenuation.
                
                if ((rl > 60 ) && (rr > 60))        // If both l & r are 'low',          
                        temp1 = 0x8000;             //  turn on the mute bit.
                else
                        temp1 = 0;
                
                temp1 |= (rl << 8) | rr;
                
                cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, temp1);
                cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, temp1);

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[8] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[8] = val;
#endif
                return put_user(s->mix.vol[8], (int *)arg);

        case SOUND_MIXER_SPEAKER:
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if (l > 100)
                        l = 100;
                if(l < 3 ) {
                        rl = 0;
                        l = 0;
                }
                else {
                        rl = (l*2 - 5)/13;          // Convert 0-100 range to 0-15.
                        l = (rl*13 +5)/2;
                }

                if (rl < 3){
                       temp1 = 0x8000;
                       rl     = 0;
                }
                else
                       temp1 = 0;
                rl = 15 - rl;                       // Convert volume to attenuation.
                temp1 |= rl << 1;
                cs4281_write_ac97(s, BA0_AC97_PC_BEEP_VOLUME, temp1);

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[6] = l << 8;
#else
                s->mix.vol[6] = val;
#endif
                return put_user(s->mix.vol[6], (int *)arg);

        case SOUND_MIXER_RECLEV:
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if (l > 100)
                        l = 100;
                r = (val >> 8) & 0xff;
                if (r > 100)
                        r = 100;
                rl = (l*2 - 5) / 13;                // Convert 0-100 scale to 0-15.
                rr = (r*2 - 5) / 13;
                if (rl <3 && rr <3)
                        temp1 = 0x8000;
                else
                        temp1 = 0;

                temp1 = temp1 | (rl << 8) | rr;
                cs4281_write_ac97(s, BA0_AC97_RECORD_GAIN, temp1); 

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[7] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[7] = val;
#endif
                return put_user(s->mix.vol[7], (int *)arg);

        case SOUND_MIXER_MIC:
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if (l > 100)
                        l = 100;
                if (l < 1) {
                        l = 0;
                        rl = 0;
                }
                else {
                        rl = ((unsigned)l*5 - 4)/16; // Convert 0-100 range to 0-31.
                        l  = (rl*16 +4)/5;
                }
                cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
                temp1 &= 0x40;                      // Isolate 20db gain bit.
                if (rl < 3){
                       temp1 |= 0x8000;
                       rl     = 0;
                }
                rl = 31 - rl;                       // Convert volume to attenuation.
                temp1 |= rl; 
                cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[5] = val << 8;
#else
                s->mix.vol[5] = val;
#endif
                return put_user(s->mix.vol[5], (int *)arg);
        
        
        case SOUND_MIXER_SYNTH:
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if (l > 100)
                        l = 100;
                get_user_ret(val, (int *)arg, -EFAULT);
                r = (val >> 8) & 0xff;
                if (r > 100)
                        r = 100;
                rl = (l * 2 - 11)/3;        // Convert 0-100 range to 0-63.
                rr = (r * 2 - 11)/3;
                if (rl < 3)                 // If l is low, turn on
                        temp1 = 0x0080;     //  the mute bit.
                else
                        temp1 = 0;

                rl = 63 - rl;               // Convert vol to attenuation.
                writel(temp1|rl, s->pBA0+BA0_FMLVC);
                if (rr < 3)                 //  If rr is low, turn on
                        temp1 = 0x0080;     //   the mute bit.
                else
                        temp1 = 0;
                rr = 63 - rr;               // Convert vol to attenuation.
                writel(temp1 | rr, s->pBA0+BA0_FMRVC);

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[4] = (r << 8) | l;
#else
                s->mix.vol[4] = val;
#endif
                return put_user(s->mix.vol[4], (int *)arg);

                
        default:
                i = _IOC_NR(cmd);
                if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
                        return -EINVAL;
                get_user_ret(val, (int *)arg, -EFAULT);
                l = val & 0xff;
                if (l > 100)
                        l = 100;
                if (l < 1) {
                        l = 0;
                        rl = 31;
                }
                else 
                        rl = (attentbl[(l*10)/100])>>1;
                
                r = (val >> 8) & 0xff;
                if (r > 100)
                        r = 100;
                if (r < 1) {
                        r = 0;
                        rr = 31;
                }
                else 
                        rr = (attentbl[(r*10)/100])>>1;                        
                if ((rl > 30) && (rr > 30))
                        temp1 = 0x8000;
                else
                        temp1 = 0;
                temp1 = temp1 | (rl << 8) | rr;              
                cs4281_write_ac97(s, mixreg[vidx-1], temp1);
                
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[vidx-1] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[vidx-1] = val;
#endif
                return put_user(s->mix.vol[vidx-1], (int *)arg);
        }
}


// --------------------------------------------------------------------- 

static loff_t cs4281_llseek(struct file *file, loff_t offset, int origin)
{
        return -ESPIPE;
}


// --------------------------------------------------------------------- 

static int cs4281_open_mixdev(struct inode *inode, struct file *file)
{
        int minor = MINOR(inode->i_rdev);
        struct cs4281_state *s = devs;

        while (s && s->dev_mixer != minor)
                s = s->next;
        if (!s)
                return -ENODEV;
        VALIDATE_STATE(s);
        file->private_data = s;
        MOD_INC_USE_COUNT;
        return 0;
}


static int cs4281_release_mixdev(struct inode *inode, struct file *file)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;

        VALIDATE_STATE(s);
        MOD_DEC_USE_COUNT;
        return 0;
}


static int cs4281_ioctl_mixdev(struct inode *inode, struct file *file,
                               unsigned int cmd, unsigned long arg)
{
        return mixer_ioctl((struct cs4281_state *)file->private_data, cmd, arg);
}


// ******************************************************************************************
//   Mixer file operations struct.
// ******************************************************************************************
static /*const*/ struct file_operations cs4281_mixer_fops = {
        &cs4281_llseek,
        NULL,  // read 
        NULL,  // write 
        NULL,  // readdir 
        NULL,  // poll 
        &cs4281_ioctl_mixdev,
        NULL,  // mmap 
        &cs4281_open_mixdev,
        NULL,  // flush 
        &cs4281_release_mixdev,
        NULL,  // fsync 
        NULL,  // fasync 
        NULL,  // check_media_change 
        NULL,  // revalidate 
        NULL,  // lock 
};


// --------------------------------------------------------------------- 

static int drain_dac(struct cs4281_state *s, int nonblock)
{
        DECLARE_WAITQUEUE(wait, current);
        unsigned long flags;
        int count;
        unsigned tmo;

        if (s->dma_dac.mapped)
                return 0;
        current->state = TASK_INTERRUPTIBLE;
        add_wait_queue(&s->dma_dac.wait, &wait);
        for (;;) {
                spin_lock_irqsave(&s->lock, flags);
                count = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
                if (count <= 0)
                        break;
                if (signal_pending(current))
                        break;
                if (nonblock) {
                        remove_wait_queue(&s->dma_dac.wait, &wait);
                        current->state = TASK_RUNNING;
                        return -EBUSY;
                }
                tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->rate;
                if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
                        tmo >>= 1;
                if (s->channels > 1)
                        tmo >>= 1;
                if (!schedule_timeout(tmo + 1))
                        printk(KERN_DEBUG "cs4281: dma timed out??\n");
        }
        remove_wait_queue(&s->dma_dac.wait, &wait);
        current->state = TASK_RUNNING;
        if (signal_pending(current))
                return -ERESTARTSYS;
        return 0;
}


// --------------------------------------------------------------------- 

static ssize_t cs4281_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned swptr;
        int cnt;

        VALIDATE_STATE(s);
        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (s->dma_adc.mapped)
                return -ENXIO;
        if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
                return ret;
        if (!access_ok(VERIFY_WRITE, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&s->lock, flags);
                swptr = s->dma_adc.swptr;
                cnt = s->dma_adc.dmasize-swptr;
                if (s->dma_adc.count < cnt)
                        cnt = s->dma_adc.count;
                spin_unlock_irqrestore(&s->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        start_adc(s);
                         if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&s->dma_adc.wait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt))
                        return ret ? ret : -EFAULT;
                swptr = (swptr + cnt) % s->dma_adc.dmasize;
                spin_lock_irqsave(&s->lock, flags);
                s->dma_adc.swptr = swptr;
                s->dma_adc.count -= cnt;
                spin_unlock_irqrestore(&s->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
                start_adc(s);
        }
        return ret;
}


static ssize_t cs4281_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned swptr;
        int cnt;

        VALIDATE_STATE(s);

        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (s->dma_dac.mapped)
                return -ENXIO;
        if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
                return ret;
        if (!access_ok(VERIFY_READ, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&s->lock, flags);
                if (s->dma_dac.count < 0) {
                        s->dma_dac.count = 0;
                        s->dma_dac.swptr = s->dma_dac.hwptr;
                }
                swptr = s->dma_dac.swptr;
                cnt = s->dma_dac.dmasize-swptr;
                if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
                        cnt = s->dma_dac.dmasize - s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        start_dac(s);
                        if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&s->dma_dac.wait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
                        return ret ? ret : -EFAULT;
                swptr = (swptr + cnt) % s->dma_dac.dmasize;
                spin_lock_irqsave(&s->lock, flags);
                s->dma_dac.swptr = swptr;
                s->dma_dac.count += cnt;
                s->dma_dac.endcleared = 0;
                spin_unlock_irqrestore(&s->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
                start_dac(s);
        }
        return ret;
}


static unsigned int cs4281_poll(struct file *file, struct poll_table_struct *wait)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        unsigned long flags;
        unsigned int mask = 0;

        VALIDATE_STATE(s);
        if (file->f_mode & FMODE_WRITE)
                poll_wait(file, &s->dma_dac.wait, wait);
        if (file->f_mode & FMODE_READ)
                poll_wait(file, &s->dma_adc.wait, wait);
        spin_lock_irqsave(&s->lock, flags);
        cs4281_update_ptr(s);
        if (file->f_mode & FMODE_READ) {
                if (s->dma_adc.mapped) {
                        if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                                mask |= POLLIN | POLLRDNORM;
                } else {
                        if (s->dma_adc.count > 0)
                                mask |= POLLIN | POLLRDNORM;
                }
        }
        if (file->f_mode & FMODE_WRITE) {
                if (s->dma_dac.mapped) {
                        if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                                mask |= POLLOUT | POLLWRNORM;
                } else {
                        if ((signed)s->dma_dac.dmasize > s->dma_dac.count)
                                mask |= POLLOUT | POLLWRNORM;
                }
        }
        spin_unlock_irqrestore(&s->lock, flags);
        return mask;
}


static int cs4281_mmap(struct file *file, struct vm_area_struct *vma)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        struct dmabuf *db;
        int ret;
        unsigned long size;

        VALIDATE_STATE(s);
        if (vma->vm_flags & VM_WRITE) {
                if ((ret = prog_dmabuf_dac(s)) != 0)
                        return ret;
                db = &s->dma_dac;
        } else if (vma->vm_flags & VM_READ) {
                if ((ret = prog_dmabuf_adc(s)) != 0)
                        return ret;
                db = &s->dma_adc;
        } else
                return -EINVAL;
        if (vma->vm_offset != 0)
                return -EINVAL;
        size = vma->vm_end - vma->vm_start;
        if (size > (PAGE_SIZE << db->buforder))
                return -EINVAL;
        if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot))
                return -EAGAIN;
        db->mapped = 1;
        return 0;
}


static int cs4281_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        unsigned long flags;
        audio_buf_info abinfo;
        count_info cinfo;
        int val, mapped, ret;
  
        VALIDATE_STATE(s);
        mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
                ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
        switch (cmd) {
        case OSS_GETVERSION:
                return put_user(SOUND_VERSION, (int *)arg);

        case SNDCTL_DSP_SYNC:
                if (file->f_mode & FMODE_WRITE)
                        return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
                return 0;

        case SNDCTL_DSP_SETDUPLEX:
                return 0;

        case SNDCTL_DSP_GETCAPS:
                return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);

        case SNDCTL_DSP_RESET:
                if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        synchronize_irq();
                        s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
                }
                if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        synchronize_irq();
                        s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
                }
                prog_codec(s);
                return 0;

        case SNDCTL_DSP_SPEED:
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val >= 0) {
                        stop_adc(s);
                        stop_dac(s);
                        s->dma_adc.ready = s->dma_dac.ready = 0;
                        // program sampling rates 
                        if (val > 48000)
                                val = 48000;
                        if (val < 6300)
                                val = 6300;
                        s->rate = val;
                        prog_codec(s);
                }
                return put_user(s->rate, (int *)arg);

        case SNDCTL_DSP_STEREO:
                get_user_ret(val, (int *)arg, -EFAULT);
                stop_adc(s);
                stop_dac(s);
                s->dma_adc.ready = s->dma_dac.ready = 0;
                // program channels 
                s->channels = val ? 2 : 1;
                prog_codec(s);
                return 0;

        case SNDCTL_DSP_CHANNELS:
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val != 0) {
                        stop_adc(s);
                        stop_dac(s);
                        s->dma_adc.ready = s->dma_dac.ready = 0;
                        // program channels 
                        s->channels = val ? 2 : 1;
                        prog_codec(s);
                }
                return put_user(s->channels, (int *)arg);

        case SNDCTL_DSP_GETFMTS: // Returns a mask 
                return put_user(AFMT_S16_LE|AFMT_U16_LE|AFMT_S8|AFMT_U8, (int *)arg);

        case SNDCTL_DSP_SETFMT: // Selects ONE fmt
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val != AFMT_QUERY) {
                        stop_adc(s);
                        stop_dac(s);
                        s->dma_adc.ready = s->dma_dac.ready = 0;
                        // program format 
                        if (val != AFMT_S16_LE && val != AFMT_U16_LE &&
                            val != AFMT_S8 && val != AFMT_U8)
                                val = AFMT_U8;
                        s->fmt = val;
                        prog_codec(s);
                }
                return put_user(s->fmt, (int *)arg);

        case SNDCTL_DSP_POST:
                return 0;

        case SNDCTL_DSP_GETTRIGGER:
                val = 0;
                if (file->f_mode & s->ena & FMODE_READ)
                        val |= PCM_ENABLE_INPUT;
                if (file->f_mode & s->ena & FMODE_WRITE)
                        val |= PCM_ENABLE_OUTPUT;
                return put_user(val, (int *)arg);

        case SNDCTL_DSP_SETTRIGGER:
                get_user_ret(val, (int *)arg, -EFAULT);
                if (file->f_mode & FMODE_READ) {
                        if (val & PCM_ENABLE_INPUT) {
                                if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
                                        return ret;
                                start_adc(s);
                        } else
                                stop_adc(s);
                }
                if (file->f_mode & FMODE_WRITE) {
                        if (val & PCM_ENABLE_OUTPUT) {
                                if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
                                        return ret;
                                start_dac(s);
                        } else
                                stop_dac(s);
                }
                return 0;

        case SNDCTL_DSP_GETOSPACE:
                if (!(file->f_mode & FMODE_WRITE))
                        return -EINVAL;
                if (!(s->ena & FMODE_WRITE) && (val = prog_dmabuf_dac(s)) != 0)
                        return val;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_update_ptr(s);
                abinfo.fragsize = s->dma_dac.fragsize;
                abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
                abinfo.fragstotal = s->dma_dac.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;  
                spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_GETISPACE:
                if (!(file->f_mode & FMODE_READ))
                        return -EINVAL;
                if (!(s->ena & FMODE_READ) && (val = prog_dmabuf_adc(s)) != 0)
                        return val;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_update_ptr(s);
                abinfo.fragsize = s->dma_adc.fragsize;
                abinfo.bytes = s->dma_adc.count;
                abinfo.fragstotal = s->dma_adc.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
                spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_NONBLOCK:
                file->f_flags |= O_NONBLOCK;
                return 0;

        case SNDCTL_DSP_GETODELAY:
                if (!(file->f_mode & FMODE_WRITE))
                        return -EINVAL;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_update_ptr(s);
                val = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
                return put_user(val, (int *)arg);

        case SNDCTL_DSP_GETIPTR:
                if (!(file->f_mode & FMODE_READ))
                        return -EINVAL;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_update_ptr(s);
                cinfo.bytes = s->dma_adc.total_bytes;
                cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
                cinfo.ptr = s->dma_adc.hwptr;
                if (s->dma_adc.mapped)
                        s->dma_adc.count &= s->dma_adc.fragsize-1;
                spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));

        case SNDCTL_DSP_GETOPTR:
                if (!(file->f_mode & FMODE_WRITE))
                        return -EINVAL;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_update_ptr(s);
                cinfo.bytes = s->dma_dac.total_bytes;
                cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
                cinfo.ptr = s->dma_dac.hwptr;
                if (s->dma_dac.mapped)
                        s->dma_dac.count &= s->dma_dac.fragsize-1;
                spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));

        case SNDCTL_DSP_GETBLKSIZE:
                if (file->f_mode & FMODE_WRITE) {
                        if ((val = prog_dmabuf_dac(s)))
                                return val;
                        return put_user(s->dma_dac.fragsize, (int *)arg);
                }
                if ((val = prog_dmabuf_adc(s)))
                        return val;
                return put_user(s->dma_adc.fragsize, (int *)arg);

        case SNDCTL_DSP_SETFRAGMENT:
                get_user_ret(val, (int *)arg, -EFAULT);
                return 0;              // Say OK, but do nothing.

        case SNDCTL_DSP_SUBDIVIDE:
                if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
                    (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
                        return -EINVAL;
                get_user_ret(val, (int *)arg, -EFAULT);
                if (val != 1 && val != 2 && val != 4)
                        return -EINVAL;
                if (file->f_mode & FMODE_READ)
                        s->dma_adc.subdivision = val;
                if (file->f_mode & FMODE_WRITE)
                        s->dma_dac.subdivision = val;
                return 0;

        case SOUND_PCM_READ_RATE:
                return put_user(s->rate, (int *)arg);

        case SOUND_PCM_READ_CHANNELS:
                return put_user(s->channels, (int *)arg);

        case SOUND_PCM_READ_BITS:
                return put_user((s->fmt & (AFMT_S8|AFMT_U8)) ? 8 : 16, (int *)arg);

        case SOUND_PCM_WRITE_FILTER:
        case SNDCTL_DSP_SETSYNCRO:
        case SOUND_PCM_READ_FILTER:
                return -EINVAL;

        }
        return mixer_ioctl(s, cmd, arg);
}


static int cs4281_release(struct inode *inode, struct file *file)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;

        VALIDATE_STATE(s);

        if (file->f_mode & FMODE_WRITE)
                drain_dac(s, file->f_flags & O_NONBLOCK);
        down(&s->open_sem);
        if (file->f_mode & FMODE_WRITE) {
                stop_dac(s);
                dealloc_dmabuf(&s->dma_dac);
        }
        if (file->f_mode & FMODE_READ) {
                stop_adc(s);
                dealloc_dmabuf(&s->dma_adc);
        }
        s->open_mode &= ~(FMODE_READ | FMODE_WRITE);
        up(&s->open_sem);
        wake_up(&s->open_wait);
        MOD_DEC_USE_COUNT;
        return 0;
}

static int cs4281_open(struct inode *inode, struct file *file)
{
        int minor = MINOR(inode->i_rdev);
        struct cs4281_state *s = devs;

        while (s && ((s->dev_audio ^ minor) & ~0xf))
                s = s->next;
        if (!s)
                return -ENODEV;
        VALIDATE_STATE(s);
        file->private_data = s;
        
                // wait for device to become free 
        down(&s->open_sem);
        while (s->open_mode & (FMODE_READ | FMODE_WRITE)) {
                if (file->f_flags & O_NONBLOCK) {
                        up(&s->open_sem);
                        return -EBUSY;
                }
                up(&s->open_sem);
                interruptible_sleep_on(&s->open_wait);
                if (signal_pending(current))
                        return -ERESTARTSYS;
                down(&s->open_sem);
        }
        s->fmt = AFMT_U8;
        s->channels = 1;
        s->rate = 8000;
        s->clkdiv = 96 | 0x80;
        s->ena = 0;
        s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
        s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
        s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
        up(&s->open_sem);
        MOD_INC_USE_COUNT;

        if (prog_dmabuf_dac(s) || prog_dmabuf_adc(s)) {
                
             printk(KERN_ERR "cs4281: Program dmabufs failed.\n");
             cs4281_release(inode, file);
                
             return -ENOMEM;
        }
        prog_codec(s);
        return 0;
}


// ******************************************************************************************
//   Wave (audio) file operations struct.
// ******************************************************************************************
static /*const*/ struct file_operations cs4281_audio_fops = {
        &cs4281_llseek,
        &cs4281_read,
        &cs4281_write,
        NULL,  // readdir 
        &cs4281_poll,
        &cs4281_ioctl,
        &cs4281_mmap,
        &cs4281_open,
        NULL,  // flush 
        &cs4281_release,
        NULL,  // fsync 
        NULL,  // fasync 
        NULL,  // check_media_change 
        NULL,  // revalidate 
        NULL,  // lock 
};

// --------------------------------------------------------------------- 

// hold spinlock for the following! 
static void cs4281_handle_midi(struct cs4281_state *s)
{
        unsigned char ch;
        int wake;
        unsigned temp1;

        wake = 0;
        while (!(readl(s->pBA0+ BA0_MIDSR) & 0x80)) {
                ch = readl(s->pBA0+BA0_MIDRP);
                if (s->midi.icnt < MIDIINBUF) {
                        s->midi.ibuf[s->midi.iwr] = ch;
                        s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
                        s->midi.icnt++;
                }
                wake = 1;
        }
        if (wake)
                wake_up(&s->midi.iwait);
        wake = 0;
        while (!(readl(s->pBA0+ BA0_MIDSR) & 0x40) && s->midi.ocnt > 0) {
                temp1 = ( s->midi.obuf[s->midi.ord] ) & 0x000000ff;
                writel(temp1, s->pBA0+BA0_MIDWP);
                s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
                s->midi.ocnt--;
                if (s->midi.ocnt < MIDIOUTBUF-16)
                        wake = 1;
        }
        if (wake)
                wake_up(&s->midi.owait);
}



static void cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        struct cs4281_state *s = (struct cs4281_state *)dev_id;
        unsigned int temp1;

        // fastpath out, to ease interrupt sharing 
        temp1 = readl(s->pBA0+BA0_HISR);                          // Get Int Status reg.
        if (!(temp1 & (HISR_DMA0 | HISR_DMA1 | HISR_MIDI))) {     // If not DMA or MIDI int,
                writel(HICR_IEV| HICR_CHGM, s->pBA0+BA0_HICR);    //  reenable interrupts
                return;                                           //   and return.
        }
        
        if(temp1 & HISR_DMA0)                      // If play interrupt,
                readl(s->pBA0+BA0_HDSR0);              //   clear the source.

        if(temp1 & HISR_DMA1)                      // Same for play.
                readl(s->pBA0+BA0_HDSR1);        
        writel(HICR_IEV| HICR_CHGM, s->pBA0+BA0_HICR);  // Local EOI
        
        spin_lock(&s->lock);
        cs4281_update_ptr(s);
        cs4281_handle_midi(s);
        spin_unlock(&s->lock);
}

// **************************************************************************

static void cs4281_midi_timer(unsigned long data)
{
        struct cs4281_state *s = (struct cs4281_state *)data;
        unsigned long flags;

        spin_lock_irqsave(&s->lock, flags);
        cs4281_handle_midi(s);
        spin_unlock_irqrestore(&s->lock, flags);
        s->midi.timer.expires = jiffies+1;
        add_timer(&s->midi.timer);
}


// --------------------------------------------------------------------- 

static ssize_t cs4281_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned ptr;
        int cnt;

        VALIDATE_STATE(s);
        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (!access_ok(VERIFY_WRITE, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&s->lock, flags);
                ptr = s->midi.ird;
                cnt = MIDIINBUF - ptr;
                if (s->midi.icnt < cnt)
                        cnt = s->midi.icnt;
                spin_unlock_irqrestore(&s->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&s->midi.iwait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt))
                        return ret ? ret : -EFAULT;
                ptr = (ptr + cnt) % MIDIINBUF;
                spin_lock_irqsave(&s->lock, flags);
                s->midi.ird = ptr;
                s->midi.icnt -= cnt;
                spin_unlock_irqrestore(&s->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
        }
        return ret;
}


static ssize_t cs4281_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned ptr;
        int cnt;

        VALIDATE_STATE(s);
        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (!access_ok(VERIFY_READ, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&s->lock, flags);
                ptr = s->midi.owr;
                cnt = MIDIOUTBUF - ptr;
                if (s->midi.ocnt + cnt > MIDIOUTBUF)
                        cnt = MIDIOUTBUF - s->midi.ocnt;
                if (cnt <= 0)
                        cs4281_handle_midi(s);
                spin_unlock_irqrestore(&s->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&s->midi.owait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_from_user(s->midi.obuf + ptr, buffer, cnt))
                        return ret ? ret : -EFAULT;
                ptr = (ptr + cnt) % MIDIOUTBUF;
                spin_lock_irqsave(&s->lock, flags);
                s->midi.owr = ptr;
                s->midi.ocnt += cnt;
                spin_unlock_irqrestore(&s->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
                spin_lock_irqsave(&s->lock, flags);
                cs4281_handle_midi(s);
                spin_unlock_irqrestore(&s->lock, flags);
        }
        return ret;
}


static unsigned int cs4281_midi_poll(struct file *file, struct poll_table_struct *wait)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        unsigned long flags;
        unsigned int mask = 0;

        VALIDATE_STATE(s);
        if (file->f_flags & FMODE_WRITE)
                poll_wait(file, &s->midi.owait, wait);
        if (file->f_flags & FMODE_READ)
                poll_wait(file, &s->midi.iwait, wait);
        spin_lock_irqsave(&s->lock, flags);
        if (file->f_flags & FMODE_READ) {
                if (s->midi.icnt > 0)
                        mask |= POLLIN | POLLRDNORM;
        }
        if (file->f_flags & FMODE_WRITE) {
                if (s->midi.ocnt < MIDIOUTBUF)
                        mask |= POLLOUT | POLLWRNORM;
        }
        spin_unlock_irqrestore(&s->lock, flags);
        return mask;
}


static int cs4281_midi_open(struct inode *inode, struct file *file)
{
        int minor = MINOR(inode->i_rdev);
        struct cs4281_state *s = devs;
        unsigned long flags,temp1;
        while (s && s->dev_midi != minor)
                s = s->next;
        if (!s)
                return -ENODEV;
        VALIDATE_STATE(s);
        file->private_data = s;
        // wait for device to become free 
        down(&s->open_sem);
        while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
                if (file->f_flags & O_NONBLOCK) {
                        up(&s->open_sem);
                        return -EBUSY;
                }
                up(&s->open_sem);
                interruptible_sleep_on(&s->open_wait);
                if (signal_pending(current))
                        return -ERESTARTSYS;
                down(&s->open_sem);
        }
        spin_lock_irqsave(&s->lock, flags);
        if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
                s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
                s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
                writel(1, s->pBA0+BA0_MIDCR);   // Reset the interface.
                writel(0, s->pBA0+BA0_MIDCR);   // Return to normal mode.
                s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
                writel(0x0000000f, s->pBA0+BA0_MIDCR);                // Enable transmit, record, ints.
                temp1 = readl(s->pBA0+BA0_HIMR);
                writel(temp1 & 0xffbfffff, s->pBA0+BA0_HIMR);         // Enable midi int. recognition.
                writel(HICR_IEV | HICR_CHGM, s->pBA0+BA0_HICR);       // Enable interrupts
                init_timer(&s->midi.timer);
                s->midi.timer.expires = jiffies+1;
                s->midi.timer.data = (unsigned long)s;
                s->midi.timer.function = cs4281_midi_timer;
                add_timer(&s->midi.timer);
        }
        if (file->f_mode & FMODE_READ) {
                s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
        }
        if (file->f_mode & FMODE_WRITE) {
                s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
        }
        spin_unlock_irqrestore(&s->lock, flags);
        s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
        up(&s->open_sem);
        MOD_INC_USE_COUNT;
        return 0;
}


static int cs4281_midi_release(struct inode *inode, struct file *file)
{
        struct cs4281_state *s = (struct cs4281_state *)file->private_data;
        DECLARE_WAITQUEUE(wait, current);
        unsigned long flags;
        unsigned count, tmo;

        VALIDATE_STATE(s);

        if (file->f_mode & FMODE_WRITE) {
                current->state = TASK_INTERRUPTIBLE;
                add_wait_queue(&s->midi.owait, &wait);
                for (;;) {
                        spin_lock_irqsave(&s->lock, flags);
                        count = s->midi.ocnt;
                        spin_unlock_irqrestore(&s->lock, flags);
                        if (count <= 0)
                                break;
                        if (signal_pending(current))
                                break;
                        if (file->f_flags & O_NONBLOCK) {
                                remove_wait_queue(&s->midi.owait, &wait);
                                current->state = TASK_RUNNING;
                                return -EBUSY;
                        }
                        tmo = (count * HZ) / 3100;
                        if (!schedule_timeout(tmo ? : 1) && tmo)
                                printk(KERN_DEBUG "cs4281: midi timed out??\n");
                }
                remove_wait_queue(&s->midi.owait, &wait);
                current->state = TASK_RUNNING;
        }
        down(&s->open_sem);
        s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE);
        spin_lock_irqsave(&s->lock, flags);
        if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
                writel(0, s->pBA0+BA0_MIDCR);    // Disable Midi interrupts.  
                del_timer(&s->midi.timer);
        }
        spin_unlock_irqrestore(&s->lock, flags);
        up(&s->open_sem);
        wake_up(&s->open_wait);
        MOD_DEC_USE_COUNT;
        return 0;
}

// ******************************************************************************************
//   Midi file operations struct.
// ******************************************************************************************
static /*const*/ struct file_operations cs4281_midi_fops = {
        &cs4281_llseek,
        &cs4281_midi_read,
        &cs4281_midi_write,
        NULL,  // readdir 
        &cs4281_midi_poll,
        NULL,  // ioctl 
        NULL,  // mmap 
        &cs4281_midi_open,
        NULL,  // flush 
        &cs4281_midi_release,
        NULL,  // fsync 
        NULL,  // fasync 
        NULL,  // check_media_change 
        NULL,  // revalidate 
        NULL,  // lock 
};


// --------------------------------------------------------------------- 

// maximum number of devices 
#define NR_DEVICE 8          // Only eight devices supported currently.

// --------------------------------------------------------------------- 

static struct initvol {
        int mixch;
        int vol;
} initvol[] __initdata = {
        { SOUND_MIXER_WRITE_VOLUME, 0x4040 },
        { SOUND_MIXER_WRITE_PCM, 0x4040 },
        { SOUND_MIXER_WRITE_SYNTH, 0x4040 },
        { SOUND_MIXER_WRITE_CD, 0x4040 },
        { SOUND_MIXER_WRITE_LINE, 0x4040 },
        { SOUND_MIXER_WRITE_LINE1, 0x4040 },
        { SOUND_MIXER_WRITE_RECLEV, 0x0000 },
        { SOUND_MIXER_WRITE_SPEAKER, 0x4040 },
        { SOUND_MIXER_WRITE_MIC, 0x0000 }
};


int __init cs4281_probe(void)
{
        struct cs4281_state *s;
        struct pci_dev *pcidev = NULL;
        mm_segment_t fs;
        int i, val, index = 0;
        unsigned int temp1, temp2;
 
        if (!pci_present())   // No PCI bus in this machine! 
                return -ENODEV;
        printk(KERN_INFO "cs4281: version 0.9 time " __TIME__ " " __DATE__ "\n");
        while (index < NR_DEVICE && 
        	(pcidev = pci_find_device(PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CRYSTAL_CS4281, pcidev)))
        {   
                if (!(s = kmalloc(sizeof(struct cs4281_state), GFP_KERNEL))) {
                        printk(KERN_ERR "cs4281: no memory for state struct.\n");
                        continue;
                }

                memset(s, 0, sizeof(struct cs4281_state));
                init_waitqueue_head(&s->dma_adc.wait);
                init_waitqueue_head(&s->dma_dac.wait);
                init_waitqueue_head(&s->open_wait);
                init_waitqueue_head(&s->midi.iwait);
                init_waitqueue_head(&s->midi.owait);
                init_MUTEX(&s->open_sem);
                s->pBA0phys = pcidev->base_address[0]&PCI_BASE_ADDRESS_MEM_MASK;                  // Get physical addresses
                s->pBA1phys = pcidev->base_address[1]&PCI_BASE_ADDRESS_MEM_MASK;                  //  of part.
		s->pBA0 = ioremap_nocache(s->pBA0phys, 4096);		// Convert phys 
		s->pBA1 = ioremap_nocache(s->pBA1phys, 65536);  	//  to linear. 
                temp1 = readl(s->pBA0+ BA0_PCICFG00);
                temp2 = readl(s->pBA0+ BA0_PCICFG04);
                temp1 = cs4281_hw_init(s);
                if(temp1){
                        printk(KERN_INFO "cs4281: Hardware setup failed. Skipping part.\n");
                        continue;
                }	
                s->magic = CS4281_MAGIC;
		s->pcidev = pcidev;
                s->irq = pcidev->irq;
                if(request_irq(s->irq, cs4281_interrupt, SA_SHIRQ, "Crystal CS4281", s)){
                        printk(KERN_ERR "cs4281: irq %u in use\n", s->irq);
                        goto err_irq;
                }
                if ((s->dev_audio = register_sound_dsp(&cs4281_audio_fops, -1)) < 0)
                        goto err_dev1;
                if ((s->dev_mixer = register_sound_mixer(&cs4281_mixer_fops, -1)) < 0)
                        goto err_dev2;
                if ((s->dev_midi = register_sound_midi(&cs4281_midi_fops, -1)) < 0)
                        goto err_dev3;
                                    
                pci_set_master(pcidev);           // enable bus mastering 

                fs = get_fs();
                set_fs(KERNEL_DS);
                val = SOUND_MASK_LINE;
                mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
                for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
                        val = initvol[i].vol;
                        mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
                }
                val = 1; // enable mic preamp 
                mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long)&val);
                set_fs(fs);
                
                // queue it for later freeing 
                s->next = devs;
                devs = s;
                index++;
                continue;

        err_dev3:
                unregister_sound_mixer(s->dev_mixer);
        err_dev2:
                unregister_sound_dsp(s->dev_audio);
        err_dev1:
                printk(KERN_ERR "cs4281: cannot register dsp device\n");
                free_irq(s->irq, s);
        err_irq:
                kfree_s(s, sizeof(struct cs4281_state));
        } // endwhile
        if (!devs)
                return -ENODEV;
        return 0;
} // init_cs4281


// --------------------------------------------------------------------- 


#ifdef MODULE

MODULE_AUTHOR("gw boynton, wesb@crystal.cirrus.com");
MODULE_DESCRIPTION("Cirrus Logic CS4281 Driver");

int init_module(void)
{
	return cs4281_probe();
}

void cleanup_module(void)
{
        struct cs4281_state *s;
        while ((s = devs)) {
                devs = devs->next;
                // stop DMA controller 
                synchronize_irq();
                free_irq(s->irq, s);              
                unregister_sound_dsp(s->dev_audio);
                unregister_sound_mixer(s->dev_mixer);
                unregister_sound_midi(s->dev_midi);
                iounmap(s->pBA0);
                iounmap(s->pBA1);
                kfree_s(s, sizeof(struct cs4281_state));
        }
}

// --------------------------------------------------------------------- 

#endif