1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
|
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V3.1//EN"[]>
<book id="LKLockingGuide">
<bookinfo>
<title>Unreliable Guide To Locking</title>
<authorgroup>
<author>
<firstname>Paul</firstname>
<othername>Rusty</othername>
<surname>Russell</surname>
<affiliation>
<address>
<email>rusty@rustcorp.com.au</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2000</year>
<holder>Paul Russell</holder>
</copyright>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<chapter id="intro">
<title>Introduction</title>
<para>
Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
Locking issues. This document describes the locking systems in
the Linux Kernel as we approach 2.4.
</para>
<para>
It looks like <firstterm linkend="gloss-smp"><acronym>SMP</acronym>
</firstterm> is here to stay; so everyone hacking on the kernel
these days needs to know the fundamentals of concurrency and locking
for SMP.
</para>
<sect1 id="races">
<title>The Problem With Concurrency</title>
<para>
(Skip this if you know what a Race Condition is).
</para>
<para>
In a normal program, you can increment a counter like so:
</para>
<programlisting>
very_important_count++;
</programlisting>
<para>
This is what they would expect to happen:
</para>
<table>
<title>Expected Results</title>
<tgroup cols=2 align=left>
<thead>
<row>
<entry>Instance 1</entry>
<entry>Instance 2</entry>
</row>
</thead>
<tbody>
<row>
<entry>read very_important_count (5)</entry>
<entry></entry>
</row>
<row>
<entry>add 1 (6)</entry>
<entry></entry>
</row>
<row>
<entry>write very_important_count (6)</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>read very_important_count (6)</entry>
</row>
<row>
<entry></entry>
<entry>add 1 (7)</entry>
</row>
<row>
<entry></entry>
<entry>write very_important_count (7)</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
This is what might happen:
</para>
<table>
<title>Possible Results</title>
<tgroup cols=2 align=left>
<thead>
<row>
<entry>Instance 1</entry>
<entry>Instance 2</entry>
</row>
</thead>
<tbody>
<row>
<entry>read very_important_count (5)</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>read very_important_count (5)</entry>
</row>
<row>
<entry>add 1 (6)</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>add 1 (6)</entry>
</row>
<row>
<entry>write very_important_count (6)</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>write very_important_count (6)</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
This overlap, where what actually happens depends on the
relative timing of multiple tasks, is called a race condition.
The piece of code containing the concurrency issue is called a
critical region. And especially since Linux starting running
on SMP machines, they became one of the major issues in kernel
design and implementation.
</para>
<para>
The solution is to recognize when these simultaneous accesses
occur, and use locks to make sure that only one instance can
enter the critical region at any time. There are many
friendly primitives in the Linux kernel to help you do this.
And then there are the unfriendly primitives, but I'll pretend
they don't exist.
</para>
</sect1>
</chapter>
<chapter id="locks">
<title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
<para>
There are two main types of kernel locks. The fundamental type
is the spinlock
(<filename class=headerfile>include/asm/spinlock.h</filename>),
which is a very simple single-holder lock: if you can't get the
spinlock, you keep trying (spinning) until you can. Spinlocks are
very small and fast, and can be used anywhere.
</para>
<para>
The second type is a semaphore
(<filename class=headerfile>include/asm/semaphore.h</filename>): it
can have more than one holder at any time (the number decided at
initialization time), although it is most commonly used as a
single-holder lock (a mutex). If you can't get a semaphore,
your task will put itself on the queue, and be woken up when the
semaphore is released. This means the CPU will do something
else while you are waiting, but there are many cases when you
simply can't sleep (see <xref linkend="sleeping-things">), and so
have to use a spinlock instead.
</para>
<para>
Neither type of lock is recursive: see
<xref linkend="techniques-deadlocks">.
</para>
<sect1 id="uniprocessor">
<title>Locks and Uniprocessor Kernels</title>
<para>
For kernels compiled without <symbol>CONFIG_SMP</symbol>, spinlocks
do not exist at all. This is an excellent design decision: when
no-one else can run at the same time, there is no reason to
have a lock at all.
</para>
<para>
You should always test your locking code with <symbol>CONFIG_SMP</symbol>
enabled, even if you don't have an SMP test box, because it
will still catch some (simple) kinds of deadlock.
</para>
<para>
Semaphores still exist, because they are required for
synchronization between <firstterm linkend="gloss-usercontext">user
contexts</firstterm>, as we will see below.
</para>
</sect1>
<sect1 id="rwlocks">
<title>Read/Write Lock Variants</title>
<para>
Both spinlocks and semaphores have read/write variants:
<type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
These divide users into two classes: the readers and the writers. If
you are only reading the data, you can get a read lock, but to write to
the data you need the write lock. Many people can hold a read lock,
but a writer must be sole holder.
</para>
<para>
This means much smoother locking if your code divides up
neatly along reader/writer lines. All the discussions below
also apply to read/write variants.
</para>
</sect1>
<sect1 id="usercontextlocking">
<title>Locking Only In User Context</title>
<para>
If you have a data structure which is only ever accessed from
user context, then you can use a simple semaphore
(<filename>linux/asm/semaphore.h</filename>) to protect it. This
is the most trivial case: you initialize the semaphore to the number
of resources available (usually 1), and call
<function>down_interruptible()</function> to grab the semaphore, and
<function>up()</function> to release it. There is also a
<function>down()</function>, which should be avoided, because it
will not return if a signal is received.
</para>
<para>
Example: <filename>linux/net/core/netfilter.c</filename> allows
registration of new <function>setsockopt()</function> and
<function>getsockopt()</function> calls, with
<function>nf_register_sockopt()</function>. Registration and
de-registration are only done on module load and unload (and boot
time, where there is no concurrency), and the list of registrations
is only consulted for an unknown <function>setsockopt()</function>
or <function>getsockopt()</function> system call. The
<varname>nf_sockopt_mutex</varname> is perfect to protect this,
especially since the setsockopt and getsockopt calls may well
sleep.
</para>
</sect1>
<sect1 id="lock-user-bh">
<title>Locking Between User Context and BHs</title>
<para>
If a <firstterm linkend="gloss-bh">bottom half</firstterm> shares
data with user context, you have two problems. Firstly, the current
user context can be interrupted by a bottom half, and secondly, the
critical region could be entered from another CPU. This is where
<function>spin_lock_bh()</function>
(<filename class=headerfile>include/linux/spinlock.h</filename>) is
used. It disables bottom halves on that CPU, then grabs the lock.
<function>spin_unlock_bh()</function> does the reverse.
</para>
<para>
This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
</acronym></firstterm> as well: the spin lock vanishes, and this macro
simply becomes <function>local_bh_disable()</function>
(<filename class=headerfile>include/asm/softirq.h</filename>), which
protects you from the bottom half being run.
</para>
</sect1>
<sect1 id="lock-user-tasklet">
<title>Locking Between User Context and Tasklets/Soft IRQs</title>
<para>
This is exactly the same as above, because
<function>local_bh_disable()</function> actually disables all
softirqs and <firstterm linkend="gloss-tasklet">tasklets</firstterm>
on that CPU as well. It should really be
called `local_softirq_disable()', but the name has been preserved
for historical reasons. Similarly,
<function>spin_lock_bh()</function> would now be called
spin_lock_softirq() in a perfect world.
</para>
</sect1>
<sect1 id="lock-bh">
<title>Locking Between Bottom Halves</title>
<para>
Sometimes a bottom half might want to share data with
another bottom half (especially remember that timers are run
off a bottom half).
</para>
<sect2 id="lock-bh-same">
<title>The Same BH</title>
<para>
Since a bottom half is never run on two CPUs at once, you
don't need to worry about your bottom half being run twice
at once, even on SMP.
</para>
</sect2>
<sect2 id="lock-bh-different">
<title>Different BHs</title>
<para>
Since only one bottom half ever runs at a time once, you
don't need to worry about race conditions with other bottom
halves. Beware that things might change under you, however,
if someone changes your bottom half to a tasklet. If you
want to make your code future-proof, pretend you're already
running from a tasklet (see below), and doing the extra
locking. Of course, if it's five years before that happens,
you're gonna look like a damn fool.
</para>
</sect2>
</sect1>
<sect1 id="lock-tasklets">
<title>Locking Between Tasklets</title>
<para>
Sometimes a tasklet might want to share data with another
tasklet, or a bottom half.
</para>
<sect2 id="lock-tasklets-same">
<title>The Same Tasklet</title>
<para>
Since a tasklet is never run on two CPUs at once, you don't
need to worry about your tasklet being reentrant (running
twice at once), even on SMP.
</para>
</sect2>
<sect2 id="lock-tasklets-different">
<title>Different Tasklets</title>
<para>
If another tasklet (or bottom half, such as a timer) wants
to share data with your tasklet, you will both need to use
<function>spin_lock()</function> and
<function>spin_unlock()</function> calls.
<function>spin_lock_bh()</function> is
unnecessary here, as you are already in a tasklet, and
none will be run on the same CPU.
</para>
</sect2>
</sect1>
<sect1 id="lock-softirqs">
<title>Locking Between Softirqs</title>
<para>
Often a <firstterm linkend="gloss-softirq">softirq</firstterm> might
want to share data with itself, a tasklet, or a bottom half.
</para>
<sect2 id="lock-softirqs-same">
<title>The Same Softirq</title>
<para>
The same softirq can run on the other CPUs: you can use a
per-CPU array (see <xref linkend="per-cpu">) for better
performance. If you're going so far as to use a softirq,
you probably care about scalable performance enough
to justify the extra complexity.
</para>
<para>
You'll need to use <function>spin_lock()</function> and
<function>spin_unlock()</function> for shared data.
</para>
</sect2>
<sect2 id="lock-softirqs-different">
<title>Different Softirqs</title>
<para>
You'll need to use <function>spin_lock()</function> and
<function>spin_unlock()</function> for shared data, whether it
be a timer (which can be running on a different CPU), bottom half,
tasklet or the same or another softirq.
</para>
</sect2>
</sect1>
</chapter>
<chapter id="hardirq-context">
<title>Hard IRQ Context</title>
<para>
Hardware interrupts usually communicate with a bottom half,
tasklet or softirq. Frequently this involves putting work in a
queue, which the BH/softirq will take out.
</para>
<sect1 id="hardirq-softirq">
<title>Locking Between Hard IRQ and Softirqs/Tasklets/BHs</title>
<para>
If a hardware irq handler shares data with a softirq, you have
two concerns. Firstly, the softirq processing can be
interrupted by a hardware interrupt, and secondly, the
critical region could be entered by a hardware interrupt on
another CPU. This is where <function>spin_lock_irq()</function> is
used. It is defined to disable interrupts on that cpu, then grab
the lock. <function>spin_unlock_irq()</function> does the reverse.
</para>
<para>
This works perfectly for UP as well: the spin lock vanishes,
and this macro simply becomes <function>local_irq_disable()</function>
(<filename class=headerfile>include/asm/smp.h</filename>), which
protects you from the softirq/tasklet/BH being run.
</para>
<para>
<function>spin_lock_irqsave()</function>
(<filename>include/linux/spinlock.h</filename>) is a variant
which saves whether interrupts were on or off in a flags word,
which is passed to <function>spin_lock_irqrestore()</function>. This
means that the same code can be used inside an hard irq handler (where
interrupts are already off) and in softirqs (where the irq
disabling is required).
</para>
</sect1>
</chapter>
<chapter id="common-techniques">
<title>Common Techniques</title>
<para>
This section lists some common dilemmas and the standard
solutions used in the Linux kernel code. If you use these,
people will find your code simpler to understand.
</para>
<para>
If I could give you one piece of advice: never sleep with anyone
crazier than yourself. But if I had to give you advice on
locking: <emphasis>keep it simple</emphasis>.
</para>
<para>
Lock data, not code.
</para>
<para>
Be reluctant to introduce new locks.
</para>
<para>
Strangely enough, this is the exact reverse of my advice when
you <emphasis>have</emphasis> slept with someone crazier than yourself.
</para>
<sect1 id="techniques-no-writers">
<title>No Writers in Interrupt Context</title>
<para>
There is a fairly common case where an interrupt handler needs
access to a critical region, but does not need write access.
In this case, you do not need to use
<function>read_lock_irq()</function>, but only
<function>read_lock()</function> everywhere (since if an interrupt
occurs, the irq handler will only try to grab a read lock, which
won't deadlock). You will still need to use
<function>write_lock_irq()</function>.
</para>
<para>
Similar logic applies to locking between softirqs/tasklets/BHs
which never need a write lock, and user context:
<function>read_lock()</function> and
<function>write_lock_bh()</function>.
</para>
</sect1>
<sect1 id="techniques-deadlocks">
<title>Deadlock: Simple and Advanced</title>
<para>
There is a coding bug where a piece of code tries to grab a
spinlock twice: it will spin forever, waiting for the lock to
be released (spinlocks, rwlocks and semaphores are not
recursive in Linux). This is trivial to diagnose: not a
stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
problem.
</para>
<para>
For a slightly more complex case, imagine you have a region
shared by a bottom half and user context. If you use a
<function>spin_lock()</function> call to protect it, it is
possible that the user context will be interrupted by the bottom
half while it holds the lock, and the bottom half will then spin
forever trying to get the same lock.
</para>
<para>
Both of these are called deadlock, and as shown above, it can
occur even with a single CPU (although not on UP compiles,
since spinlocks vanish on kernel compiles with
<symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption
in the second example).
</para>
<para>
This complete lockup is easy to diagnose: on SMP boxes the
watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
(<filename>include/linux/spinlock.h</filename>) will show this up
immediately when it happens.
</para>
<para>
A more complex problem is the so-called `deadly embrace',
involving two or more locks. Say you have a hash table: each
entry in the table is a spinlock, and a chain of hashed
objects. Inside a softirq handler, you sometimes want to
alter an object from one place in the hash to another: you
grab the spinlock of the old hash chain and the spinlock of
the new hash chain, and delete the object from the old one,
and insert it in the new one.
</para>
<para>
There are two problems here. First, if your code ever
tries to move the object to the same chain, it will deadlock
with itself as it tries to lock it twice. Secondly, if the
same softirq on another CPU is trying to move another object
in the reverse direction, the following could happen:
</para>
<table>
<title>Consequences</title>
<tgroup cols=2 align=left>
<thead>
<row>
<entry>CPU 1</entry>
<entry>CPU 2</entry>
</row>
</thead>
<tbody>
<row>
<entry>Grab lock A -> OK</entry>
<entry>Grab lock B -> OK</entry>
</row>
<row>
<entry>Grab lock B -> spin</entry>
<entry>Grab lock A -> spin</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
The two CPUs will spin forever, waiting for the other to give up
their lock. It will look, smell, and feel like a crash.
</para>
<sect2 id="techs-deadlock-prevent">
<title>Preventing Deadlock</title>
<para>
Textbooks will tell you that if you always lock in the same
order, you will never get this kind of deadlock. Practice
will tell you that this approach doesn't scale: when I
create a new lock, I don't understand enough of the kernel
to figure out where in the 5000 lock hierarchy it will fit.
</para>
<para>
The best locks are encapsulated: they never get exposed in
headers, and are never held around calls to non-trivial
functions outside the same file. You can read through this
code and see that it will never deadlock, because it never
tries to grab another lock while it has that one. People
using your code don't even need to know you are using a
lock.
</para>
<para>
A classic problem here is when you provide callbacks or
hooks: if you call these with the lock held, you risk simple
deadlock, or a deadly embrace (who knows what the callback
will do?). Remember, the other programmers are out to get
you, so don't do this.
</para>
</sect2>
<sect2 id="techs-deadlock-overprevent">
<title>Overzealous Prevention Of Deadlocks</title>
<para>
Deadlocks are problematic, but not as bad as data
corruption. Code which grabs a read lock, searches a list,
fails to find what it wants, drops the read lock, grabs a
write lock and inserts the object has a race condition.
</para>
<para>
If you don't see why, please stay the fuck away from my code.
</para>
</sect2>
</sect1>
<sect1 id="per-cpu">
<title>Per-CPU Data</title>
<para>
A great technique for avoiding locking which is used fairly
widely is to duplicate information for each CPU. For example,
if you wanted to keep a count of a common condition, you could
use a spin lock and a single counter. Nice and simple.
</para>
<para>
If that was too slow [it's probably not], you could instead
use a counter for each CPU [don't], then none of them need an
exclusive lock [you're wasting your time here]. To make sure
the CPUs don't have to synchronize caches all the time, align
the counters to cache boundaries by appending
`__cacheline_aligned' to the declaration
(<filename class=headerfile>include/linux/cache.h</filename>).
[Can't you think of anything better to do?]
</para>
<para>
They will need a read lock to access their own counters,
however. That way you can use a write lock to grant exclusive
access to all of them at once, to tally them up.
</para>
</sect1>
<sect1 id="brlock">
<title>Big Reader Locks</title>
<para>
A classic example of per-CPU information is Ingo's `big
reader' locks
(<filename class=headerfile>linux/include/brlock.h</filename>). These
use the Per-CPU Data techniques described above to create a lock which
is very fast to get a read lock, but agonizingly slow for a write
lock.
</para>
<para>
Fortunately, there are a limited number of these locks
available: you have to go through a strict interview process
to get one.
</para>
</sect1>
<sect1 id="lock-avoidance-rw">
<title>Avoiding Locks: Read And Write Ordering</title>
<para>
Sometimes it is possible to avoid locking. Consider the
following case from the 2.2 firewall code, which inserted an
element into a single linked list in user context:
</para>
<programlisting>
new->next = i->next;
i->next = new;
</programlisting>
<para>
Here the author (Alan Cox, who knows what he's doing) assumes
that the pointer assignments are atomic. This is important,
because networking packets would traverse this list on bottom
halves without a lock. Depending on their exact timing, they
would either see the new element in the list with a valid
<structfield>next</structfield> pointer, or it would not be in the
list yet. A lock is still required against other CPUs inserting
or deleting from the list, of course.
</para>
<para>
Of course, the writes <emphasis>must</emphasis> be in this
order, otherwise the new element appears in the list with an
invalid <structfield>next</structfield> pointer, and any other
CPU iterating at the wrong time will jump through it into garbage.
Because modern CPUs reorder, Alan's code actually read as follows:
</para>
<programlisting>
new->next = i->next;
wmb();
i->next = new;
</programlisting>
<para>
The <function>wmb()</function> is a write memory barrier
(<filename class=headerfile>include/asm/system.h</filename>): neither
the compiler nor the CPU will allow any writes to memory after the
<function>wmb()</function> to be visible to other hardware
before any of the writes before the <function>wmb()</function>.
</para>
<para>
As i386 does not do write reordering, this bug would never
show up on that platform. On other SMP platforms, however, it
will.
</para>
<para>
There is also <function>rmb()</function> for read ordering: to ensure
any previous variable reads occur before following reads. The simple
<function>mb()</function> macro combines both
<function>rmb()</function> and <function>wmb()</function>.
</para>
<para>
Some atomic operations are defined to act as a memory barrier
(ie. as per the <function>mb()</function> macro, but if in
doubt, be explicit.
<!-- Rusty Russell 2 May 2001, 2.4.4 -->
Also,
spinlock operations act as partial barriers: operations after
gaining a spinlock will never be moved to precede the
<function>spin_lock()</function> call, and operations before
releasing a spinlock will never be moved after the
<function>spin_unlock()</function> call.
<!-- Manfred Spraul <manfreds@colorfullife.com>
24 May 2000 2.3.99-pre9 -->
</para>
</sect1>
<sect1 id="lock-avoidance-atomic-ops">
<title>Avoiding Locks: Atomic Operations</title>
<para>
There are a number of atomic operations defined in
<filename class=headerfile>include/asm/atomic.h</filename>: these
are guaranteed to be seen atomically from all CPUs in the system, thus
avoiding races. If your shared data consists of a single counter, say,
these operations might be simpler than using spinlocks (although for
anything non-trivial using spinlocks is clearer).
</para>
<para>
Note that the atomic operations are defined to act as both
read and write barriers on all platforms.
</para>
</sect1>
<sect1 id="ref-counts">
<title>Protecting A Collection of Objects: Reference Counts</title>
<para>
Locking a collection of objects is fairly easy: you get a
single spinlock, and you make sure you grab it before
searching, adding or deleting an object.
</para>
<para>
The purpose of this lock is not to protect the individual
objects: you might have a separate lock inside each one for
that. It is to protect the <emphasis>data structure
containing the objects</emphasis> from race conditions. Often
the same lock is used to protect the contents of all the
objects as well, for simplicity, but they are inherently
orthogonal (and many other big words designed to confuse).
</para>
<para>
Changing this to a read-write lock will often help markedly if
reads are far more common that writes. If not, there is
another approach you can use to reduce the time the lock is
held: reference counts.
</para>
<para>
In this approach, an object has an owner, who sets the
reference count to one. Whenever you get a pointer to the
object, you increment the reference count (a `get' operation).
Whenever you relinquish a pointer, you decrement the reference
count (a `put' operation). When the owner wants to destroy
it, they mark it dead, and do a put.
</para>
<para>
Whoever drops the reference count to zero (usually implemented
with <function>atomic_dec_and_test()</function>) actually cleans
up and frees the object.
</para>
<para>
This means that you are guaranteed that the object won't
vanish underneath you, even though you no longer have a lock
for the collection.
</para>
<para>
Here's some skeleton code:
</para>
<programlisting>
void create_foo(struct foo *x)
{
atomic_set(&x->use, 1);
spin_lock_bh(&list_lock);
... insert in list ...
spin_unlock_bh(&list_lock);
}
struct foo *get_foo(int desc)
{
struct foo *ret;
spin_lock_bh(&list_lock);
... find in list ...
if (ret) atomic_inc(&ret->use);
spin_unlock_bh(&list_lock);
return ret;
}
void put_foo(struct foo *x)
{
if (atomic_dec_and_test(&x->use))
kfree(foo);
}
void destroy_foo(struct foo *x)
{
spin_lock_bh(&list_lock);
... remove from list ...
spin_unlock_bh(&list_lock);
put_foo(x);
}
</programlisting>
<sect2 id="helpful-macros">
<title>Macros To Help You</title>
<para>
There are a set of debugging macros tucked inside
<filename class=headerfile>include/linux/netfilter_ipv4/lockhelp.h</filename>
and <filename class=headerfile>listhelp.h</filename>: these are very
useful for ensuring that locks are held in the right places to protect
infrastructure.
</para>
</sect2>
</sect1>
<sect1 id="sleeping-things">
<title>Things Which Sleep</title>
<para>
You can never call the following routines while holding a
spinlock, as they may sleep. This also means you need to be in
user context.
</para>
<itemizedlist>
<listitem>
<para>
Accesses to
<firstterm linkend="gloss-userspace">userspace</firstterm>:
</para>
<itemizedlist>
<listitem>
<para>
<function>copy_from_user()</function>
</para>
</listitem>
<listitem>
<para>
<function>copy_to_user()</function>
</para>
</listitem>
<listitem>
<para>
<function>get_user()</function>
</para>
</listitem>
<listitem>
<para>
<function> put_user()</function>
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>
<function>kmalloc(GFP_KERNEL)</function>
</para>
</listitem>
<listitem>
<para>
<function>down_interruptible()</function> and
<function>down()</function>
</para>
<para>
There is a <function>down_trylock()</function> which can be
used inside interrupt context, as it will not sleep.
<function>up()</function> will also never sleep.
</para>
</listitem>
</itemizedlist>
<para>
<function>printk()</function> can be called in
<emphasis>any</emphasis> context, interestingly enough.
</para>
</sect1>
<sect1 id="sparc">
<title>The Fucked Up Sparc</title>
<para>
Alan Cox says <quote>the irq disable/enable is in the register
window on a sparc</quote>. Andi Kleen says <quote>when you do
restore_flags in a different function you mess up all the
register windows</quote>.
</para>
<para>
So never pass the flags word set by
<function>spin_lock_irqsave()</function> and brethren to another
function (unless it's declared <type>inline</type>. Usually no-one
does this, but now you've been warned. Dave Miller can never do
anything in a straightforward manner (I can say that, because I have
pictures of him and a certain PowerPC maintainer in a compromising
position).
</para>
</sect1>
<sect1 id="racing-timers">
<title>Racing Timers: A Kernel Pastime</title>
<para>
Timers can produce their own special problems with races.
Consider a collection of objects (list, hash, etc) where each
object has a timer which is due to destroy it.
</para>
<para>
If you want to destroy the entire collection (say on module
removal), you might do the following:
</para>
<programlisting>
/* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
HUNGARIAN NOTATION */
spin_lock_bh(&list_lock);
while (list) {
struct foo *next = list->next;
del_timer(&list->timer);
kfree(list);
list = next;
}
spin_unlock_bh(&list_lock);
</programlisting>
<para>
Sooner or later, this will crash on SMP, because a timer can
have just gone off before the <function>spin_lock_bh()</function>,
and it will only get the lock after we
<function>spin_unlock_bh()</function>, and then try to free
the element (which has already been freed!).
</para>
<para>
This can be avoided by checking the result of
<function>del_timer()</function>: if it returns
<returnvalue>1</returnvalue>, the timer has been deleted.
If <returnvalue>0</returnvalue>, it means (in this
case) that it is currently running, so we can do:
</para>
<programlisting>
retry:
spin_lock_bh(&list_lock);
while (list) {
struct foo *next = list->next;
if (!del_timer(&list->timer)) {
/* Give timer a chance to delete this */
spin_unlock_bh(&list_lock);
goto retry;
}
kfree(list);
list = next;
}
spin_unlock_bh(&list_lock);
</programlisting>
<para>
Another common problem is deleting timers which restart
themselves (by calling <function>add_timer()</function> at the end
of their timer function). Because this is a fairly common case
which is prone to races, you can put a call to
<function>timer_exit()</function> at the very end of your timer function,
and user <function>del_timer_sync()</function>
(<filename class=headerfile>include/linux/timer.h</filename>)
to handle this case. It returns the number of times the timer
had to be deleted before we finally stopped it from adding itself back
in.
</para>
</sect1>
</chapter>
<chapter id="references">
<title>Further reading</title>
<itemizedlist>
<listitem>
<para>
<filename>Documentation/spinlocks.txt</filename>:
Linus Torvalds' spinlocking tutorial in the kernel sources.
</para>
</listitem>
<listitem>
<para>
Unix Systems for Modern Architectures: Symmetric
Multiprocessing and Caching for Kernel Programmers:
</para>
<para>
Curt Schimmel's very good introduction to kernel level
locking (not written for Linux, but nearly everything
applies). The book is expensive, but really worth every
penny to understand SMP locking. [ISBN: 0201633388]
</para>
</listitem>
</itemizedlist>
</chapter>
<chapter id="thanks">
<title>Thanks</title>
<para>
Thanks to Telsa Gwynne for DocBooking, neatening and adding
style.
</para>
<para>
Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul and Tim
Waugh for proofreading, correcting, flaming, commenting.
</para>
<para>
Thanks to the cabal for having no influence on this document.
</para>
</chapter>
<glossary id="glossary">
<title>Glossary</title>
<glossentry id="gloss-bh">
<glossterm>bh</glossterm>
<glossdef>
<para>
Bottom Half: for historical reasons, functions with
`_bh' in them often now refer to any software interrupt, e.g.
<function>spin_lock_bh()</function> blocks any software interrupt
on the current CPU. Bottom halves are deprecated, and will
eventually be replaced by tasklets. Only one bottom half will be
running at any time.
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-hwinterrupt">
<glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
<glossdef>
<para>
Hardware interrupt request. <function>in_irq()</function> returns
<returnvalue>true</returnvalue> in a hardware interrupt handler (it
also returns true when interrupts are blocked).
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-interruptcontext">
<glossterm>Interrupt Context</glossterm>
<glossdef>
<para>
Not user context: processing a hardware irq or software irq.
Indicated by the <function>in_interrupt()</function> macro
returning <returnvalue>true</returnvalue> (although it also
returns true when interrupts or BHs are blocked).
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-smp">
<glossterm><acronym>SMP</acronym></glossterm>
<glossdef>
<para>
Symmetric Multi-Processor: kernels compiled for multiple-CPU
machines. (CONFIG_SMP=y).
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-softirq">
<glossterm>softirq</glossterm>
<glossdef>
<para>
Strictly speaking, one of up to 32 enumerated software
interrupts which can run on multiple CPUs at once.
Sometimes used to refer to tasklets and bottom halves as
well (ie. all software interrupts).
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-swinterrupt">
<glossterm>Software Interrupt / Software IRQ</glossterm>
<glossdef>
<para>
Software interrupt handler. <function>in_irq()</function> returns
<returnvalue>false</returnvalue>; <function>in_softirq()</function>
returns <returnvalue>true</returnvalue>. Tasklets, softirqs and
bottom halves all fall into the category of `software interrupts'.
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-tasklet">
<glossterm>tasklet</glossterm>
<glossdef>
<para>
A dynamically-registrable software interrupt,
which is guaranteed to only run on one CPU at a time.
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-up">
<glossterm><acronym>UP</acronym></glossterm>
<glossdef>
<para>
Uni-Processor: Non-SMP. (CONFIG_SMP=n).
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-usercontext">
<glossterm>User Context</glossterm>
<glossdef>
<para>
The kernel executing on behalf of a particular
process or kernel thread (given by the <function>current()</function>
macro.) Not to be confused with userspace. Can be interrupted by
software or hardware interrupts.
</para>
</glossdef>
</glossentry>
<glossentry id="gloss-userspace">
<glossterm>Userspace</glossterm>
<glossdef>
<para>
A process executing its own code outside the kernel.
</para>
</glossdef>
</glossentry>
</glossary>
</book>
|