1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* linux/arch/alpha/kernel/irq_smp.c
*
*/
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/io.h>
/* Who has global_irq_lock. */
int global_irq_holder = NO_PROC_ID;
/* This protects IRQ's. */
spinlock_t global_irq_lock = SPIN_LOCK_UNLOCKED;
/* Global IRQ locking depth. */
static void *previous_irqholder = NULL;
#define MAXCOUNT 100000000
static void
show(char * str, void *where)
{
#if 0
int i;
unsigned long *stack;
#endif
int cpu = smp_processor_id();
printk("\n%s, CPU %d: %p\n", str, cpu, where);
printk("irq: %d [%d %d]\n",
irqs_running(),
local_irq_count(0),
local_irq_count(1));
printk("bh: %d [%d %d]\n",
spin_is_locked(&global_bh_lock) ? 1 : 0,
local_bh_count(0),
local_bh_count(1));
#if 0
stack = (unsigned long *) &str;
for (i = 40; i ; i--) {
unsigned long x = *++stack;
if (x > (unsigned long) &init_task_union &&
x < (unsigned long) &vsprintf) {
printk("<[%08lx]> ", x);
}
}
#endif
}
static inline void
wait_on_irq(int cpu, void *where)
{
int count = MAXCOUNT;
for (;;) {
/*
* Wait until all interrupts are gone. Wait
* for bottom half handlers unless we're
* already executing in one..
*/
if (!irqs_running()) {
if (local_bh_count(cpu)
|| !spin_is_locked(&global_bh_lock))
break;
}
/* Duh, we have to loop. Release the lock to avoid deadlocks */
spin_unlock(&global_irq_lock);
for (;;) {
if (!--count) {
show("wait_on_irq", where);
count = MAXCOUNT;
}
__sti();
udelay(1); /* make sure to run pending irqs */
__cli();
if (irqs_running())
continue;
if (spin_is_locked(&global_irq_lock))
continue;
if (!local_bh_count(cpu)
&& spin_is_locked(&global_bh_lock))
continue;
if (spin_trylock(&global_irq_lock))
break;
}
}
}
static inline void
get_irqlock(int cpu, void* where)
{
if (!spin_trylock(&global_irq_lock)) {
/* Do we already hold the lock? */
if (cpu == global_irq_holder)
return;
/* Uhhuh.. Somebody else got it. Wait. */
spin_lock(&global_irq_lock);
}
/*
* Ok, we got the lock bit.
* But that's actually just the easy part.. Now
* we need to make sure that nobody else is running
* in an interrupt context.
*/
wait_on_irq(cpu, where);
/*
* Finally.
*/
#if DEBUG_SPINLOCK
global_irq_lock.task = current;
global_irq_lock.previous = where;
#endif
global_irq_holder = cpu;
previous_irqholder = where;
}
void
__global_cli(void)
{
int cpu = smp_processor_id();
void *where = __builtin_return_address(0);
/*
* Maximize ipl. If ipl was previously 0 and if this thread
* is not in an irq, then take global_irq_lock.
*/
if (swpipl(IPL_MAX) == IPL_MIN && !local_irq_count(cpu))
get_irqlock(cpu, where);
}
void
__global_sti(void)
{
int cpu = smp_processor_id();
if (!local_irq_count(cpu))
release_irqlock(cpu);
__sti();
}
/*
* SMP flags value to restore to:
* 0 - global cli
* 1 - global sti
* 2 - local cli
* 3 - local sti
*/
unsigned long
__global_save_flags(void)
{
int retval;
int local_enabled;
unsigned long flags;
int cpu = smp_processor_id();
__save_flags(flags);
local_enabled = (!(flags & 7));
/* default to local */
retval = 2 + local_enabled;
/* Check for global flags if we're not in an interrupt. */
if (!local_irq_count(cpu)) {
if (local_enabled)
retval = 1;
if (global_irq_holder == cpu)
retval = 0;
}
return retval;
}
void
__global_restore_flags(unsigned long flags)
{
switch (flags) {
case 0:
__global_cli();
break;
case 1:
__global_sti();
break;
case 2:
__cli();
break;
case 3:
__sti();
break;
default:
printk(KERN_ERR "global_restore_flags: %08lx (%p)\n",
flags, __builtin_return_address(0));
}
}
/*
* From its use, I infer that synchronize_irq() stalls a thread until
* the effects of a command to an external device are known to have
* taken hold. Typically, the command is to stop sending interrupts.
* The strategy here is wait until there is at most one processor
* (this one) in an irq. The memory barrier serializes the write to
* the device and the subsequent accesses of global_irq_count.
* --jmartin
*/
#define DEBUG_SYNCHRONIZE_IRQ 0
void
synchronize_irq(void)
{
#if 0
/* Joe's version. */
int cpu = smp_processor_id();
int local_count;
int global_count;
int countdown = 1<<24;
void *where = __builtin_return_address(0);
mb();
do {
local_count = local_irq_count(cpu);
global_count = atomic_read(&global_irq_count);
if (DEBUG_SYNCHRONIZE_IRQ && (--countdown == 0)) {
printk("%d:%d/%d\n", cpu, local_count, global_count);
show("synchronize_irq", where);
break;
}
} while (global_count != local_count);
#else
/* Jay's version. */
if (irqs_running()) {
cli();
sti();
}
#endif
}
|