File: efi.c

package info (click to toggle)
kernel-source-2.4.14 2.4.14-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 139,160 kB
  • ctags: 428,423
  • sloc: ansic: 2,435,554; asm: 141,119; makefile: 8,258; sh: 3,099; perl: 2,561; yacc: 1,177; cpp: 755; tcl: 577; lex: 352; awk: 251; lisp: 218; sed: 72
file content (486 lines) | stat: -rw-r--r-- 14,400 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 * Extensible Firmware Interface
 *
 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
 *
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999-2001 Hewlett-Packard Co.
 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 * Copyright (C) 1999-2001 Stephane Eranian <eranian@hpl.hp.com>
 *
 * All EFI Runtime Services are not implemented yet as EFI only
 * supports physical mode addressing on SoftSDV. This is to be fixed
 * in a future version.  --drummond 1999-07-20
 *
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 *
 * Goutham Rao: <goutham.rao@intel.com>
 *	Skip non-WB memory and ignore empty memory ranges.
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/proc_fs.h>

#include <asm/efi.h>
#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/pgtable.h>
#include <asm/processor.h>

#define EFI_DEBUG	0

extern efi_status_t efi_call_phys (void *, ...);

struct efi efi;
static efi_runtime_services_t *runtime;

/*
 * efi_dir is allocated here, but the directory isn't created
 * here, as proc_mkdir() doesn't work this early in the bootup
 * process.  Therefore, each module, like efivars, must test for
 *    if (!efi_dir)  efi_dir = proc_mkdir("efi", NULL);
 * prior to creating their own entries under /proc/efi.
 */
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *efi_dir = NULL;
#endif

static unsigned long mem_limit = ~0UL;

static efi_status_t
phys_get_time (efi_time_t *tm, efi_time_cap_t *tc)
{
	return efi_call_phys(__va(runtime->get_time), __pa(tm), __pa(tc));
}

static efi_status_t
phys_set_time (efi_time_t *tm)
{
	return efi_call_phys(__va(runtime->set_time), __pa(tm));
}

static efi_status_t
phys_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)
{
	return efi_call_phys(__va(runtime->get_wakeup_time), __pa(enabled), __pa(pending),
			     __pa(tm));
}

static efi_status_t
phys_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)
{
	return efi_call_phys(__va(runtime->set_wakeup_time), enabled, __pa(tm));
}

static efi_status_t
phys_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,
		   unsigned long *data_size, void *data)
{
	return efi_call_phys(__va(runtime->get_variable), __pa(name), __pa(vendor), __pa(attr),
			     __pa(data_size), __pa(data));
}

static efi_status_t
phys_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)
{
	return efi_call_phys(__va(runtime->get_next_variable), __pa(name_size), __pa(name),
			     __pa(vendor));
}

static efi_status_t
phys_set_variable (efi_char16_t *name, efi_guid_t *vendor, u32 attr,
		   unsigned long data_size, void *data)
{
	return efi_call_phys(__va(runtime->set_variable), __pa(name), __pa(vendor), attr,
			     data_size, __pa(data));
}

static efi_status_t
phys_get_next_high_mono_count (u64 *count)
{
	return efi_call_phys(__va(runtime->get_next_high_mono_count), __pa(count));
}

static void
phys_reset_system (int reset_type, efi_status_t status,
		   unsigned long data_size, efi_char16_t *data)
{
	efi_call_phys(__va(runtime->reset_system), status, data_size, __pa(data));
}

void
efi_gettimeofday (struct timeval *tv)
{
	efi_time_t tm;

	memset(tv, 0, sizeof(tv));
	if ((*efi.get_time)(&tm, 0) != EFI_SUCCESS)
		return;

	tv->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
	tv->tv_usec = tm.nanosecond / 1000;
}

/*
 * Walks the EFI memory map and calls CALLBACK once for each EFI
 * memory descriptor that has memory that is available for OS use.
 */
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
	int prev_valid = 0;
	struct range {
		u64 start;
		u64 end;
	} prev, curr;
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size, start, end;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		switch (md->type) {
		      case EFI_LOADER_CODE:
		      case EFI_LOADER_DATA:
		      case EFI_BOOT_SERVICES_CODE:
		      case EFI_BOOT_SERVICES_DATA:
		      case EFI_CONVENTIONAL_MEMORY:
			if (!(md->attribute & EFI_MEMORY_WB))
				continue;
			if (md->phys_addr + (md->num_pages << 12) > mem_limit) {
				if (md->phys_addr > mem_limit)
					continue;
				md->num_pages = (mem_limit - md->phys_addr) >> 12;
			}
			if (md->num_pages == 0) {
				printk("efi_memmap_walk: ignoring empty region at 0x%lx",
				       md->phys_addr);
				continue;
			}

			curr.start = PAGE_OFFSET + md->phys_addr;
			curr.end   = curr.start + (md->num_pages << 12);

			if (!prev_valid) {
				prev = curr;
				prev_valid = 1;
			} else {
				if (curr.start < prev.start)
					printk("Oops: EFI memory table not ordered!\n");

				if (prev.end == curr.start) {
					/* merge two consecutive memory ranges */
					prev.end = curr.end;
				} else {
					start = PAGE_ALIGN(prev.start);
					end = prev.end & PAGE_MASK;
					if ((end > start) && (*callback)(start, end, arg) < 0)
						return;
					prev = curr;
				}
			}
			break;

		      default:
			continue;
		}
	}
	if (prev_valid) {
		start = PAGE_ALIGN(prev.start);
		end = prev.end & PAGE_MASK;
		if (end > start)
			(*callback)(start, end, arg);
	}
}

/*
 * Look for the PAL_CODE region reported by EFI and maps it using an
 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 * Abstraction Layer chapter 11 in ADAG
 */
void
efi_map_pal_code (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;
	int pal_code_count=0;
	u64 mask, flags;
	u64 vaddr;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->type != EFI_PAL_CODE)
			continue;

		if (++pal_code_count > 1) {
			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
			       md->phys_addr);
			continue;
		}
		/*
		 * The only ITLB entry in region 7 that is used is the one installed by
		 * __start().  That entry covers a 64MB range.
		 */
		mask  = ~((1 << KERNEL_PG_SHIFT) - 1);
		vaddr = PAGE_OFFSET + md->phys_addr;

		/*
		 * We must check that the PAL mapping won't overlap with the kernel
		 * mapping.
		 *
		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
		 * 256KB.  Also from the documentation, it seems like there is an implicit
		 * guarantee that you will need only ONE ITR to map it. This implies that
		 * the PAL code is always aligned on its size, i.e., the closest matching
		 * page size supported by the TLB. Therefore PAL code is guaranteed never
		 * to cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
		 * now the following test is enough to determine whether or not we need a
		 * dedicated ITR for the PAL code.
		 */
		if ((vaddr & mask) == (KERNEL_START & mask)) {
			printk(__FUNCTION__ " : no need to install ITR for PAL code\n");
			continue;
		}

		printk("CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
		       smp_processor_id(), md->phys_addr, md->phys_addr + (md->num_pages << 12),
		       vaddr & mask, (vaddr & mask) + KERNEL_PG_SIZE);

		/*
		 * Cannot write to CRx with PSR.ic=1
		 */
		ia64_clear_ic(flags);
		ia64_itr(0x1, IA64_TR_PALCODE, vaddr & mask,
			 pte_val(mk_pte_phys(md->phys_addr, PAGE_KERNEL)), KERNEL_PG_SHIFT);
		local_irq_restore(flags);
		ia64_srlz_i();
	}
}

void __init
efi_init (void)
{
	void *efi_map_start, *efi_map_end;
	efi_config_table_t *config_tables;
	efi_char16_t *c16;
	u64 efi_desc_size;
	char *cp, *end, vendor[100] = "unknown";
	extern char saved_command_line[];
	int i;

	/* it's too early to be able to use the standard kernel command line support... */
	for (cp = saved_command_line; *cp; ) {
		if (memcmp(cp, "mem=", 4) == 0) {
			cp += 4;
			mem_limit = memparse(cp, &end) - 1;
			if (end != cp)
				break;
			cp = end;
		} else {
			while (*cp != ' ' && *cp)
				++cp;
			while (*cp == ' ')
				++cp;
		}
	}
	if (mem_limit != ~0UL)
		printk("Ignoring memory above %luMB\n", mem_limit >> 20);

	efi.systab = __va(ia64_boot_param->efi_systab);

	/*
	 * Verify the EFI Table
	 */
	if (efi.systab == NULL)
		panic("Woah! Can't find EFI system table.\n");
	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		panic("Woah! EFI system table signature incorrect\n");
	if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
		printk("Warning: EFI system table major version mismatch: "
		       "got %d.%02d, expected %d.%02d\n",
		       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
		       EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);

	config_tables = __va(efi.systab->tables);

	/* Show what we know for posterity */
	c16 = __va(efi.systab->fw_vendor);
	if (c16) {
		for (i = 0;i < sizeof(vendor) && *c16; ++i)
			vendor[i] = *c16++;
		vendor[i] = '\0';
	}

	printk("EFI v%u.%.02u by %s:",
	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);

	for (i = 0; i < efi.systab->nr_tables; i++) {
		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
			efi.mps = __va(config_tables[i].table);
			printk(" MPS=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
			efi.acpi20 = __va(config_tables[i].table);
			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
			efi.acpi = __va(config_tables[i].table);
			printk(" ACPI=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
			efi.smbios = __va(config_tables[i].table);
			printk(" SMBIOS=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
			efi.sal_systab = __va(config_tables[i].table);
			printk(" SALsystab=0x%lx", config_tables[i].table);
		}
	}
	printk("\n");

	runtime = __va(efi.systab->runtime);
	efi.get_time = phys_get_time;
	efi.set_time = phys_set_time;
	efi.get_wakeup_time = phys_get_wakeup_time;
	efi.set_wakeup_time = phys_set_wakeup_time;
	efi.get_variable = phys_get_variable;
	efi.get_next_variable = phys_get_next_variable;
	efi.set_variable = phys_set_variable;
	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
	efi.reset_system = phys_reset_system;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

#if EFI_DEBUG
	/* print EFI memory map: */
	{
		efi_memory_desc_t *md;
		void *p;

		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
			md = p;
			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
			       i, md->type, md->attribute, md->phys_addr,
			       md->phys_addr + (md->num_pages<<12) - 1, md->num_pages >> 8);
		}
	}
#endif

	efi_map_pal_code();
	efi_enter_virtual_mode();
}

void
efi_enter_virtual_mode (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	efi_status_t status;
	u64 efi_desc_size;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->attribute & EFI_MEMORY_RUNTIME) {
			/*
			 * Some descriptors have multiple bits set, so the order of
			 * the tests is relevant.
			 */
			if (md->attribute & EFI_MEMORY_WB) {
				md->virt_addr = (u64) __va(md->phys_addr);
			} else if (md->attribute & EFI_MEMORY_UC) {
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
			} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
									   | _PAGE_D
									   | _PAGE_MA_WC
									   | _PAGE_PL_0
									   | _PAGE_AR_RW));
#else
				printk("EFI_MEMORY_WC mapping\n");
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
			} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
									   | _PAGE_D | _PAGE_MA_WT
									   | _PAGE_PL_0
									   | _PAGE_AR_RW));
#else
				printk("EFI_MEMORY_WT mapping\n");
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
			}
		}
	}

	status = efi_call_phys(__va(runtime->set_virtual_address_map),
			       ia64_boot_param->efi_memmap_size,
			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
			       ia64_boot_param->efi_memmap);
	if (status != EFI_SUCCESS) {
		printk("Warning: unable to switch EFI into virtual mode (status=%lu)\n", status);
		return;
	}

	/*
	 * Now that EFI is in virtual mode, we arrange for EFI functions to be
	 * called directly:
	 */
	efi.get_time = __va(runtime->get_time);
	efi.set_time = __va(runtime->set_time);
	efi.get_wakeup_time = __va(runtime->get_wakeup_time);
	efi.set_wakeup_time = __va(runtime->set_wakeup_time);
	efi.get_variable = __va(runtime->get_variable);
	efi.get_next_variable = __va(runtime->get_next_variable);
	efi.set_variable = __va(runtime->set_variable);
	efi.get_next_high_mono_count = __va(runtime->get_next_high_mono_count);
	efi.reset_system = __va(runtime->reset_system);
}

/*
 * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
 * this type, other I/O port ranges should be described via ACPI.
 */
u64
efi_get_iobase (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
			/* paranoia attribute checking */
			if (md->attribute == (EFI_MEMORY_UC | EFI_MEMORY_RUNTIME))
				return md->phys_addr;
		}
	}
	return 0;
}

static void __exit
efivars_exit(void)
{
 	remove_proc_entry(efi_dir->name, NULL);
}