1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
|
/*
* This file contains the code to configure and read/write the ia64 performance
* monitoring stuff.
*
* Originaly Written by Ganesh Venkitachalam, IBM Corp.
* Modifications by David Mosberger-Tang, Hewlett-Packard Co.
* Modifications by Stephane Eranian, Hewlett-Packard Co.
* Copyright (C) 1999 Ganesh Venkitachalam <venkitac@us.ibm.com>
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 2000-2001 Stephane Eranian <eranian@hpl.hp.com>
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/wrapper.h>
#include <linux/mm.h>
#include <asm/bitops.h>
#include <asm/efi.h>
#include <asm/errno.h>
#include <asm/hw_irq.h>
#include <asm/page.h>
#include <asm/pal.h>
#include <asm/perfmon.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/signal.h>
#include <asm/system.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/delay.h> /* for ia64_get_itc() */
#ifdef CONFIG_PERFMON
#define PFM_VERSION "0.2"
#define PFM_SMPL_HDR_VERSION 1
#define PMU_FIRST_COUNTER 4 /* first generic counter */
#define PFM_WRITE_PMCS 0xa0
#define PFM_WRITE_PMDS 0xa1
#define PFM_READ_PMDS 0xa2
#define PFM_STOP 0xa3
#define PFM_START 0xa4
#define PFM_ENABLE 0xa5 /* unfreeze only */
#define PFM_DISABLE 0xa6 /* freeze only */
#define PFM_RESTART 0xcf
#define PFM_CREATE_CONTEXT 0xa7
/*
* Those 2 are just meant for debugging. I considered using sysctl() for
* that but it is a little bit too pervasive. This solution is at least
* self-contained.
*/
#define PFM_DEBUG_ON 0xe0
#define PFM_DEBUG_OFF 0xe1
/*
* perfmon API flags
*/
#define PFM_FL_INHERIT_NONE 0x00 /* never inherit a context across fork (default) */
#define PFM_FL_INHERIT_ONCE 0x01 /* clone pfm_context only once across fork() */
#define PFM_FL_INHERIT_ALL 0x02 /* always clone pfm_context across fork() */
#define PFM_FL_SMPL_OVFL_NOBLOCK 0x04 /* do not block on sampling buffer overflow */
#define PFM_FL_SYSTEMWIDE 0x08 /* create a systemwide context */
/*
* PMC API flags
*/
#define PFM_REGFL_OVFL_NOTIFY 1 /* send notification on overflow */
/*
* Private flags and masks
*/
#define PFM_FL_INHERIT_MASK (PFM_FL_INHERIT_NONE|PFM_FL_INHERIT_ONCE|PFM_FL_INHERIT_ALL)
#ifdef CONFIG_SMP
#define cpu_is_online(i) (cpu_online_map & (1UL << i))
#else
#define cpu_is_online(i) 1
#endif
#define PMC_IS_IMPL(i) (i < pmu_conf.num_pmcs && pmu_conf.impl_regs[i>>6] & (1<< (i&~(64-1))))
#define PMD_IS_IMPL(i) (i < pmu_conf.num_pmds && pmu_conf.impl_regs[4+(i>>6)] & (1<< (i&~(64-1))))
#define PMD_IS_COUNTER(i) (i>=PMU_FIRST_COUNTER && i < (PMU_FIRST_COUNTER+pmu_conf.max_counters))
#define PMC_IS_COUNTER(i) (i>=PMU_FIRST_COUNTER && i < (PMU_FIRST_COUNTER+pmu_conf.max_counters))
/* This is the Itanium-specific PMC layout for counter config */
typedef struct {
unsigned long pmc_plm:4; /* privilege level mask */
unsigned long pmc_ev:1; /* external visibility */
unsigned long pmc_oi:1; /* overflow interrupt */
unsigned long pmc_pm:1; /* privileged monitor */
unsigned long pmc_ig1:1; /* reserved */
unsigned long pmc_es:7; /* event select */
unsigned long pmc_ig2:1; /* reserved */
unsigned long pmc_umask:4; /* unit mask */
unsigned long pmc_thres:3; /* threshold */
unsigned long pmc_ig3:1; /* reserved (missing from table on p6-17) */
unsigned long pmc_ism:2; /* instruction set mask */
unsigned long pmc_ig4:38; /* reserved */
} pmc_counter_reg_t;
/* test for EAR/BTB configuration */
#define PMU_DEAR_EVENT 0x67
#define PMU_IEAR_EVENT 0x23
#define PMU_BTB_EVENT 0x11
#define PMC_IS_DEAR(a) (((pmc_counter_reg_t *)(a))->pmc_es == PMU_DEAR_EVENT)
#define PMC_IS_IEAR(a) (((pmc_counter_reg_t *)(a))->pmc_es == PMU_IEAR_EVENT)
#define PMC_IS_BTB(a) (((pmc_counter_reg_t *)(a))->pmc_es == PMU_BTB_EVENT)
/*
* This header is at the beginning of the sampling buffer returned to the user.
* It is exported as Read-Only at this point. It is directly followed with the
* first record.
*/
typedef struct {
int hdr_version; /* could be used to differentiate formats */
int hdr_reserved;
unsigned long hdr_entry_size; /* size of one entry in bytes */
unsigned long hdr_count; /* how many valid entries */
unsigned long hdr_pmds; /* which pmds are recorded */
} perfmon_smpl_hdr_t;
/*
* Header entry in the buffer as a header as follows.
* The header is directly followed with the PMDS to saved in increasing index order:
* PMD4, PMD5, .... How many PMDs are present is determined by the tool which must
* keep track of it when generating the final trace file.
*/
typedef struct {
int pid; /* identification of process */
int cpu; /* which cpu was used */
unsigned long rate; /* initial value of this counter */
unsigned long stamp; /* timestamp */
unsigned long ip; /* where did the overflow interrupt happened */
unsigned long regs; /* which registers overflowed (up to 64)*/
} perfmon_smpl_entry_t;
/*
* There is one such data structure per perfmon context. It is used to describe the
* sampling buffer. It is to be shared among siblings whereas the pfm_context isn't.
* Therefore we maintain a refcnt which is incremented on fork().
* This buffer is private to the kernel only the actual sampling buffer including its
* header are exposed to the user. This construct allows us to export the buffer read-write,
* if needed, without worrying about security problems.
*/
typedef struct {
atomic_t psb_refcnt; /* how many users for the buffer */
int reserved;
void *psb_addr; /* points to location of first entry */
unsigned long psb_entries; /* maximum number of entries */
unsigned long psb_size; /* aligned size of buffer */
unsigned long psb_index; /* next free entry slot */
unsigned long psb_entry_size; /* size of each entry including entry header */
perfmon_smpl_hdr_t *psb_hdr; /* points to sampling buffer header */
} pfm_smpl_buffer_desc_t;
/*
* This structure is initialized at boot time and contains
* a description of the PMU main characteristic as indicated
* by PAL
*/
typedef struct {
unsigned long pfm_is_disabled; /* indicates if perfmon is working properly */
unsigned long perf_ovfl_val; /* overflow value for generic counters */
unsigned long max_counters; /* upper limit on counter pair (PMC/PMD) */
unsigned long num_pmcs ; /* highest PMC implemented (may have holes) */
unsigned long num_pmds; /* highest PMD implemented (may have holes) */
unsigned long impl_regs[16]; /* buffer used to hold implememted PMC/PMD mask */
} pmu_config_t;
#define PERFMON_IS_DISABLED() pmu_conf.pfm_is_disabled
typedef struct {
__u64 val; /* virtual 64bit counter value */
__u64 ival; /* initial value from user */
__u64 smpl_rval; /* reset value on sampling overflow */
__u64 ovfl_rval; /* reset value on overflow */
int flags; /* notify/do not notify */
} pfm_counter_t;
#define PMD_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
/*
* perfmon context. One per process, is cloned on fork() depending on inheritance flags
*/
typedef struct {
unsigned int inherit:2; /* inherit mode */
unsigned int noblock:1; /* block/don't block on overflow with notification */
unsigned int system:1; /* do system wide monitoring */
unsigned int frozen:1; /* pmu must be kept frozen on ctxsw in */
unsigned int reserved:27;
} pfm_context_flags_t;
typedef struct pfm_context {
pfm_smpl_buffer_desc_t *ctx_smpl_buf; /* sampling buffer descriptor, if any */
unsigned long ctx_dear_counter; /* which PMD holds D-EAR */
unsigned long ctx_iear_counter; /* which PMD holds I-EAR */
unsigned long ctx_btb_counter; /* which PMD holds BTB */
pid_t ctx_notify_pid; /* who to notify on overflow */
int ctx_notify_sig; /* XXX: SIGPROF or other */
pfm_context_flags_t ctx_flags; /* block/noblock */
pid_t ctx_creator; /* pid of creator (debug) */
unsigned long ctx_ovfl_regs; /* which registers just overflowed (notification) */
unsigned long ctx_smpl_regs; /* which registers to record on overflow */
struct semaphore ctx_restart_sem; /* use for blocking notification mode */
pfm_counter_t ctx_pmds[IA64_NUM_PMD_COUNTERS]; /* XXX: size should be dynamic */
} pfm_context_t;
#define ctx_fl_inherit ctx_flags.inherit
#define ctx_fl_noblock ctx_flags.noblock
#define ctx_fl_system ctx_flags.system
#define ctx_fl_frozen ctx_flags.frozen
#define CTX_IS_DEAR(c,n) ((c)->ctx_dear_counter == (n))
#define CTX_IS_IEAR(c,n) ((c)->ctx_iear_counter == (n))
#define CTX_IS_BTB(c,n) ((c)->ctx_btb_counter == (n))
#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_noblock == 1)
#define CTX_INHERIT_MODE(c) ((c)->ctx_fl_inherit)
#define CTX_HAS_SMPL(c) ((c)->ctx_smpl_buf != NULL)
static pmu_config_t pmu_conf;
/* for debug only */
static unsigned long pfm_debug=0; /* 0= nodebug, >0= debug output on */
#define DBprintk(a) \
do { \
if (pfm_debug >0) { printk(__FUNCTION__" "); printk a; } \
} while (0);
static void perfmon_softint(unsigned long ignored);
static void ia64_reset_pmu(void);
DECLARE_TASKLET(pfm_tasklet, perfmon_softint, 0);
/*
* structure used to pass information between the interrupt handler
* and the tasklet.
*/
typedef struct {
pid_t to_pid; /* which process to notify */
pid_t from_pid; /* which process is source of overflow */
int sig; /* with which signal */
unsigned long bitvect; /* which counters have overflowed */
} notification_info_t;
#define notification_is_invalid(i) (i->to_pid < 2)
/* will need to be cache line padded */
static notification_info_t notify_info[NR_CPUS];
/*
* We force cache line alignment to avoid false sharing
* given that we have one entry per CPU.
*/
static struct {
struct task_struct *owner;
} ____cacheline_aligned pmu_owners[NR_CPUS];
/* helper macros */
#define SET_PMU_OWNER(t) do { pmu_owners[smp_processor_id()].owner = (t); } while(0);
#define PMU_OWNER() pmu_owners[smp_processor_id()].owner
/* for debug only */
static struct proc_dir_entry *perfmon_dir;
/*
* finds the number of PM(C|D) registers given
* the bitvector returned by PAL
*/
static unsigned long __init
find_num_pm_regs(long *buffer)
{
int i=3; /* 4 words/per bitvector */
/* start from the most significant word */
while (i>=0 && buffer[i] == 0 ) i--;
if (i< 0) {
printk(KERN_ERR "perfmon: No bit set in pm_buffer\n");
return 0;
}
return 1+ ia64_fls(buffer[i]) + 64 * i;
}
/*
* Generates a unique (per CPU) timestamp
*/
static inline unsigned long
perfmon_get_stamp(void)
{
/*
* XXX: maybe find something more efficient
*/
return ia64_get_itc();
}
/* Given PGD from the address space's page table, return the kernel
* virtual mapping of the physical memory mapped at ADR.
*/
static inline unsigned long
uvirt_to_kva(pgd_t *pgd, unsigned long adr)
{
unsigned long ret = 0UL;
pmd_t *pmd;
pte_t *ptep, pte;
if (!pgd_none(*pgd)) {
pmd = pmd_offset(pgd, adr);
if (!pmd_none(*pmd)) {
ptep = pte_offset(pmd, adr);
pte = *ptep;
if (pte_present(pte)) {
ret = (unsigned long) page_address(pte_page(pte));
ret |= (adr & (PAGE_SIZE - 1));
}
}
}
DBprintk(("uv2kva(%lx-->%lx)\n", adr, ret));
return ret;
}
/* Here we want the physical address of the memory.
* This is used when initializing the contents of the
* area and marking the pages as reserved.
*/
static inline unsigned long
kvirt_to_pa(unsigned long adr)
{
__u64 pa;
__asm__ __volatile__ ("tpa %0 = %1" : "=r"(pa) : "r"(adr) : "memory");
DBprintk(("kv2pa(%lx-->%lx)\n", adr, pa));
return pa;
}
static void *
rvmalloc(unsigned long size)
{
void *mem;
unsigned long adr, page;
/* XXX: may have to revisit this part because
* vmalloc() does not necessarily return a page-aligned buffer.
* This maybe a security problem when mapped at user level
*/
mem=vmalloc(size);
if (mem) {
memset(mem, 0, size); /* Clear the ram out, no junk to the user */
adr=(unsigned long) mem;
while (size > 0) {
page = kvirt_to_pa(adr);
mem_map_reserve(virt_to_page(__va(page)));
adr+=PAGE_SIZE;
size-=PAGE_SIZE;
}
}
return mem;
}
static void
rvfree(void *mem, unsigned long size)
{
unsigned long adr, page;
if (mem) {
adr=(unsigned long) mem;
while (size > 0) {
page = kvirt_to_pa(adr);
mem_map_unreserve(virt_to_page(__va(page)));
adr+=PAGE_SIZE;
size-=PAGE_SIZE;
}
vfree(mem);
}
}
static pfm_context_t *
pfm_context_alloc(void)
{
pfm_context_t *pfc;
/* allocate context descriptor */
pfc = vmalloc(sizeof(*pfc));
if (pfc) memset(pfc, 0, sizeof(*pfc));
return pfc;
}
static void
pfm_context_free(pfm_context_t *pfc)
{
if (pfc) vfree(pfc);
}
static int
pfm_remap_buffer(unsigned long buf, unsigned long addr, unsigned long size)
{
unsigned long page;
while (size > 0) {
page = kvirt_to_pa(buf);
if (remap_page_range(addr, page, PAGE_SIZE, PAGE_SHARED)) return -ENOMEM;
addr += PAGE_SIZE;
buf += PAGE_SIZE;
size -= PAGE_SIZE;
}
return 0;
}
/*
* counts the number of PMDS to save per entry.
* This code is generic enough to accomodate more than 64 PMDS when they become available
*/
static unsigned long
pfm_smpl_entry_size(unsigned long *which, unsigned long size)
{
unsigned long res = 0;
int i;
for (i=0; i < size; i++, which++) res += hweight64(*which);
DBprintk((" res=%ld\n", res));
return res;
}
/*
* Allocates the sampling buffer and remaps it into caller's address space
*/
static int
pfm_smpl_buffer_alloc(pfm_context_t *ctx, unsigned long which_pmds, unsigned long entries, void **user_addr)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long addr, size, regcount;
void *smpl_buf;
pfm_smpl_buffer_desc_t *psb;
regcount = pfm_smpl_entry_size(&which_pmds, 1);
/* note that regcount might be 0, in this case only the header for each
* entry will be recorded.
*/
/*
* 1 buffer hdr and for each entry a header + regcount PMDs to save
*/
size = PAGE_ALIGN( sizeof(perfmon_smpl_hdr_t)
+ entries * (sizeof(perfmon_smpl_entry_t) + regcount*sizeof(u64)));
/*
* check requested size to avoid Denial-of-service attacks
* XXX: may have to refine this test
*/
if (size > current->rlim[RLIMIT_MEMLOCK].rlim_cur) return -EAGAIN;
/* find some free area in address space */
addr = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE);
if (!addr) goto no_addr;
DBprintk((" entries=%ld aligned size=%ld, unmapped @0x%lx\n", entries, size, addr));
/* allocate vma */
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!vma) goto no_vma;
/* XXX: see rvmalloc() for page alignment problem */
smpl_buf = rvmalloc(size);
if (smpl_buf == NULL) goto no_buffer;
DBprintk((" smpl_buf @%p\n", smpl_buf));
if (pfm_remap_buffer((unsigned long)smpl_buf, addr, size)) goto cant_remap;
/* allocate sampling buffer descriptor now */
psb = vmalloc(sizeof(*psb));
if (psb == NULL) goto no_buffer_desc;
/* start with something clean */
memset(smpl_buf, 0x0, size);
psb->psb_hdr = smpl_buf;
psb->psb_addr = (char *)smpl_buf+sizeof(perfmon_smpl_hdr_t); /* first entry */
psb->psb_size = size; /* aligned size */
psb->psb_index = 0;
psb->psb_entries = entries;
atomic_set(&psb->psb_refcnt, 1);
psb->psb_entry_size = sizeof(perfmon_smpl_entry_t) + regcount*sizeof(u64);
DBprintk((" psb @%p entry_size=%ld hdr=%p addr=%p\n", (void *)psb,psb->psb_entry_size, (void *)psb->psb_hdr, (void *)psb->psb_addr));
/* initialize some of the fields of header */
psb->psb_hdr->hdr_version = PFM_SMPL_HDR_VERSION;
psb->psb_hdr->hdr_entry_size = sizeof(perfmon_smpl_entry_t)+regcount*sizeof(u64);
psb->psb_hdr->hdr_pmds = which_pmds;
/* store which PMDS to record */
ctx->ctx_smpl_regs = which_pmds;
/* link to perfmon context */
ctx->ctx_smpl_buf = psb;
/*
* initialize the vma for the sampling buffer
*/
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + size;
vma->vm_flags = VM_READ|VM_MAYREAD;
vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
vma->vm_ops = NULL;
vma->vm_pgoff = 0;
vma->vm_file = NULL;
vma->vm_raend = 0;
vma->vm_private_data = ctx; /* link to pfm_context(not yet used) */
/*
* now insert the vma in the vm list for the process
*/
insert_vm_struct(mm, vma);
mm->total_vm += size >> PAGE_SHIFT;
/*
* that's the address returned to the user
*/
*user_addr = (void *)addr;
return 0;
/* outlined error handling */
no_addr:
DBprintk(("Cannot find unmapped area for size %ld\n", size));
return -ENOMEM;
no_vma:
DBprintk(("Cannot allocate vma\n"));
return -ENOMEM;
cant_remap:
DBprintk(("Can't remap buffer\n"));
rvfree(smpl_buf, size);
no_buffer:
DBprintk(("Can't allocate sampling buffer\n"));
kmem_cache_free(vm_area_cachep, vma);
return -ENOMEM;
no_buffer_desc:
DBprintk(("Can't allocate sampling buffer descriptor\n"));
kmem_cache_free(vm_area_cachep, vma);
rvfree(smpl_buf, size);
return -ENOMEM;
}
static int
pfx_is_sane(pfreq_context_t *pfx)
{
/* valid signal */
if (pfx->notify_sig < 1 || pfx->notify_sig >= _NSIG) return 0;
/* cannot send to process 1, 0 means do not notify */
if (pfx->notify_pid < 0 || pfx->notify_pid == 1) return 0;
/* probably more to add here */
return 1;
}
static int
pfm_context_create(struct task_struct *task, int flags, perfmon_req_t *req)
{
pfm_context_t *ctx;
perfmon_req_t tmp;
void *uaddr = NULL;
int ret = -EFAULT;
int ctx_flags;
/* to go away */
if (flags) {
printk("perfmon: use context flags instead of perfmon() flags. Obsoleted API\n");
}
if (copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
ctx_flags = tmp.pfr_ctx.flags;
/* not yet supported */
if (ctx_flags & PFM_FL_SYSTEMWIDE) return -EINVAL;
if (!pfx_is_sane(&tmp.pfr_ctx)) return -EINVAL;
ctx = pfm_context_alloc();
if (!ctx) return -ENOMEM;
/* record who the creator is (for debug) */
ctx->ctx_creator = task->pid;
ctx->ctx_notify_pid = tmp.pfr_ctx.notify_pid;
ctx->ctx_notify_sig = SIGPROF; /* siginfo imposes a fixed signal */
if (tmp.pfr_ctx.smpl_entries) {
DBprintk((" sampling entries=%ld\n",tmp.pfr_ctx.smpl_entries));
if ((ret=pfm_smpl_buffer_alloc(ctx, tmp.pfr_ctx.smpl_regs, tmp.pfr_ctx.smpl_entries, &uaddr)) ) goto buffer_error;
tmp.pfr_ctx.smpl_vaddr = uaddr;
}
/* initialization of context's flags */
ctx->ctx_fl_inherit = ctx_flags & PFM_FL_INHERIT_MASK;
ctx->ctx_fl_noblock = (ctx_flags & PFM_FL_SMPL_OVFL_NOBLOCK) ? 1 : 0;
ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEMWIDE) ? 1: 0;
ctx->ctx_fl_frozen = 0;
sema_init(&ctx->ctx_restart_sem, 0); /* init this semaphore to locked */
if (copy_to_user(req, &tmp, sizeof(tmp))) goto buffer_error;
DBprintk((" context=%p, pid=%d notify_sig %d notify_pid=%d\n",(void *)ctx, task->pid, ctx->ctx_notify_sig, ctx->ctx_notify_pid));
DBprintk((" context=%p, pid=%d flags=0x%x inherit=%d noblock=%d system=%d\n",(void *)ctx, task->pid, ctx_flags, ctx->ctx_fl_inherit, ctx->ctx_fl_noblock, ctx->ctx_fl_system));
/* link with task */
task->thread.pfm_context = ctx;
return 0;
buffer_error:
vfree(ctx);
return ret;
}
static void
pfm_reset_regs(pfm_context_t *ctx)
{
unsigned long mask = ctx->ctx_ovfl_regs;
int i, cnum;
DBprintk((" ovfl_regs=0x%lx\n", mask));
/*
* now restore reset value on sampling overflowed counters
*/
for(i=0, cnum=PMU_FIRST_COUNTER; i < pmu_conf.max_counters; i++, cnum++, mask >>= 1) {
if (mask & 0x1) {
DBprintk((" reseting PMD[%d]=%lx\n", cnum, ctx->ctx_pmds[i].smpl_rval & pmu_conf.perf_ovfl_val));
/* upper part is ignored on rval */
ia64_set_pmd(cnum, ctx->ctx_pmds[i].smpl_rval);
}
}
}
static int
pfm_write_pmcs(struct task_struct *ta, perfmon_req_t *req, int count)
{
struct thread_struct *th = &ta->thread;
pfm_context_t *ctx = th->pfm_context;
perfmon_req_t tmp;
unsigned long cnum;
int i;
/* XXX: ctx locking may be required here */
for (i = 0; i < count; i++, req++) {
if (copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
cnum = tmp.pfr_reg.reg_num;
/* XXX needs to check validity of the data maybe */
if (!PMC_IS_IMPL(cnum)) {
DBprintk((" invalid pmc[%ld]\n", cnum));
return -EINVAL;
}
if (PMC_IS_COUNTER(cnum)) {
/*
* we keep track of EARS/BTB to speed up sampling later
*/
if (PMC_IS_DEAR(&tmp.pfr_reg.reg_value)) {
ctx->ctx_dear_counter = cnum;
} else if (PMC_IS_IEAR(&tmp.pfr_reg.reg_value)) {
ctx->ctx_iear_counter = cnum;
} else if (PMC_IS_BTB(&tmp.pfr_reg.reg_value)) {
ctx->ctx_btb_counter = cnum;
}
if (tmp.pfr_reg.reg_flags & PFM_REGFL_OVFL_NOTIFY)
ctx->ctx_pmds[cnum - PMU_FIRST_COUNTER].flags |= PFM_REGFL_OVFL_NOTIFY;
}
ia64_set_pmc(cnum, tmp.pfr_reg.reg_value);
DBprintk((" setting PMC[%ld]=0x%lx flags=0x%x\n", cnum, tmp.pfr_reg.reg_value, ctx->ctx_pmds[cnum - PMU_FIRST_COUNTER].flags));
}
/*
* we have to set this here event hough we haven't necessarily started monitoring
* because we may be context switched out
*/
th->flags |= IA64_THREAD_PM_VALID;
return 0;
}
static int
pfm_write_pmds(struct task_struct *ta, perfmon_req_t *req, int count)
{
struct thread_struct *th = &ta->thread;
pfm_context_t *ctx = th->pfm_context;
perfmon_req_t tmp;
unsigned long cnum;
int i;
/* XXX: ctx locking may be required here */
for (i = 0; i < count; i++, req++) {
int k;
if (copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
cnum = tmp.pfr_reg.reg_num;
k = cnum - PMU_FIRST_COUNTER;
if (!PMD_IS_IMPL(cnum)) return -EINVAL;
/* update virtualized (64bits) counter */
if (PMD_IS_COUNTER(cnum)) {
ctx->ctx_pmds[k].ival = tmp.pfr_reg.reg_value;
ctx->ctx_pmds[k].val = tmp.pfr_reg.reg_value & ~pmu_conf.perf_ovfl_val;
ctx->ctx_pmds[k].smpl_rval = tmp.pfr_reg.reg_smpl_reset;
ctx->ctx_pmds[k].ovfl_rval = tmp.pfr_reg.reg_ovfl_reset;
}
/* writes to unimplemented part is ignored, so this is safe */
ia64_set_pmd(cnum, tmp.pfr_reg.reg_value);
/* to go away */
ia64_srlz_d();
DBprintk((" setting PMD[%ld]: pmd.val=0x%lx pmd.ovfl_rval=0x%lx pmd.smpl_rval=0x%lx pmd=%lx\n",
cnum,
ctx->ctx_pmds[k].val,
ctx->ctx_pmds[k].ovfl_rval,
ctx->ctx_pmds[k].smpl_rval,
ia64_get_pmd(cnum) & pmu_conf.perf_ovfl_val));
}
/*
* we have to set this here event hough we haven't necessarily started monitoring
* because we may be context switched out
*/
th->flags |= IA64_THREAD_PM_VALID;
return 0;
}
static int
pfm_read_pmds(struct task_struct *ta, perfmon_req_t *req, int count)
{
struct thread_struct *th = &ta->thread;
pfm_context_t *ctx = th->pfm_context;
unsigned long val=0;
perfmon_req_t tmp;
int i;
/*
* XXX: MUST MAKE SURE WE DON"T HAVE ANY PENDING OVERFLOW BEFORE READING
* This is required when the monitoring has been stoppped by user of kernel.
* If ity is still going on, then that's fine because we a re not gauranteed
* to return an accurate value in this case
*/
/* XXX: ctx locking may be required here */
for (i = 0; i < count; i++, req++) {
if (copy_from_user(&tmp, req, sizeof(tmp))) return -EFAULT;
if (!PMD_IS_IMPL(tmp.pfr_reg.reg_num)) return -EINVAL;
if (PMD_IS_COUNTER(tmp.pfr_reg.reg_num)) {
if (ta == current){
val = ia64_get_pmd(tmp.pfr_reg.reg_num);
} else {
val = th->pmd[tmp.pfr_reg.reg_num];
}
val &= pmu_conf.perf_ovfl_val;
/*
* lower part of .val may not be zero, so we must be an addition because of
* residual count (see update_counters).
*/
val += ctx->ctx_pmds[tmp.pfr_reg.reg_num - PMU_FIRST_COUNTER].val;
} else {
/* for now */
if (ta != current) return -EINVAL;
val = ia64_get_pmd(tmp.pfr_reg.reg_num);
}
tmp.pfr_reg.reg_value = val;
DBprintk((" reading PMD[%ld]=0x%lx\n", tmp.pfr_reg.reg_num, val));
if (copy_to_user(req, &tmp, sizeof(tmp))) return -EFAULT;
}
return 0;
}
static int
pfm_do_restart(struct task_struct *task)
{
struct thread_struct *th = &task->thread;
pfm_context_t *ctx = th->pfm_context;
void *sem = &ctx->ctx_restart_sem;
if (task == current) {
DBprintk((" restartig self %d frozen=%d \n", current->pid, ctx->ctx_fl_frozen));
pfm_reset_regs(ctx);
/*
* We ignore block/don't block because we never block
* for a self-monitoring process.
*/
ctx->ctx_fl_frozen = 0;
if (CTX_HAS_SMPL(ctx)) {
ctx->ctx_smpl_buf->psb_hdr->hdr_count = 0;
ctx->ctx_smpl_buf->psb_index = 0;
}
/* pfm_reset_smpl_buffers(ctx,th->pfm_ovfl_regs);*/
/* simply unfreeze */
ia64_set_pmc(0, 0);
ia64_srlz_d();
return 0;
}
/* check if blocking */
if (CTX_OVFL_NOBLOCK(ctx) == 0) {
DBprintk((" unblocking %d \n", task->pid));
up(sem);
return 0;
}
/*
* in case of non blocking mode, then it's just a matter of
* of reseting the sampling buffer (if any) index. The PMU
* is already active.
*/
/*
* must reset the header count first
*/
if (CTX_HAS_SMPL(ctx)) {
DBprintk((" resetting sampling indexes for %d \n", task->pid));
ctx->ctx_smpl_buf->psb_hdr->hdr_count = 0;
ctx->ctx_smpl_buf->psb_index = 0;
}
return 0;
}
static int
do_perfmonctl (struct task_struct *task, int cmd, int flags, perfmon_req_t *req, int count, struct pt_regs *regs)
{
perfmon_req_t tmp;
struct thread_struct *th = &task->thread;
pfm_context_t *ctx = th->pfm_context;
memset(&tmp, 0, sizeof(tmp));
switch (cmd) {
case PFM_CREATE_CONTEXT:
/* a context has already been defined */
if (ctx) return -EBUSY;
/* may be a temporary limitation */
if (task != current) return -EINVAL;
if (req == NULL || count != 1) return -EINVAL;
if (!access_ok(VERIFY_READ, req, sizeof(struct perfmon_req_t)*count)) return -EFAULT;
return pfm_context_create(task, flags, req);
case PFM_WRITE_PMCS:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
if (!access_ok(VERIFY_READ, req, sizeof(struct perfmon_req_t)*count)) return -EFAULT;
if (!ctx) {
DBprintk((" PFM_WRITE_PMCS: no context for task %d\n", task->pid));
return -EINVAL;
}
return pfm_write_pmcs(task, req, count);
case PFM_WRITE_PMDS:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
if (!access_ok(VERIFY_READ, req, sizeof(struct perfmon_req_t)*count)) return -EFAULT;
if (!ctx) {
DBprintk((" PFM_WRITE_PMDS: no context for task %d\n", task->pid));
return -EINVAL;
}
return pfm_write_pmds(task, req, count);
case PFM_START:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
if (!ctx) {
DBprintk((" PFM_START: no context for task %d\n", task->pid));
return -EINVAL;
}
SET_PMU_OWNER(current);
/* will start monitoring right after rfi */
ia64_psr(regs)->up = 1;
/*
* mark the state as valid.
* this will trigger save/restore at context switch
*/
th->flags |= IA64_THREAD_PM_VALID;
ia64_set_pmc(0, 0);
ia64_srlz_d();
break;
case PFM_ENABLE:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
if (!ctx) {
DBprintk((" PFM_ENABLE: no context for task %d\n", task->pid));
return -EINVAL;
}
/* reset all registers to stable quiet state */
ia64_reset_pmu();
/* make sure nothing starts */
ia64_psr(regs)->up = 0;
ia64_psr(regs)->pp = 0;
/* do it on the live register as well */
__asm__ __volatile__ ("rsm psr.pp|psr.pp;;"::: "memory");
SET_PMU_OWNER(current);
/*
* mark the state as valid.
* this will trigger save/restore at context switch
*/
th->flags |= IA64_THREAD_PM_VALID;
/* simply unfreeze */
ia64_set_pmc(0, 0);
ia64_srlz_d();
break;
case PFM_DISABLE:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
/* simply freeze */
ia64_set_pmc(0, 1);
ia64_srlz_d();
break;
case PFM_READ_PMDS:
if (!access_ok(VERIFY_READ, req, sizeof(struct perfmon_req_t)*count)) return -EFAULT;
if (!access_ok(VERIFY_WRITE, req, sizeof(struct perfmon_req_t)*count)) return -EFAULT;
if (!ctx) {
DBprintk((" PFM_READ_PMDS: no context for task %d\n", task->pid));
return -EINVAL;
}
return pfm_read_pmds(task, req, count);
case PFM_STOP:
/* we don't quite support this right now */
if (task != current) return -EINVAL;
ia64_set_pmc(0, 1);
ia64_srlz_d();
ia64_psr(regs)->up = 0;
th->flags &= ~IA64_THREAD_PM_VALID;
SET_PMU_OWNER(NULL);
/* we probably will need some more cleanup here */
break;
case PFM_DEBUG_ON:
printk(" debugging on\n");
pfm_debug = 1;
break;
case PFM_DEBUG_OFF:
printk(" debugging off\n");
pfm_debug = 0;
break;
case PFM_RESTART: /* temporary, will most likely end up as a PFM_ENABLE */
if ((th->flags & IA64_THREAD_PM_VALID) == 0) {
printk(" PFM_RESTART not monitoring\n");
return -EINVAL;
}
if (!ctx) {
printk(" PFM_RESTART no ctx for %d\n", task->pid);
return -EINVAL;
}
if (CTX_OVFL_NOBLOCK(ctx) == 0 && ctx->ctx_fl_frozen==0) {
printk("task %d without pmu_frozen set\n", task->pid);
return -EINVAL;
}
return pfm_do_restart(task); /* we only look at first entry */
default:
DBprintk((" UNknown command 0x%x\n", cmd));
return -EINVAL;
}
return 0;
}
/*
* XXX: do something better here
*/
static int
perfmon_bad_permissions(struct task_struct *task)
{
/* stolen from bad_signal() */
return (current->session != task->session)
&& (current->euid ^ task->suid) && (current->euid ^ task->uid)
&& (current->uid ^ task->suid) && (current->uid ^ task->uid);
}
asmlinkage int
sys_perfmonctl (int pid, int cmd, int flags, perfmon_req_t *req, int count, long arg6, long arg7, long arg8, long stack)
{
struct pt_regs *regs = (struct pt_regs *) &stack;
struct task_struct *child = current;
int ret = -ESRCH;
/* sanity check:
*
* ensures that we don't do bad things in case the OS
* does not have enough storage to save/restore PMC/PMD
*/
if (PERFMON_IS_DISABLED()) return -ENOSYS;
/* XXX: pid interface is going away in favor of pfm context */
if (pid != current->pid) {
read_lock(&tasklist_lock);
{
child = find_task_by_pid(pid);
if (child)
get_task_struct(child);
}
if (!child) goto abort_call;
ret = -EPERM;
if (perfmon_bad_permissions(child)) goto abort_call;
/*
* XXX: need to do more checking here
*/
if (child->state != TASK_ZOMBIE && child->state != TASK_STOPPED) {
DBprintk((" warning process %d not in stable state %ld\n", pid, child->state));
}
}
ret = do_perfmonctl(child, cmd, flags, req, count, regs);
abort_call:
if (child != current) read_unlock(&tasklist_lock);
return ret;
}
/*
* This function is invoked on the exit path of the kernel. Therefore it must make sure
* it does does modify the caller's input registers (in0-in7) in case of entry by system call
* which can be restarted. That's why it's declared as a system call and all 8 possible args
* are declared even though not used.
*/
#if __GNUC__ >= 3
void asmlinkage
pfm_overflow_notify(void)
#else
void asmlinkage
pfm_overflow_notify(u64 arg0, u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7)
#endif
{
struct task_struct *task;
struct thread_struct *th = ¤t->thread;
pfm_context_t *ctx = current->thread.pfm_context;
struct siginfo si;
int ret;
/*
* do some sanity checks first
*/
if (!ctx) {
printk("perfmon: process %d has no PFM context\n", current->pid);
return;
}
if (ctx->ctx_notify_pid < 2) {
printk("perfmon: process %d invalid notify_pid=%d\n", current->pid, ctx->ctx_notify_pid);
return;
}
DBprintk((" current=%d ctx=%p bv=0%lx\n", current->pid, (void *)ctx, ctx->ctx_ovfl_regs));
/*
* NO matter what notify_pid is,
* we clear overflow, won't notify again
*/
th->pfm_pend_notify = 0;
/*
* When measuring in kernel mode and non-blocking fashion, it is possible to
* get an overflow while executing this code. Therefore the state of pend_notify
* and ovfl_regs can be altered. The important point is not to loose any notification.
* It is fine to get called for nothing. To make sure we do collect as much state as
* possible, update_counters() always uses |= to add bit to the ovfl_regs field.
*
* In certain cases, it is possible to come here, with ovfl_regs == 0;
*
* XXX: pend_notify and ovfl_regs could be merged maybe !
*/
if (ctx->ctx_ovfl_regs == 0) {
printk("perfmon: spurious overflow notification from pid %d\n", current->pid);
return;
}
read_lock(&tasklist_lock);
task = find_task_by_pid(ctx->ctx_notify_pid);
if (task) {
si.si_signo = ctx->ctx_notify_sig;
si.si_errno = 0;
si.si_code = PROF_OVFL; /* goes to user */
si.si_addr = NULL;
si.si_pid = current->pid; /* who is sending */
si.si_pfm_ovfl = ctx->ctx_ovfl_regs;
DBprintk((" SIGPROF to %d @ %p\n", task->pid, (void *)task));
/* must be done with tasklist_lock locked */
ret = send_sig_info(ctx->ctx_notify_sig, &si, task);
if (ret != 0) {
DBprintk((" send_sig_info(process %d, SIGPROF)=%d\n", ctx->ctx_notify_pid, ret));
task = NULL; /* will cause return */
}
} else {
printk("perfmon: notify_pid %d not found\n", ctx->ctx_notify_pid);
}
read_unlock(&tasklist_lock);
/* now that we have released the lock handle error condition */
if (!task || CTX_OVFL_NOBLOCK(ctx)) {
/* we clear all pending overflow bits in noblock mode */
ctx->ctx_ovfl_regs = 0;
return;
}
DBprintk((" CPU%d %d before sleep\n", smp_processor_id(), current->pid));
/*
* may go through without blocking on SMP systems
* if restart has been received already by the time we call down()
*/
ret = down_interruptible(&ctx->ctx_restart_sem);
DBprintk((" CPU%d %d after sleep ret=%d\n", smp_processor_id(), current->pid, ret));
/*
* in case of interruption of down() we don't restart anything
*/
if (ret >= 0) {
/* we reactivate on context switch */
ctx->ctx_fl_frozen = 0;
/*
* the ovfl_sem is cleared by the restart task and this is safe because we always
* use the local reference
*/
pfm_reset_regs(ctx);
/* now we can clear this mask */
ctx->ctx_ovfl_regs = 0;
/*
* Unlock sampling buffer and reset index atomically
* XXX: not really needed when blocking
*/
if (CTX_HAS_SMPL(ctx)) {
ctx->ctx_smpl_buf->psb_hdr->hdr_count = 0;
ctx->ctx_smpl_buf->psb_index = 0;
}
DBprintk((" CPU%d %d unfreeze PMU\n", smp_processor_id(), current->pid));
ia64_set_pmc(0, 0);
ia64_srlz_d();
/* state restored, can go back to work (user mode) */
}
}
static void
perfmon_softint(unsigned long ignored)
{
notification_info_t *info;
int my_cpu = smp_processor_id();
struct task_struct *task;
struct siginfo si;
info = notify_info+my_cpu;
DBprintk((" CPU%d current=%d to_pid=%d from_pid=%d bv=0x%lx\n", \
smp_processor_id(), current->pid, info->to_pid, info->from_pid, info->bitvect));
/* assumption check */
if (info->from_pid == info->to_pid) {
DBprintk((" Tasklet assumption error: from=%d tor=%d\n", info->from_pid, info->to_pid));
return;
}
if (notification_is_invalid(info)) {
DBprintk((" invalid notification information\n"));
return;
}
/* sanity check */
if (info->to_pid == 1) {
DBprintk((" cannot notify init\n"));
return;
}
/*
* XXX: needs way more checks here to make sure we send to a task we have control over
*/
read_lock(&tasklist_lock);
task = find_task_by_pid(info->to_pid);
DBprintk((" after find %p\n", (void *)task));
if (task) {
int ret;
si.si_signo = SIGPROF;
si.si_errno = 0;
si.si_code = PROF_OVFL; /* goes to user */
si.si_addr = NULL;
si.si_pid = info->from_pid; /* who is sending */
si.si_pfm_ovfl = info->bitvect;
DBprintk((" SIGPROF to %d @ %p\n", task->pid, (void *)task));
/* must be done with tasklist_lock locked */
ret = send_sig_info(SIGPROF, &si, task);
if (ret != 0)
DBprintk((" send_sig_info(process %d, SIGPROF)=%d\n", info->to_pid, ret));
/* invalidate notification */
info->to_pid = info->from_pid = 0;
info->bitvect = 0;
}
read_unlock(&tasklist_lock);
DBprintk((" after unlock %p\n", (void *)task));
if (!task) {
printk("perfmon: CPU%d cannot find process %d\n", smp_processor_id(), info->to_pid);
}
}
/*
* main overflow processing routine.
* it can be called from the interrupt path or explicitely during the context switch code
* Return:
* 0 : do not unfreeze the PMU
* 1 : PMU can be unfrozen
*/
static unsigned long
update_counters (struct task_struct *ta, u64 pmc0, struct pt_regs *regs)
{
unsigned long mask, i, cnum;
struct thread_struct *th;
pfm_context_t *ctx;
unsigned long bv = 0;
int my_cpu = smp_processor_id();
int ret = 1, buffer_is_full = 0;
int ovfl_is_smpl, can_notify, need_reset_pmd16=0;
/*
* It is never safe to access the task for which the overflow interrupt is destinated
* using the current variable as the interrupt may occur in the middle of a context switch
* where current does not hold the task that is running yet.
*
* For monitoring, however, we do need to get access to the task which caused the overflow
* to account for overflow on the counters.
*
* We accomplish this by maintaining a current owner of the PMU per CPU. During context
* switch the ownership is changed in a way such that the reflected owner is always the
* valid one, i.e. the one that caused the interrupt.
*/
if (ta == NULL) {
DBprintk((" owners[%d]=NULL\n", my_cpu));
return 0x1;
}
th = &ta->thread;
ctx = th->pfm_context;
/*
* XXX: debug test
* Don't think this could happen given upfront tests
*/
if ((th->flags & IA64_THREAD_PM_VALID) == 0) {
printk("perfmon: Spurious overflow interrupt: process %d not using perfmon\n", ta->pid);
return 0x1;
}
if (!ctx) {
printk("perfmon: Spurious overflow interrupt: process %d has no PFM context\n", ta->pid);
return 0;
}
/*
* sanity test. Should never happen
*/
if ((pmc0 & 0x1 )== 0) {
printk("perfmon: pid %d pmc0=0x%lx assumption error for freeze bit\n", ta->pid, pmc0);
return 0x0;
}
mask = pmc0 >> PMU_FIRST_COUNTER;
DBprintk(("pmc0=0x%lx pid=%d\n", pmc0, ta->pid));
DBprintk(("ctx is in %s mode\n", CTX_OVFL_NOBLOCK(ctx) ? "NO-BLOCK" : "BLOCK"));
if (CTX_HAS_SMPL(ctx)) {
pfm_smpl_buffer_desc_t *psb = ctx->ctx_smpl_buf;
unsigned long *e, m, idx=0;
perfmon_smpl_entry_t *h;
int j;
idx = ia64_fetch_and_add(1, &psb->psb_index);
DBprintk((" trying to record index=%ld entries=%ld\n", idx, psb->psb_entries));
/*
* XXX: there is a small chance that we could run out on index before resetting
* but index is unsigned long, so it will take some time.....
*/
if (idx > psb->psb_entries) {
buffer_is_full = 1;
goto reload_pmds;
}
/* first entry is really entry 0, not 1 caused by fetch_and_add */
idx--;
h = (perfmon_smpl_entry_t *)(((char *)psb->psb_addr) + idx*(psb->psb_entry_size));
h->pid = ta->pid;
h->cpu = my_cpu;
h->rate = 0;
h->ip = regs ? regs->cr_iip : 0x0; /* where did the fault happened */
h->regs = mask; /* which registers overflowed */
/* guaranteed to monotonically increase on each cpu */
h->stamp = perfmon_get_stamp();
e = (unsigned long *)(h+1);
/*
* selectively store PMDs in increasing index number
*/
for (j=0, m = ctx->ctx_smpl_regs; m; m >>=1, j++) {
if (m & 0x1) {
if (PMD_IS_COUNTER(j))
*e = ctx->ctx_pmds[j-PMU_FIRST_COUNTER].val
+ (ia64_get_pmd(j) & pmu_conf.perf_ovfl_val);
else
*e = ia64_get_pmd(j); /* slow */
DBprintk((" e=%p pmd%d =0x%lx\n", (void *)e, j, *e));
e++;
}
}
/* make the new entry visible to user, needs to be atomic */
ia64_fetch_and_add(1, &psb->psb_hdr->hdr_count);
DBprintk((" index=%ld entries=%ld hdr_count=%ld\n", idx, psb->psb_entries, psb->psb_hdr->hdr_count));
/* sampling buffer full ? */
if (idx == (psb->psb_entries-1)) {
bv = mask;
buffer_is_full = 1;
DBprintk((" sampling buffer full must notify bv=0x%lx\n", bv));
if (!CTX_OVFL_NOBLOCK(ctx)) goto buffer_full;
/*
* here, we have a full buffer but we are in non-blocking mode
* so we need to reloads overflowed PMDs with sampling reset values
* and restart
*/
}
}
reload_pmds:
ovfl_is_smpl = CTX_OVFL_NOBLOCK(ctx) && buffer_is_full;
can_notify = CTX_HAS_SMPL(ctx) == 0 && ctx->ctx_notify_pid;
for (i = 0, cnum = PMU_FIRST_COUNTER; mask ; cnum++, i++, mask >>= 1) {
if ((mask & 0x1) == 0) continue;
DBprintk((" PMD[%ld] overflowed pmd=0x%lx pmod.val=0x%lx\n", cnum, ia64_get_pmd(cnum), ctx->ctx_pmds[i].val));
/*
* Because we sometimes (EARS/BTB) reset to a specific value, we cannot simply use
* val to count the number of times we overflowed. Otherwise we would loose the current value
* in the PMD (which can be >0). So to make sure we don't loose
* the residual counts we set val to contain full 64bits value of the counter.
*
* XXX: is this needed for EARS/BTB ?
*/
ctx->ctx_pmds[i].val += 1 + pmu_conf.perf_ovfl_val
+ (ia64_get_pmd(cnum) & pmu_conf.perf_ovfl_val); /* slow */
DBprintk((" pmod[%ld].val=0x%lx pmd=0x%lx\n", i, ctx->ctx_pmds[i].val, ia64_get_pmd(cnum)&pmu_conf.perf_ovfl_val));
if (can_notify && PMD_OVFL_NOTIFY(ctx, i)) {
DBprintk((" CPU%d should notify process %d with signal %d\n", my_cpu, ctx->ctx_notify_pid, ctx->ctx_notify_sig));
bv |= 1 << i;
} else {
DBprintk((" CPU%d PMD[%ld] overflow, no notification\n", my_cpu, cnum));
/*
* In case no notification is requested, we reload the reset value right away
* otherwise we wait until the notify_pid process has been called and has
* has finished processing data. Check out pfm_overflow_notify()
*/
/* writes to upper part are ignored, so this is safe */
if (ovfl_is_smpl) {
DBprintk((" CPU%d PMD[%ld] reloaded with smpl_val=%lx\n", my_cpu, cnum,ctx->ctx_pmds[i].smpl_rval));
ia64_set_pmd(cnum, ctx->ctx_pmds[i].smpl_rval);
} else {
DBprintk((" CPU%d PMD[%ld] reloaded with ovfl_val=%lx\n", my_cpu, cnum,ctx->ctx_pmds[i].smpl_rval));
ia64_set_pmd(cnum, ctx->ctx_pmds[i].ovfl_rval);
}
}
if (cnum == ctx->ctx_btb_counter) need_reset_pmd16=1;
}
/*
* In case of BTB, overflow
* we need to reset the BTB index.
*/
if (need_reset_pmd16) {
DBprintk(("reset PMD16\n"));
ia64_set_pmd(16, 0);
}
buffer_full:
/* see pfm_overflow_notify() on details for why we use |= here */
ctx->ctx_ovfl_regs |= bv;
/* nobody to notify, return and unfreeze */
if (!bv) return 0x0;
if (ctx->ctx_notify_pid == ta->pid) {
struct siginfo si;
si.si_errno = 0;
si.si_addr = NULL;
si.si_pid = ta->pid; /* who is sending */
si.si_signo = ctx->ctx_notify_sig; /* is SIGPROF */
si.si_code = PROF_OVFL; /* goes to user */
si.si_pfm_ovfl = bv;
/*
* in this case, we don't stop the task, we let it go on. It will
* necessarily go to the signal handler (if any) when it goes back to
* user mode.
*/
DBprintk((" sending %d notification to self %d\n", si.si_signo, ta->pid));
/* this call is safe in an interrupt handler */
ret = send_sig_info(ctx->ctx_notify_sig, &si, ta);
if (ret != 0)
printk(" send_sig_info(process %d, SIGPROF)=%d\n", ta->pid, ret);
/*
* no matter if we block or not, we keep PMU frozen and do not unfreeze on ctxsw
*/
ctx->ctx_fl_frozen = 1;
} else {
#if 0
/*
* The tasklet is guaranteed to be scheduled for this CPU only
*/
notify_info[my_cpu].to_pid = ctx->notify_pid;
notify_info[my_cpu].from_pid = ta->pid; /* for debug only */
notify_info[my_cpu].bitvect = bv;
/* tasklet is inserted and active */
tasklet_schedule(&pfm_tasklet);
#endif
/*
* stored the vector of overflowed registers for use in notification
* mark that a notification/blocking is pending (arm the trap)
*/
th->pfm_pend_notify = 1;
/*
* if we do block, then keep PMU frozen until restart
*/
if (!CTX_OVFL_NOBLOCK(ctx)) ctx->ctx_fl_frozen = 1;
DBprintk((" process %d notify ovfl_regs=0x%lx\n", ta->pid, bv));
}
/*
* keep PMU frozen (and overflowed bits cleared) when we have to stop,
* otherwise return a resume 'value' for PMC[0]
*
* XXX: maybe that's enough to get rid of ctx_fl_frozen ?
*/
DBprintk((" will return pmc0=0x%x\n",ctx->ctx_fl_frozen ? 0x1 : 0x0));
return ctx->ctx_fl_frozen ? 0x1 : 0x0;
}
static void
perfmon_interrupt (int irq, void *arg, struct pt_regs *regs)
{
u64 pmc0;
struct task_struct *ta;
pmc0 = ia64_get_pmc(0); /* slow */
/*
* if we have some pending bits set
* assumes : if any PM[0].bit[63-1] is set, then PMC[0].fr = 1
*/
if ((pmc0 & ~0x1) && (ta=PMU_OWNER())) {
/* assumes, PMC[0].fr = 1 at this point */
pmc0 = update_counters(ta, pmc0, regs);
/*
* if pmu_frozen = 0
* pmc0 = 0 and we resume monitoring right away
* else
* pmc0 = 0x1 frozen but all pending bits are cleared
*/
ia64_set_pmc(0, pmc0);
ia64_srlz_d();
} else {
printk("perfmon: Spurious PMU overflow interrupt: pmc0=0x%lx owner=%p\n", pmc0, (void *)PMU_OWNER());
}
}
/* for debug only */
static int
perfmon_proc_info(char *page)
{
char *p = page;
u64 pmc0 = ia64_get_pmc(0);
int i;
p += sprintf(p, "PMC[0]=%lx\nPerfmon debug: %s\n", pmc0, pfm_debug ? "On" : "Off");
for(i=0; i < NR_CPUS; i++) {
if (cpu_is_online(i))
p += sprintf(p, "CPU%d.PMU %d\n", i, pmu_owners[i].owner ? pmu_owners[i].owner->pid: 0);
}
return p - page;
}
/* for debug only */
static int
perfmon_read_entry(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = perfmon_proc_info(page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return len;
}
static struct irqaction perfmon_irqaction = {
handler: perfmon_interrupt,
flags: SA_INTERRUPT,
name: "perfmon"
};
void __init
perfmon_init (void)
{
pal_perf_mon_info_u_t pm_info;
s64 status;
register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
ia64_set_pmv(IA64_PERFMON_VECTOR);
ia64_srlz_d();
pmu_conf.pfm_is_disabled = 1;
printk("perfmon: version %s (sampling format v%d)\n", PFM_VERSION, PFM_SMPL_HDR_VERSION);
printk("perfmon: Interrupt vectored to %u\n", IA64_PERFMON_VECTOR);
if ((status=ia64_pal_perf_mon_info(pmu_conf.impl_regs, &pm_info)) != 0) {
printk("perfmon: PAL call failed (%ld)\n", status);
return;
}
pmu_conf.perf_ovfl_val = (1L << pm_info.pal_perf_mon_info_s.width) - 1;
pmu_conf.max_counters = pm_info.pal_perf_mon_info_s.generic;
pmu_conf.num_pmds = find_num_pm_regs(pmu_conf.impl_regs);
pmu_conf.num_pmcs = find_num_pm_regs(&pmu_conf.impl_regs[4]);
printk("perfmon: %d bits counters (max value 0x%lx)\n", pm_info.pal_perf_mon_info_s.width, pmu_conf.perf_ovfl_val);
printk("perfmon: %ld PMC/PMD pairs, %ld PMCs, %ld PMDs\n", pmu_conf.max_counters, pmu_conf.num_pmcs, pmu_conf.num_pmds);
/* sanity check */
if (pmu_conf.num_pmds >= IA64_NUM_PMD_REGS || pmu_conf.num_pmcs >= IA64_NUM_PMC_REGS) {
printk(KERN_ERR "perfmon: ERROR not enough PMC/PMD storage in kernel, perfmon is DISABLED\n");
return; /* no need to continue anyway */
}
/* we are all set */
pmu_conf.pfm_is_disabled = 0;
/*
* Insert the tasklet in the list.
* It is still disabled at this point, so it won't run
printk(__FUNCTION__" tasklet is %p state=%d, count=%d\n", &perfmon_tasklet, perfmon_tasklet.state, perfmon_tasklet.count);
*/
/*
* for now here for debug purposes
*/
perfmon_dir = create_proc_read_entry ("perfmon", 0, 0, perfmon_read_entry, NULL);
}
void
perfmon_init_percpu (void)
{
ia64_set_pmv(IA64_PERFMON_VECTOR);
ia64_srlz_d();
}
/*
* XXX: for system wide this function MUST never be called
*/
void
pfm_save_regs (struct task_struct *ta)
{
struct task_struct *owner;
struct thread_struct *t;
u64 pmc0, psr;
int i;
if (ta == NULL) {
panic(__FUNCTION__" task is NULL\n");
}
t = &ta->thread;
/*
* We must make sure that we don't loose any potential overflow
* interrupt while saving PMU context. In this code, external
* interrupts are always enabled.
*/
/*
* save current PSR: needed because we modify it
*/
__asm__ __volatile__ ("mov %0=psr;;": "=r"(psr) :: "memory");
/*
* stop monitoring:
* This is the only way to stop monitoring without destroying overflow
* information in PMC[0].
* This is the last instruction which can cause overflow when monitoring
* in kernel.
* By now, we could still have an overflow interrupt in-flight.
*/
__asm__ __volatile__ ("rum psr.up;;"::: "memory");
/*
* Mark the PMU as not owned
* This will cause the interrupt handler to do nothing in case an overflow
* interrupt was in-flight
* This also guarantees that pmc0 will contain the final state
* It virtually gives us full control over overflow processing from that point
* on.
* It must be an atomic operation.
*/
owner = PMU_OWNER();
SET_PMU_OWNER(NULL);
/*
* read current overflow status:
*
* we are guaranteed to read the final stable state
*/
ia64_srlz_d();
pmc0 = ia64_get_pmc(0); /* slow */
/*
* freeze PMU:
*
* This destroys the overflow information. This is required to make sure
* next process does not start with monitoring on if not requested
*/
ia64_set_pmc(0, 1);
ia64_srlz_d();
/*
* Check for overflow bits and proceed manually if needed
*
* It is safe to call the interrupt handler now because it does
* not try to block the task right away. Instead it will set a
* flag and let the task proceed. The blocking will only occur
* next time the task exits from the kernel.
*/
if (pmc0 & ~0x1) {
if (owner != ta) printk(__FUNCTION__" owner=%p task=%p\n", (void *)owner, (void *)ta);
printk(__FUNCTION__" Warning: pmc[0]=0x%lx explicit call\n", pmc0);
pmc0 = update_counters(owner, pmc0, NULL);
/* we will save the updated version of pmc0 */
}
/*
* restore PSR for context switch to save
*/
__asm__ __volatile__ ("mov psr.l=%0;; srlz.i;;"::"r"(psr): "memory");
/*
* XXX needs further optimization.
* Also must take holes into account
*/
for (i=0; i< pmu_conf.num_pmds; i++) {
t->pmd[i] = ia64_get_pmd(i);
}
/* skip PMC[0], we handle it separately */
for (i=1; i< pmu_conf.num_pmcs; i++) {
t->pmc[i] = ia64_get_pmc(i);
}
/*
* Throughout this code we could have gotten an overflow interrupt. It is transformed
* into a spurious interrupt as soon as we give up pmu ownership.
*/
}
void
pfm_load_regs (struct task_struct *ta)
{
struct thread_struct *t = &ta->thread;
pfm_context_t *ctx = ta->thread.pfm_context;
int i;
/*
* XXX needs further optimization.
* Also must take holes into account
*/
for (i=0; i< pmu_conf.num_pmds; i++) {
ia64_set_pmd(i, t->pmd[i]);
}
/* skip PMC[0] to avoid side effects */
for (i=1; i< pmu_conf.num_pmcs; i++) {
ia64_set_pmc(i, t->pmc[i]);
}
/*
* we first restore ownership of the PMU to the 'soon to be current'
* context. This way, if, as soon as we unfreeze the PMU at the end
* of this function, we get an interrupt, we attribute it to the correct
* task
*/
SET_PMU_OWNER(ta);
#if 0
/*
* check if we had pending overflow before context switching out
* If so, we invoke the handler manually, i.e. simulate interrupt.
*
* XXX: given that we do not use the tasklet anymore to stop, we can
* move this back to the pfm_save_regs() routine.
*/
if (t->pmc[0] & ~0x1) {
/* freeze set in pfm_save_regs() */
DBprintk((" pmc[0]=0x%lx manual interrupt\n",t->pmc[0]));
update_counters(ta, t->pmc[0], NULL);
}
#endif
/*
* unfreeze only when possible
*/
if (ctx->ctx_fl_frozen == 0) {
ia64_set_pmc(0, 0);
ia64_srlz_d();
}
}
/*
* This function is called when a thread exits (from exit_thread()).
* This is a simplified pfm_save_regs() that simply flushes hthe current
* register state into the save area taking into account any pending
* overflow. This time no notification is sent because the taks is dying
* anyway. The inline processing of overflows avoids loosing some counts.
* The PMU is frozen on exit from this call and is to never be reenabled
* again for this task.
*/
void
pfm_flush_regs (struct task_struct *ta)
{
pfm_context_t *ctx;
u64 pmc0, psr, mask;
int i,j;
if (ta == NULL) {
panic(__FUNCTION__" task is NULL\n");
}
ctx = ta->thread.pfm_context;
if (ctx == NULL) {
panic(__FUNCTION__" no PFM ctx is NULL\n");
}
/*
* We must make sure that we don't loose any potential overflow
* interrupt while saving PMU context. In this code, external
* interrupts are always enabled.
*/
/*
* save current PSR: needed because we modify it
*/
__asm__ __volatile__ ("mov %0=psr;;": "=r"(psr) :: "memory");
/*
* stop monitoring:
* This is the only way to stop monitoring without destroying overflow
* information in PMC[0].
* This is the last instruction which can cause overflow when monitoring
* in kernel.
* By now, we could still have an overflow interrupt in-flight.
*/
__asm__ __volatile__ ("rsm psr.up;;"::: "memory");
/*
* Mark the PMU as not owned
* This will cause the interrupt handler to do nothing in case an overflow
* interrupt was in-flight
* This also guarantees that pmc0 will contain the final state
* It virtually gives us full control on overflow processing from that point
* on.
* It must be an atomic operation.
*/
SET_PMU_OWNER(NULL);
/*
* read current overflow status:
*
* we are guaranteed to read the final stable state
*/
ia64_srlz_d();
pmc0 = ia64_get_pmc(0); /* slow */
/*
* freeze PMU:
*
* This destroys the overflow information. This is required to make sure
* next process does not start with monitoring on if not requested
*/
ia64_set_pmc(0, 1);
ia64_srlz_d();
/*
* restore PSR for context switch to save
*/
__asm__ __volatile__ ("mov psr.l=%0;;srlz.i;"::"r"(psr): "memory");
/*
* This loop flushes the PMD into the PFM context.
* IT also processes overflow inline.
*
* IMPORTANT: No notification is sent at this point as the process is dying.
* The implicit notification will come from a SIGCHILD or a return from a
* waitpid().
*
* XXX: must take holes into account
*/
mask = pmc0 >> PMU_FIRST_COUNTER;
for (i=0,j=PMU_FIRST_COUNTER; i< pmu_conf.max_counters; i++,j++) {
/* collect latest results */
ctx->ctx_pmds[i].val += ia64_get_pmd(j) & pmu_conf.perf_ovfl_val;
/* take care of overflow inline */
if (mask & 0x1) {
ctx->ctx_pmds[i].val += 1 + pmu_conf.perf_ovfl_val;
DBprintk((" PMD[%d] overflowed pmd=0x%lx pmds.val=0x%lx\n",
j, ia64_get_pmd(j), ctx->ctx_pmds[i].val));
}
}
}
/*
* XXX: this routine is not very portable for PMCs
* XXX: make this routine able to work with non current context
*/
static void
ia64_reset_pmu(void)
{
int i;
/* PMU is frozen, no pending overflow bits */
ia64_set_pmc(0,1);
/* extra overflow bits + counter configs cleared */
for(i=1; i< PMU_FIRST_COUNTER + pmu_conf.max_counters ; i++) {
ia64_set_pmc(i,0);
}
/* opcode matcher set to all 1s */
ia64_set_pmc(8,~0);
ia64_set_pmc(9,~0);
/* I-EAR config cleared, plm=0 */
ia64_set_pmc(10,0);
/* D-EAR config cleared, PMC[11].pt must be 1 */
ia64_set_pmc(11,1 << 28);
/* BTB config. plm=0 */
ia64_set_pmc(12,0);
/* Instruction address range, PMC[13].ta must be 1 */
ia64_set_pmc(13,1);
/* clears all PMD registers */
for(i=0;i< pmu_conf.num_pmds; i++) {
if (PMD_IS_IMPL(i)) ia64_set_pmd(i,0);
}
ia64_srlz_d();
}
/*
* task is the newly created task
*/
int
pfm_inherit(struct task_struct *task)
{
pfm_context_t *ctx = current->thread.pfm_context;
pfm_context_t *nctx;
struct thread_struct *th = &task->thread;
int i, cnum;
/*
* takes care of easiest case first
*/
if (CTX_INHERIT_MODE(ctx) == PFM_FL_INHERIT_NONE) {
DBprintk((" removing PFM context for %d\n", task->pid));
task->thread.pfm_context = NULL;
task->thread.pfm_pend_notify = 0;
/* copy_thread() clears IA64_THREAD_PM_VALID */
return 0;
}
nctx = pfm_context_alloc();
if (nctx == NULL) return -ENOMEM;
/* copy content */
*nctx = *ctx;
if (ctx->ctx_fl_inherit == PFM_FL_INHERIT_ONCE) {
nctx->ctx_fl_inherit = PFM_FL_INHERIT_NONE;
DBprintk((" downgrading to INHERIT_NONE for %d\n", task->pid));
}
/* initialize counters in new context */
for(i=0, cnum= PMU_FIRST_COUNTER; i < pmu_conf.max_counters; cnum++, i++) {
nctx->ctx_pmds[i].val = nctx->ctx_pmds[i].ival & ~pmu_conf.perf_ovfl_val;
th->pmd[cnum] = nctx->ctx_pmds[i].ival & pmu_conf.perf_ovfl_val;
}
/* clear BTB index register */
th->pmd[16] = 0;
/* if sampling then increment number of users of buffer */
if (nctx->ctx_smpl_buf) {
atomic_inc(&nctx->ctx_smpl_buf->psb_refcnt);
}
nctx->ctx_fl_frozen = 0;
nctx->ctx_ovfl_regs = 0;
sema_init(&nctx->ctx_restart_sem, 0); /* reset this semaphore to locked */
/* clear pending notification */
th->pfm_pend_notify = 0;
/* link with new task */
th->pfm_context = nctx;
DBprintk((" nctx=%p for process %d\n", (void *)nctx, task->pid));
/*
* the copy_thread routine automatically clears
* IA64_THREAD_PM_VALID, so we need to reenable it, if it was used by the caller
*/
if (current->thread.flags & IA64_THREAD_PM_VALID) {
DBprintk((" setting PM_VALID for %d\n", task->pid));
th->flags |= IA64_THREAD_PM_VALID;
}
return 0;
}
/* called from exit_thread() */
void
pfm_context_exit(struct task_struct *task)
{
pfm_context_t *ctx = task->thread.pfm_context;
if (!ctx) {
DBprintk((" invalid context for %d\n", task->pid));
return;
}
/* check is we have a sampling buffer attached */
if (ctx->ctx_smpl_buf) {
pfm_smpl_buffer_desc_t *psb = ctx->ctx_smpl_buf;
/* if only user left, then remove */
DBprintk((" pid %d: task %d sampling psb->refcnt=%d\n", current->pid, task->pid, psb->psb_refcnt.counter));
if (atomic_dec_and_test(&psb->psb_refcnt) ) {
rvfree(psb->psb_hdr, psb->psb_size);
vfree(psb);
DBprintk((" pid %d: cleaning task %d sampling buffer\n", current->pid, task->pid ));
}
}
DBprintk((" pid %d: task %d pfm_context is freed @%p\n", current->pid, task->pid, (void *)ctx));
pfm_context_free(ctx);
}
#else /* !CONFIG_PERFMON */
asmlinkage int
sys_perfmonctl (int pid, int cmd, int flags, perfmon_req_t *req, int count, long arg6, long arg7, long arg8, long stack)
{
return -ENOSYS;
}
#endif /* !CONFIG_PERFMON */
|