File: time.c

package info (click to toggle)
kernel-source-2.4.14 2.4.14-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 139,160 kB
  • ctags: 428,423
  • sloc: ansic: 2,435,554; asm: 141,119; makefile: 8,258; sh: 3,099; perl: 2,561; yacc: 1,177; cpp: 755; tcl: 577; lex: 352; awk: 251; lisp: 218; sed: 72
file content (297 lines) | stat: -rw-r--r-- 8,122 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
 * linux/arch/ia64/kernel/time.c
 *
 * Copyright (C) 1998-2001 Hewlett-Packard Co
 * Copyright (C) 1998-2000 Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 1999-2001 David Mosberger <davidm@hpl.hp.com>
 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 * Copyright (C) 1999-2000 VA Linux Systems
 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 */
#include <linux/config.h>

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/interrupt.h>

#include <asm/delay.h>
#include <asm/efi.h>
#include <asm/hw_irq.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/system.h>

extern rwlock_t xtime_lock;
extern unsigned long wall_jiffies;
extern unsigned long last_time_offset;

#ifdef CONFIG_IA64_DEBUG_IRQ

unsigned long last_cli_ip;

#endif

static void
do_profile (unsigned long ip)
{
	extern unsigned long prof_cpu_mask;
	extern char _stext;

	if (!((1UL << smp_processor_id()) & prof_cpu_mask))
		return;

	if (prof_buffer && current->pid) {
		ip -= (unsigned long) &_stext;
		ip >>= prof_shift;
		/*
		 * Don't ignore out-of-bounds IP values silently, put them into the last
		 * histogram slot, so if present, they will show up as a sharp peak.
		 */
		if (ip > prof_len - 1)
			ip = prof_len - 1;

		atomic_inc((atomic_t *) &prof_buffer[ip]);
	}
}

/*
 * Return the number of micro-seconds that elapsed since the last update to jiffy.  The
 * xtime_lock must be at least read-locked when calling this routine.
 */
static inline unsigned long
gettimeoffset (void)
{
	unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
	unsigned long now, last_tick;
#	define time_keeper_id	0	/* smp_processor_id() of time-keeper */

	last_tick = (cpu_data(time_keeper_id)->itm_next
		     - (lost + 1)*cpu_data(time_keeper_id)->itm_delta);

	now = ia64_get_itc();
	if ((long) (now - last_tick) < 0) {
# if 1
		printk("CPU %d: now < last_tick (now=0x%lx,last_tick=0x%lx)!\n",
		       smp_processor_id(), now, last_tick);
# endif
		return last_time_offset;
	}
	elapsed_cycles = now - last_tick;
	return (elapsed_cycles*local_cpu_data->usec_per_cyc) >> IA64_USEC_PER_CYC_SHIFT;
}

void
do_settimeofday (struct timeval *tv)
{
	write_lock_irq(&xtime_lock);
	{
		/*
		 * This is revolting. We need to set "xtime" correctly. However, the value
		 * in this location is the value at the most recent update of wall time.
		 * Discover what correction gettimeofday would have done, and then undo
		 * it!
		 */
		tv->tv_usec -= gettimeoffset();
		tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);

		while (tv->tv_usec < 0) {
			tv->tv_usec += 1000000;
			tv->tv_sec--;
		}

		xtime = *tv;
		time_adjust = 0;		/* stop active adjtime() */
		time_status |= STA_UNSYNC;
		time_maxerror = NTP_PHASE_LIMIT;
		time_esterror = NTP_PHASE_LIMIT;
	}
	write_unlock_irq(&xtime_lock);
}

void
do_gettimeofday (struct timeval *tv)
{
	unsigned long flags, usec, sec, old;

	read_lock_irqsave(&xtime_lock, flags);
	{
		usec = gettimeoffset();

		/*
		 * Ensure time never goes backwards, even when ITC on different CPUs are
		 * not perfectly synchronized.
		 */
		do {
			old = last_time_offset;
			if (usec <= old) {
				usec = old;
				break;
			}
		} while (cmpxchg(&last_time_offset, old, usec) != old);

		sec = xtime.tv_sec;
		usec += xtime.tv_usec;
	}
	read_unlock_irqrestore(&xtime_lock, flags);

	while (usec >= 1000000) {
		usec -= 1000000;
		++sec;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

static void
timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned long new_itm;

	new_itm = local_cpu_data->itm_next;

	if (!time_after(ia64_get_itc(), new_itm))
		printk("Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
		       ia64_get_itc(), new_itm);

	while (1) {
		/*
		 * Do kernel PC profiling here.  We multiply the instruction number by
		 * four so that we can use a prof_shift of 2 to get instruction-level
		 * instead of just bundle-level accuracy.
		 */
		if (!user_mode(regs))
			do_profile(regs->cr_iip + 4*ia64_psr(regs)->ri);

#ifdef CONFIG_SMP
		smp_do_timer(regs);
#endif
		new_itm += local_cpu_data->itm_delta;

		if (smp_processor_id() == 0) {
			/*
			 * Here we are in the timer irq handler. We have irqs locally
			 * disabled, but we don't know if the timer_bh is running on
			 * another CPU. We need to avoid to SMP race by acquiring the
			 * xtime_lock.
			 */
			write_lock(&xtime_lock);
			do_timer(regs);
			local_cpu_data->itm_next = new_itm;
			write_unlock(&xtime_lock);
		} else
			local_cpu_data->itm_next = new_itm;

		if (time_after(new_itm, ia64_get_itc()))
			break;
	}

	do {
	    /*
	     * If we're too close to the next clock tick for comfort, we increase the
	     * saftey margin by intentionally dropping the next tick(s).  We do NOT update
	     * itm.next because that would force us to call do_timer() which in turn would
	     * let our clock run too fast (with the potentially devastating effect of
	     * losing monotony of time).
	     */
	    while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
	      new_itm += local_cpu_data->itm_delta;
	    ia64_set_itm(new_itm);
	    /* double check, in case we got hit by a (slow) PMI: */
	} while (time_after_eq(ia64_get_itc(), new_itm));
}

/*
 * Encapsulate access to the itm structure for SMP.
 */
void __init
ia64_cpu_local_tick (void)
{
	int cpu = smp_processor_id();
	unsigned long shift = 0, delta;

	/* arrange for the cycle counter to generate a timer interrupt: */
	ia64_set_itv(IA64_TIMER_VECTOR);

	delta = local_cpu_data->itm_delta;
	/*
	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
	 * same time:
	 */
	if (cpu) {
		unsigned long hi = 1UL << ia64_fls(cpu);
		shift = (2*(cpu - hi) + 1) * delta/hi/2;
	}
	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
	ia64_set_itm(local_cpu_data->itm_next);
}

void __init
ia64_init_itm (void)
{
	unsigned long platform_base_freq, itc_freq, drift;
	struct pal_freq_ratio itc_ratio, proc_ratio;
	long status;

	/*
	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
	 * frequency and then a PAL call to determine the frequency ratio between the ITC
	 * and the base frequency.
	 */
	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &drift);
	if (status != 0) {
		printk("SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
	} else {
		status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
		if (status != 0)
			printk("PAL_FREQ_RATIOS failed with status=%ld\n", status);
	}
	if (status != 0) {
		/* invent "random" values */
		printk("SAL/PAL failed to obtain frequency info---inventing reasonably values\n");
		platform_base_freq = 100000000;
		itc_ratio.num = 3;
		itc_ratio.den = 1;
	}
	if (platform_base_freq < 40000000) {
		printk("Platform base frequency %lu bogus---resetting to 75MHz!\n",
		       platform_base_freq);
		platform_base_freq = 75000000;
	}
	if (!proc_ratio.den)
		proc_ratio.den = 1;	/* avoid division by zero */
	if (!itc_ratio.den)
		itc_ratio.den = 1;	/* avoid division by zero */

	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
	printk("CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, ITC freq=%lu.%03luMHz\n",
	       smp_processor_id(),
	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);

	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
	local_cpu_data->itc_freq = itc_freq;
	local_cpu_data->cyc_per_usec = (itc_freq + 500000) / 1000000;
	local_cpu_data->usec_per_cyc = ((1000000UL<<IA64_USEC_PER_CYC_SHIFT)
					+ itc_freq/2)/itc_freq;

	/* Setup the CPU local timer tick */
	ia64_cpu_local_tick();
}

static struct irqaction timer_irqaction = {
	handler:	timer_interrupt,
	flags:		SA_INTERRUPT,
	name:		"timer"
};

void __init
time_init (void)
{
	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
	efi_gettimeofday((struct timeval *) &xtime);
	ia64_init_itm();
}