1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*
* Dynamic DMA mapping support.
*
* This implementation is for IA-64 platforms that do not support
* I/O TLBs (aka DMA address translation hardware).
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
*
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
* unnecessary i-cache flushing.
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/pci.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#define ALIGN(val, align) ((unsigned long) \
(((unsigned long) (val) + ((align) - 1)) & ~((align) - 1)))
/*
* log of the size of each IO TLB slab. The number of slabs is command line controllable.
*/
#define IO_TLB_SHIFT 11
/*
* Used to do a quick range check in swiotlb_unmap_single and swiotlb_sync_single, to see
* if the memory was in fact allocated by this API.
*/
static char *io_tlb_start, *io_tlb_end;
/*
* The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and io_tlb_end.
* This is command line adjustable via setup_io_tlb_npages.
*/
static unsigned long io_tlb_nslabs = 1024;
/*
* This is a free list describing the number of free entries available from each index
*/
static unsigned int *io_tlb_list;
static unsigned int io_tlb_index;
/*
* We need to save away the original address corresponding to a mapped entry for the sync
* operations.
*/
static unsigned char **io_tlb_orig_addr;
/*
* Protect the above data structures in the map and unmap calls
*/
static spinlock_t io_tlb_lock = SPIN_LOCK_UNLOCKED;
static int __init
setup_io_tlb_npages (char *str)
{
io_tlb_nslabs = simple_strtoul(str, NULL, 0) << (PAGE_SHIFT - IO_TLB_SHIFT);
return 1;
}
__setup("swiotlb=", setup_io_tlb_npages);
/*
* Statically reserve bounce buffer space and initialize bounce buffer data structures for
* the software IO TLB used to implement the PCI DMA API.
*/
void
swiotlb_init (void)
{
int i;
/*
* Get IO TLB memory from the low pages
*/
io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
if (!io_tlb_start)
BUG();
io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size 2^IO_TLB_SHIFT between
* io_tlb_start and io_tlb_end.
*/
io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
for (i = 0; i < io_tlb_nslabs; i++)
io_tlb_list[i] = io_tlb_nslabs - i;
io_tlb_index = 0;
io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
printk("Placing software IO TLB between 0x%p - 0x%p\n",
(void *) io_tlb_start, (void *) io_tlb_end);
}
/*
* Allocates bounce buffer and returns its kernel virtual address.
*/
static void *
map_single (struct pci_dev *hwdev, char *buffer, size_t size, int direction)
{
unsigned long flags;
char *dma_addr;
unsigned int nslots, stride, index, wrap;
int i;
/*
* For mappings greater than a page size, we limit the stride (and hence alignment)
* to a page size.
*/
nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
if (size > (1 << PAGE_SHIFT))
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
else
stride = nslots;
if (!nslots)
BUG();
/*
* Find suitable number of IO TLB entries size that will fit this request and
* allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
wrap = index = ALIGN(io_tlb_index, stride);
if (index >= io_tlb_nslabs)
wrap = index = 0;
do {
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot and
* mark the entries as '0' indicating unavailable.
*/
if (io_tlb_list[index] >= nslots) {
int count = 0;
for (i = index; i < index + nslots; i++)
io_tlb_list[i] = 0;
for (i = index - 1; (i >= 0) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
/*
* Update the indices to avoid searching in the next round.
*/
io_tlb_index = ((index + nslots) < io_tlb_nslabs
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
} while (index != wrap);
/*
* XXX What is a suitable recovery mechanism here? We cannot
* sleep because we are called from with in interrupts!
*/
panic("map_single: could not allocate software IO TLB (%ld bytes)", size);
}
found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
/*
* Save away the mapping from the original address to the DMA address. This is
* needed when we sync the memory. Then we sync the buffer if needed.
*/
io_tlb_orig_addr[index] = buffer;
if (direction == PCI_DMA_TODEVICE || direction == PCI_DMA_BIDIRECTIONAL)
memcpy(dma_addr, buffer, size);
return dma_addr;
}
/*
* dma_addr is the kernel virtual address of the bounce buffer to unmap.
*/
static void
unmap_single (struct pci_dev *hwdev, char *dma_addr, size_t size, int direction)
{
unsigned long flags;
int i, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
char *buffer = io_tlb_orig_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if ((direction == PCI_DMA_FROMDEVICE) || (direction == PCI_DMA_BIDIRECTIONAL))
/*
* bounce... copy the data back into the original buffer * and delete the
* bounce buffer.
*/
memcpy(buffer, dma_addr, size);
/*
* Return the buffer to the free list by setting the corresponding entries to
* indicate the number of contigous entries available. While returning the
* entries to the free list, we merge the entries with slots below and above the
* pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
int count = ((index + nslots) < io_tlb_nslabs ? io_tlb_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the slots with
* superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--)
io_tlb_list[i] = ++count;
/*
* Step 2: merge the returned slots with the preceeding slots, if
* available (non zero)
*/
for (i = index - 1; (i >= 0) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
}
spin_unlock_irqrestore(&io_tlb_lock, flags);
}
static void
sync_single (struct pci_dev *hwdev, char *dma_addr, size_t size, int direction)
{
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
char *buffer = io_tlb_orig_addr[index];
/*
* bounce... copy the data back into/from the original buffer
* XXX How do you handle PCI_DMA_BIDIRECTIONAL here ?
*/
if (direction == PCI_DMA_FROMDEVICE)
memcpy(buffer, dma_addr, size);
else if (direction == PCI_DMA_TODEVICE)
memcpy(dma_addr, buffer, size);
else
BUG();
}
void *
swiotlb_alloc_consistent (struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle)
{
unsigned long pci_addr;
int gfp = GFP_ATOMIC;
void *ret;
if (!hwdev || hwdev->dma_mask <= 0xffffffff)
gfp |= GFP_DMA; /* XXX fix me: should change this to GFP_32BIT or ZONE_32BIT */
ret = (void *)__get_free_pages(gfp, get_order(size));
if (!ret)
return NULL;
memset(ret, 0, size);
pci_addr = virt_to_phys(ret);
if (hwdev && (pci_addr & ~hwdev->dma_mask) != 0)
panic("swiotlb_alloc_consistent: allocated memory is out of range for PCI device");
*dma_handle = pci_addr;
return ret;
}
void
swiotlb_free_consistent (struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle)
{
free_pages((unsigned long) vaddr, get_order(size));
}
/*
* Map a single buffer of the indicated size for DMA in streaming mode. The PCI address
* to use is returned.
*
* Once the device is given the dma address, the device owns this memory until either
* swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
*/
dma_addr_t
swiotlb_map_single (struct pci_dev *hwdev, void *ptr, size_t size, int direction)
{
unsigned long pci_addr = virt_to_phys(ptr);
if (direction == PCI_DMA_NONE)
BUG();
/*
* Check if the PCI device can DMA to ptr... if so, just return ptr
*/
if ((pci_addr & ~hwdev->dma_mask) == 0)
/*
* Device is bit capable of DMA'ing to the buffer... just return the PCI
* address of ptr
*/
return pci_addr;
/*
* get a bounce buffer:
*/
pci_addr = virt_to_phys(map_single(hwdev, ptr, size, direction));
/*
* Ensure that the address returned is DMA'ble:
*/
if ((pci_addr & ~hwdev->dma_mask) != 0)
panic("map_single: bounce buffer is not DMA'ble");
return pci_addr;
}
/*
* Since DMA is i-cache coherent, any (complete) pages that were written via
* DMA can be marked as "clean" so that update_mmu_cache() doesn't have to
* flush them when they get mapped into an executable vm-area.
*/
static void
mark_clean (void *addr, size_t size)
{
unsigned long pg_addr, end;
pg_addr = PAGE_ALIGN((unsigned long) addr);
end = (unsigned long) addr + size;
while (pg_addr + PAGE_SIZE <= end) {
struct page *page = virt_to_page(pg_addr);
set_bit(PG_arch_1, &page->flags);
pg_addr += PAGE_SIZE;
}
}
/*
* Unmap a single streaming mode DMA translation. The dma_addr and size must match what
* was provided for in a previous swiotlb_map_single call. All other usages are
* undefined.
*
* After this call, reads by the cpu to the buffer are guarenteed to see whatever the
* device wrote there.
*/
void
swiotlb_unmap_single (struct pci_dev *hwdev, dma_addr_t pci_addr, size_t size, int direction)
{
char *dma_addr = phys_to_virt(pci_addr);
if (direction == PCI_DMA_NONE)
BUG();
if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
unmap_single(hwdev, dma_addr, size, direction);
else if (direction == PCI_DMA_FROMDEVICE)
mark_clean(dma_addr, size);
}
/*
* Make physical memory consistent for a single streaming mode DMA translation after a
* transfer.
*
* If you perform a swiotlb_map_single() but wish to interrogate the buffer using the cpu,
* yet do not wish to teardown the PCI dma mapping, you must call this function before
* doing so. At the next point you give the PCI dma address back to the card, the device
* again owns the buffer.
*/
void
swiotlb_sync_single (struct pci_dev *hwdev, dma_addr_t pci_addr, size_t size, int direction)
{
char *dma_addr = phys_to_virt(pci_addr);
if (direction == PCI_DMA_NONE)
BUG();
if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
sync_single(hwdev, dma_addr, size, direction);
else if (direction == PCI_DMA_FROMDEVICE)
mark_clean(dma_addr, size);
}
/*
* Map a set of buffers described by scatterlist in streaming mode for DMA. This is the
* scather-gather version of the above swiotlb_map_single interface. Here the scatter
* gather list elements are each tagged with the appropriate dma address and length. They
* are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for swiotlb_map_single are the same here.
*/
int
swiotlb_map_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction)
{
int i;
if (direction == PCI_DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++) {
sg->orig_address = sg->address;
if ((virt_to_phys(sg->address) & ~hwdev->dma_mask) != 0) {
sg->address = map_single(hwdev, sg->address, sg->length, direction);
}
}
return nelems;
}
/*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules concerning calls
* here are the same as for swiotlb_unmap_single() above.
*/
void
swiotlb_unmap_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction)
{
int i;
if (direction == PCI_DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++)
if (sg->orig_address != sg->address) {
unmap_single(hwdev, sg->address, sg->length, direction);
sg->address = sg->orig_address;
} else if (direction == PCI_DMA_FROMDEVICE)
mark_clean(sg->address, sg->length);
}
/*
* Make physical memory consistent for a set of streaming mode DMA translations after a
* transfer.
*
* The same as swiotlb_dma_sync_single but for a scatter-gather list, same rules and
* usage.
*/
void
swiotlb_sync_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction)
{
int i;
if (direction == PCI_DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++)
if (sg->orig_address != sg->address)
sync_single(hwdev, sg->address, sg->length, direction);
}
unsigned long
swiotlb_dma_address (struct scatterlist *sg)
{
return virt_to_phys(sg->address);
}
EXPORT_SYMBOL(swiotlb_init);
EXPORT_SYMBOL(swiotlb_map_single);
EXPORT_SYMBOL(swiotlb_unmap_single);
EXPORT_SYMBOL(swiotlb_map_sg);
EXPORT_SYMBOL(swiotlb_unmap_sg);
EXPORT_SYMBOL(swiotlb_sync_single);
EXPORT_SYMBOL(swiotlb_sync_sg);
EXPORT_SYMBOL(swiotlb_dma_address);
EXPORT_SYMBOL(swiotlb_alloc_consistent);
EXPORT_SYMBOL(swiotlb_free_consistent);
|