File: sundance.c

package info (click to toggle)
kernel-source-2.4.14 2.4.14-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 139,160 kB
  • ctags: 428,423
  • sloc: ansic: 2,435,554; asm: 141,119; makefile: 8,258; sh: 3,099; perl: 2,561; yacc: 1,177; cpp: 755; tcl: 577; lex: 352; awk: 251; lisp: 218; sed: 72
file content (1495 lines) | stat: -rw-r--r-- 46,344 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
/*
	Written 1999-2000 by Donald Becker.

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

	Support and updates available at
	http://www.scyld.com/network/sundance.html
*/

#define DRV_NAME	"sundance"
#define DRV_VERSION	"1.01"
#define DRV_RELDATE	"4/09/00"


/* The user-configurable values.
   These may be modified when a driver module is loaded.*/
static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 30;
static int mtu;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   Typical is a 64 element hash table based on the Ethernet CRC.  */
static int multicast_filter_limit = 32;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature.
   This chip can receive into offset buffers, so the Alpha does not
   need a copy-align. */
static int rx_copybreak;

/* media[] specifies the media type the NIC operates at.
		 autosense	Autosensing active media.
		 10mbps_hd 	10Mbps half duplex.
		 10mbps_fd 	10Mbps full duplex.
		 100mbps_hd 	100Mbps half duplex.
		 100mbps_fd 	100Mbps full duplex.
		 0		Autosensing active media.
		 1	 	10Mbps half duplex.
		 2	 	10Mbps full duplex.
		 3	 	100Mbps half duplex.
		 4	 	100Mbps full duplex.
*/
#define MAX_UNITS 8	
static char *media[MAX_UNITS];
/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority, and more than 128 requires modifying the
   Tx error recovery.
   Large receive rings merely waste memory. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
#define RX_RING_SIZE	32
#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct netdev_desc)
#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct netdev_desc)

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (4*HZ)

#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/

#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning  You must compile this file with the correct options!
#warning  See the last lines of the source file.
#error You must compile this driver with "-O".
#endif

/* Include files, designed to support most kernel versions 2.0.0 and later. */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <asm/uaccess.h>
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/spinlock.h>

/* These identify the driver base version and may not be removed. */
static char version[] __devinitdata =
KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "  Written by Donald Becker\n"
KERN_INFO "  http://www.scyld.com/network/sundance.html\n";

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
MODULE_LICENSE("GPL");

MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(mtu, "i");
MODULE_PARM(debug, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(media, "1-" __MODULE_STRING(MAX_UNITS) "s");
MODULE_PARM_DESC(max_interrupt_work, "Sundance Alta maximum events handled per interrupt");
MODULE_PARM_DESC(mtu, "Sundance Alta MTU (all boards)");
MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
/*
				Theory of Operation

I. Board Compatibility

This driver is designed for the Sundance Technologies "Alta" ST201 chip.

II. Board-specific settings

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
Some chips explicitly use only 2^N sized rings, while others use a
'next descriptor' pointer that the driver forms into rings.

IIIb/c. Transmit/Receive Structure

This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack.  Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets.  When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine.  Copying also preloads the cache, which is
most useful with small frames.

A subtle aspect of the operation is that the IP header at offset 14 in an
ethernet frame isn't longword aligned for further processing.
Unaligned buffers are permitted by the Sundance hardware, so
frames are received into the skbuff at an offset of "+2", 16-byte aligning
the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.

IV. Notes

IVb. References

The Sundance ST201 datasheet, preliminary version.
http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html

IVc. Errata

*/



enum pci_id_flags_bits {
        /* Set PCI command register bits before calling probe1(). */
        PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
        /* Read and map the single following PCI BAR. */
        PCI_ADDR0=0<<4, PCI_ADDR1=1<<4, PCI_ADDR2=2<<4, PCI_ADDR3=3<<4,
        PCI_ADDR_64BITS=0x100, PCI_NO_ACPI_WAKE=0x200, PCI_NO_MIN_LATENCY=0x400,
};
enum chip_capability_flags {CanHaveMII=1, };
#ifdef USE_IO_OPS
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO  | PCI_ADDR0)
#else
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
#endif

static struct pci_device_id sundance_pci_tbl[] __devinitdata = {
	{0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0},
	{0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1},
	{0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2},
	{0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3},
	{0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4},
	{0,}
};
MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);

struct pci_id_info {
        const char *name;
        struct match_info {
                int     pci, pci_mask, subsystem, subsystem_mask;
                int revision, revision_mask;                            /* Only 8 bits. */
        } id;
        enum pci_id_flags_bits pci_flags;
        int io_size;                            /* Needed for I/O region check or ioremap(). */
        int drv_flags;                          /* Driver use, intended as capability flags. */
};
static struct pci_id_info pci_id_tbl[] = {
	{"D-Link DFE-550TX FAST Ethernet Adapter", {0x10021186, 0xffffffff,},
	 PCI_IOTYPE, 128, CanHaveMII},
	{"D-Link DFE-550FX 100Mbps Fiber-optics Adapter",
	 {0x10031186, 0xffffffff,},
	 PCI_IOTYPE, 128, CanHaveMII},
	{"D-Link DFE-580TX 4 port Server Adapter", {0x10121186, 0xffffffff,},
	 PCI_IOTYPE, 128, CanHaveMII},
	{"D-Link DL10050-based FAST Ethernet Adapter",
	 {0x10021186, 0xffffffff,},
	 PCI_IOTYPE, 128, CanHaveMII},
	{"Sundance Technology Alta", {0x020113F0, 0xffffffff,},
	 PCI_IOTYPE, 128, CanHaveMII},
	{0,},			/* 0 terminated list. */
};

/* This driver was written to use PCI memory space, however x86-oriented
   hardware often uses I/O space accesses. */
#ifdef USE_IO_OPS
#undef readb
#undef readw
#undef readl
#undef writeb
#undef writew
#undef writel
#define readb inb
#define readw inw
#define readl inl
#define writeb outb
#define writew outw
#define writel outl
#endif

/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.  The name can only partially document the semantics and make
   the driver longer and more difficult to read.
   In general, only the important configuration values or bits changed
   multiple times should be defined symbolically.
*/
enum alta_offsets {
	DMACtrl = 0x00,
	TxListPtr = 0x04,
	TxDMACtrl = 0x08,
	TxDescPoll = 0x0a,
	RxDMAStatus = 0x0c,
	RxListPtr = 0x10,
	RxDMACtrl = 0x14,
	RxDescPoll = 0x16,
	LEDCtrl = 0x1a,
	ASICCtrl = 0x30,
	EEData = 0x34,
	EECtrl = 0x36,
	TxThreshold = 0x3c,
	FlashAddr = 0x40,
	FlashData = 0x44,
	TxStatus = 0x46,
	DownCounter = 0x18,
	IntrClear = 0x4a,
	IntrEnable = 0x4c,
	IntrStatus = 0x4e,
	MACCtrl0 = 0x50,
	MACCtrl1 = 0x52,
	StationAddr = 0x54,
	MaxTxSize = 0x5A,
	RxMode = 0x5c,
	MIICtrl = 0x5e,
	MulticastFilter0 = 0x60,
	MulticastFilter1 = 0x64,
	RxOctetsLow = 0x68,
	RxOctetsHigh = 0x6a,
	TxOctetsLow = 0x6c,
	TxOctetsHigh = 0x6e,
	TxFramesOK = 0x70,
	RxFramesOK = 0x72,
	StatsCarrierError = 0x74,
	StatsLateColl = 0x75,
	StatsMultiColl = 0x76,
	StatsOneColl = 0x77,
	StatsTxDefer = 0x78,
	RxMissed = 0x79,
	StatsTxXSDefer = 0x7a,
	StatsTxAbort = 0x7b,
	StatsBcastTx = 0x7c,
	StatsBcastRx = 0x7d,
	StatsMcastTx = 0x7e,
	StatsMcastRx = 0x7f,
	/* Aliased and bogus values! */
	RxStatus = 0x0c,
};

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
	IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
	IntrDrvRqst=0x0040,
	StatsMax=0x0080, LinkChange=0x0100,
	IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
};

/* Bits in the RxMode register. */
enum rx_mode_bits {
	AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
	AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
};
/* Bits in MACCtrl. */
enum mac_ctrl0_bits {
	EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
	EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
};
enum mac_ctrl1_bits {
	StatsEnable=0x0020,	StatsDisable=0x0040, StatsEnabled=0x0080,
	TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
	RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
};

/* The Rx and Tx buffer descriptors. */
/* Note that using only 32 bit fields simplifies conversion to big-endian
   architectures. */
struct netdev_desc {
	u32 next_desc;
	u32 status;
	struct desc_frag { u32 addr, length; } frag[1];
};

/* Bits in netdev_desc.status */
enum desc_status_bits {
	DescOwn=0x8000,
	DescEndPacket=0x4000,
	DescEndRing=0x2000,
	LastFrag=0x80000000,
	DescIntrOnTx=0x8000,
	DescIntrOnDMADone=0x80000000,
	DisableAlign = 0x00000001,
};

#define PRIV_ALIGN	15 	/* Required alignment mask */
/* Use  __attribute__((aligned (L1_CACHE_BYTES)))  to maintain alignment
   within the structure. */
#define MII_CNT		4
struct netdev_private {
	/* Descriptor rings first for alignment. */
	struct netdev_desc *rx_ring;
	struct netdev_desc *tx_ring;
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
        dma_addr_t tx_ring_dma;
        dma_addr_t rx_ring_dma;
	struct net_device_stats stats;
	struct timer_list timer;	/* Media monitoring timer. */
	/* Frequently used values: keep some adjacent for cache effect. */
	spinlock_t lock;
	int chip_id, drv_flags;
	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
	spinlock_t txlock;					/* Group with Tx control cache line. */
	struct netdev_desc *last_tx;		/* Last Tx descriptor used. */
	unsigned int cur_tx, dirty_tx;
	unsigned int tx_full:1;				/* The Tx queue is full. */
	/* These values are keep track of the transceiver/media in use. */
	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
	unsigned int medialock:1;			/* Do not sense media. */
	unsigned int default_port:4;		/* Last dev->if_port value. */
	unsigned int an_enable:1;
	unsigned int speed;
	/* Multicast and receive mode. */
	spinlock_t mcastlock;				/* SMP lock multicast updates. */
	u16 mcast_filter[4];
	/* MII transceiver section. */
	int mii_cnt;						/* MII device addresses. */
	u16 advertising;					/* NWay media advertisement */
	unsigned char phys[MII_CNT];		/* MII device addresses, only first one used. */
	struct pci_dev *pci_dev;
};

/* The station address location in the EEPROM. */
#define EEPROM_SA_OFFSET	0x10

static int  eeprom_read(long ioaddr, int location);
static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  netdev_open(struct net_device *dev);
static void check_duplex(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static void init_ring(struct net_device *dev);
static int  start_tx(struct sk_buff *skb, struct net_device *dev);
static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void netdev_error(struct net_device *dev, int intr_status);
static int  netdev_rx(struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int  netdev_close(struct net_device *dev);



static int __devinit sundance_probe1 (struct pci_dev *pdev,
				      const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int irq;
	int i;
	long ioaddr;
	u16 mii_reg0;
	void *ring_space;
	dma_addr_t ring_dma;


/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	if (pci_enable_device(pdev))
		return -EIO;
	pci_set_master(pdev);

	irq = pdev->irq;

	dev = alloc_etherdev(sizeof(*np));
	if (!dev)
		return -ENOMEM;
	SET_MODULE_OWNER(dev);

	if (pci_request_regions(pdev, DRV_NAME))
		goto err_out_netdev;

#ifdef USE_IO_OPS
	ioaddr = pci_resource_start(pdev, 0);
#else
	ioaddr = pci_resource_start(pdev, 1);
	ioaddr = (long) ioremap (ioaddr, pci_id_tbl[chip_idx].io_size);
	if (!ioaddr)
		goto err_out_res;
#endif

	for (i = 0; i < 3; i++)
		((u16 *)dev->dev_addr)[i] =
			le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));

	dev->base_addr = ioaddr;
	dev->irq = irq;

	np = dev->priv;
	np->chip_id = chip_idx;
	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
	np->pci_dev = pdev;
	spin_lock_init(&np->lock);

	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_cleardev;
	np->tx_ring = (struct netdev_desc *)ring_space;
	np->tx_ring_dma = ring_dma;

	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_unmap_tx;
	np->rx_ring = (struct netdev_desc *)ring_space;
	np->rx_ring_dma = ring_dma;

	/* The chip-specific entries in the device structure. */
	dev->open = &netdev_open;
	dev->hard_start_xmit = &start_tx;
	dev->stop = &netdev_close;
	dev->get_stats = &get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &netdev_ioctl;
	dev->tx_timeout = &tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	pci_set_drvdata(pdev, dev);

	if (mtu)
		dev->mtu = mtu;

	i = register_netdev(dev);
	if (i)
		goto err_out_unmap_rx;

	printk(KERN_INFO "%s: %s at 0x%lx, ",
		   dev->name, pci_id_tbl[chip_idx].name, ioaddr);
	for (i = 0; i < 5; i++)
			printk("%2.2x:", dev->dev_addr[i]);
	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);

	if (1) {
		int phy, phy_idx = 0;
		np->phys[0] = 1;		/* Default setting */
		for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
			int mii_status = mdio_read(dev, phy, 1);
			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
				np->phys[phy_idx++] = phy;
				np->advertising = mdio_read(dev, phy, 4);
				printk(KERN_INFO "%s: MII PHY found at address %d, status "
					   "0x%4.4x advertising %4.4x.\n",
					   dev->name, phy, mii_status, np->advertising);
			}
		}
		np->mii_cnt = phy_idx;
		if (phy_idx == 0)
			printk(KERN_INFO "%s: No MII transceiver found!, ASIC status %x\n",
				   dev->name, readl(ioaddr + ASICCtrl));
	}
	/* Parse override configuration */
	np->an_enable = 1;
	if (card_idx < MAX_UNITS) {
		if (media[card_idx] != NULL) {
			np->an_enable = 0;
			if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
			    strcmp (media[card_idx], "4") == 0) {
				np->speed = 100;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "100mbps_hd") == 0
				   || strcmp (media[card_idx], "3") == 0) {
				np->speed = 100;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
				   strcmp (media[card_idx], "2") == 0) {
				np->speed = 10;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
				   strcmp (media[card_idx], "1") == 0) {
				np->speed = 10;
				np->full_duplex = 0;
			} else {
				np->an_enable = 1;
			}
		}
	}

	/* Fibre PHY? */
	if (readl (ioaddr + ASICCtrl) & 0x80) {
		/* Default 100Mbps Full */
		if (np->an_enable) {
			np->speed = 100;
			np->full_duplex = 1;
			np->an_enable = 0;
		}
	}
	/* Reset PHY */
	mdio_write (dev, np->phys[0], 0, 0x8000);
	mdelay (300);
	mdio_write (dev, np->phys[0], 0, 0x1200);
	/* Force media type */
	if (!np->an_enable) {
		mii_reg0 = 0;
		mii_reg0 |= (np->speed == 100) ? 0x2000 : 0;
		mii_reg0 |= (np->full_duplex) ? 0x0100 : 0;
		mdio_write (dev, np->phys[0], 0, mii_reg0);
		printk (KERN_INFO "Override speed=%d, %s duplex\n",
			np->speed, np->full_duplex ? "Full" : "Half");

	}

	/* Perhaps move the reset here? */
	/* Reset the chip to erase previous misconfiguration. */
	if (debug > 1)
		printk("ASIC Control is %x.\n", readl(ioaddr + ASICCtrl));
	writew(0x007f, ioaddr + ASICCtrl + 2);
	if (debug > 1)
		printk("ASIC Control is now %x.\n", readl(ioaddr + ASICCtrl));

	card_idx++;
	return 0;

err_out_unmap_rx:
        pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
        pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
err_out_cleardev:
	pci_set_drvdata(pdev, NULL);
#ifndef USE_IO_OPS
	iounmap((void *)ioaddr);
err_out_res:
#endif
	pci_release_regions(pdev);
err_out_netdev:
	kfree (dev);
	return -ENODEV;
}


/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
static int eeprom_read(long ioaddr, int location)
{
	int boguscnt = 1000;		/* Typical 190 ticks. */
	writew(0x0200 | (location & 0xff), ioaddr + EECtrl);
	do {
		if (! (readw(ioaddr + EECtrl) & 0x8000)) {
			return readw(ioaddr + EEData);
		}
	} while (--boguscnt > 0);
	return 0;
}

/*  MII transceiver control section.
	Read and write the MII registers using software-generated serial
	MDIO protocol.  See the MII specifications or DP83840A data sheet
	for details.

	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
	met by back-to-back 33Mhz PCI cycles. */
#define mdio_delay() readb(mdio_addr)

/* Set iff a MII transceiver on any interface requires mdio preamble.
   This only set with older tranceivers, so the extra
   code size of a per-interface flag is not worthwhile. */
static const char mii_preamble_required = 1;

enum mii_reg_bits {
	MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
};
#define MDIO_EnbIn  (0)
#define MDIO_WRITE0 (MDIO_EnbOutput)
#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)

/* Generate the preamble required for initial synchronization and
   a few older transceivers. */
static void mdio_sync(long mdio_addr)
{
	int bits = 32;

	/* Establish sync by sending at least 32 logic ones. */
	while (--bits >= 0) {
		writeb(MDIO_WRITE1, mdio_addr);
		mdio_delay();
		writeb(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
}

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	long mdio_addr = dev->base_addr + MIICtrl;
	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
	int i, retval = 0;

	if (mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the read command bits out. */
	for (i = 15; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		writeb(dataval, mdio_addr);
		mdio_delay();
		writeb(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Read the two transition, 16 data, and wire-idle bits. */
	for (i = 19; i > 0; i--) {
		writeb(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		retval = (retval << 1) | ((readb(mdio_addr) & MDIO_Data) ? 1 : 0);
		writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	return (retval>>1) & 0xffff;
}

static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	long mdio_addr = dev->base_addr + MIICtrl;
	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
	int i;

	if (mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the command bits out. */
	for (i = 31; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		writeb(dataval, mdio_addr);
		mdio_delay();
		writeb(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Clear out extra bits. */
	for (i = 2; i > 0; i--) {
		writeb(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	return;
}


static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	long ioaddr = dev->base_addr;
	int i;

	/* Do we need to reset the chip??? */

	i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
	if (i)
		return i;

	if (debug > 1)
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
			   dev->name, dev->irq);

	init_ring(dev);

	writel(np->rx_ring_dma, ioaddr + RxListPtr);
	/* The Tx list pointer is written as packets are queued. */

	for (i = 0; i < 6; i++)
		writeb(dev->dev_addr[i], ioaddr + StationAddr + i);

	/* Initialize other registers. */
	/* Configure the PCI bus bursts and FIFO thresholds. */

	if (dev->if_port == 0)
		dev->if_port = np->default_port;

	np->mcastlock = (spinlock_t) SPIN_LOCK_UNLOCKED;

	set_rx_mode(dev);
	writew(0, ioaddr + IntrEnable);
	writew(0, ioaddr + DownCounter);
	/* Set the chip to poll every N*320nsec. */
	writeb(100, ioaddr + RxDescPoll);
	writeb(127, ioaddr + TxDescPoll);
	netif_start_queue(dev);

	/* Enable interrupts by setting the interrupt mask. */
	writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
		   | StatsMax | LinkChange, ioaddr + IntrEnable);

	writew(StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);

	if (debug > 2)
		printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
			   "MAC Control %x, %4.4x %4.4x.\n",
			   dev->name, readl(ioaddr + RxStatus), readb(ioaddr + TxStatus),
			   readl(ioaddr + MACCtrl0),
			   readw(ioaddr + MACCtrl1), readw(ioaddr + MACCtrl0));

	/* Set the timer to check for link beat. */
	init_timer(&np->timer);
	np->timer.expires = jiffies + 3*HZ;
	np->timer.data = (unsigned long)dev;
	np->timer.function = &netdev_timer;				/* timer handler */
	add_timer(&np->timer);

	return 0;
}

static void check_duplex(struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	long ioaddr = dev->base_addr;
	int mii_reg5 = mdio_read(dev, np->phys[0], 5);
	int negotiated = mii_reg5 & np->advertising;
	int duplex;
	
	/* Force media */
	if (!np->an_enable || mii_reg5 == 0xffff) {
		if (np->full_duplex)
			writew (readw (ioaddr + MACCtrl0) | EnbFullDuplex,
				ioaddr + MACCtrl0);
		return;
	}
	/* Autonegotiation */
	duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
	if (np->full_duplex != duplex) {
		np->full_duplex = duplex;
		if (debug)
			printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
				   "negotiated capability %4.4x.\n", dev->name,
				   duplex ? "full" : "half", np->phys[0], negotiated);
		writew(duplex ? 0x20 : 0, ioaddr + MACCtrl0);
	}
}

static void netdev_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = dev->priv;
	long ioaddr = dev->base_addr;
	int next_tick = 10*HZ;

	if (debug > 3) {
		printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
			   "Tx %x Rx %x.\n",
			   dev->name, readw(ioaddr + IntrEnable),
			   readb(ioaddr + TxStatus), readl(ioaddr + RxStatus));
	}
	check_duplex(dev);
	np->timer.expires = jiffies + next_tick;
	add_timer(&np->timer);
}

static void tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	long ioaddr = dev->base_addr;

	printk(KERN_WARNING "%s: Transmit timed out, status %2.2x,"
		   " resetting...\n", dev->name, readb(ioaddr + TxStatus));

	{
		int i;
		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)np->rx_ring[i].status);
		printk("\n"KERN_DEBUG"  Tx ring %p: ", np->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" %4.4x", np->tx_ring[i].status);
		printk("\n");
	}

	/* Perhaps we should reinitialize the hardware here. */
	dev->if_port = 0;
	/* Stop and restart the chip's Tx processes . */

	/* Trigger an immediate transmit demand. */
	writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
		   | StatsMax | LinkChange, ioaddr + IntrEnable);

	dev->trans_start = jiffies;
	np->stats.tx_errors++;

	if (!np->tx_full)
		netif_wake_queue(dev);
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	int i;

	np->tx_full = 0;
	np->cur_rx = np->cur_tx = 0;
	np->dirty_rx = np->dirty_tx = 0;

	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);

	/* Initialize all Rx descriptors. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma + 
			((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
		np->rx_ring[i].status = 0;
		np->rx_ring[i].frag[0].length = 0;
		np->rx_skbuff[i] = 0;
	}

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
		np->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;		/* Mark as being used by this device. */
		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
		np->rx_ring[i].frag[0].addr = cpu_to_le32(
			pci_map_single(np->pci_dev, skb->tail, np->rx_buf_sz, 
				PCI_DMA_FROMDEVICE));
		np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
	}
	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = 0;
		np->tx_ring[i].status = 0;
	}
	return;
}

static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	struct netdev_desc *txdesc;
	unsigned entry;

	/* Note: Ordering is important here, set the field with the
	   "ownership" bit last, and only then increment cur_tx. */

	/* Calculate the next Tx descriptor entry. */
	entry = np->cur_tx % TX_RING_SIZE;
	np->tx_skbuff[entry] = skb;
	txdesc = &np->tx_ring[entry];

	txdesc->next_desc = 0;
	/* Note: disable the interrupt generation here before releasing. */
	txdesc->status =
		cpu_to_le32((entry<<2) | DescIntrOnDMADone | DescIntrOnTx | DisableAlign);
	txdesc->frag[0].addr = cpu_to_le32(pci_map_single(np->pci_dev, 
		skb->data, skb->len, PCI_DMA_TODEVICE));
	txdesc->frag[0].length = cpu_to_le32(skb->len | LastFrag);
	if (np->last_tx)
		np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
			entry*sizeof(struct netdev_desc));
	np->last_tx = txdesc;
	np->cur_tx++;

	/* On some architectures: explicitly flush cache lines here. */

	if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1) {
		/* do nothing */
	} else {
		np->tx_full = 1;
		netif_stop_queue(dev);
	}
	/* Side effect: The read wakes the potentially-idle transmit channel. */
	if (readl(dev->base_addr + TxListPtr) == 0)
		writel(np->tx_ring_dma + entry*sizeof(*np->tx_ring),
			dev->base_addr + TxListPtr);

	dev->trans_start = jiffies;

	if (debug > 4) {
		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
			   dev->name, np->cur_tx, entry);
	}
	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = (struct net_device *)dev_instance;
	struct netdev_private *np;
	long ioaddr;
	int boguscnt = max_interrupt_work;

	ioaddr = dev->base_addr;
	np = dev->priv;
	spin_lock(&np->lock);

	do {
		int intr_status = readw(ioaddr + IntrStatus);
		writew(intr_status & (IntrRxDone | IntrRxDMADone | IntrPCIErr |
			IntrDrvRqst | IntrTxDone | IntrTxDMADone | StatsMax | 
			LinkChange), ioaddr + IntrStatus);

		if (debug > 4)
			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
				   dev->name, intr_status);

		if (intr_status == 0)
			break;

		if (intr_status & (IntrRxDone|IntrRxDMADone))
			netdev_rx(dev);

		if (intr_status & IntrTxDone) {
			int boguscnt = 32;
			int tx_status = readw(ioaddr + TxStatus);
			while (tx_status & 0x80) {
				if (debug > 4)
					printk("%s: Transmit status is %2.2x.\n",
						   dev->name, tx_status);
				if (tx_status & 0x1e) {
					np->stats.tx_errors++;
					if (tx_status & 0x10)  np->stats.tx_fifo_errors++;
#ifdef ETHER_STATS
					if (tx_status & 0x08)  np->stats.collisions16++;
#else
					if (tx_status & 0x08)  np->stats.collisions++;
#endif
					if (tx_status & 0x04)  np->stats.tx_fifo_errors++;
					if (tx_status & 0x02)  np->stats.tx_window_errors++;
					/* This reset has not been verified!. */
					if (tx_status & 0x10) {			/* Reset the Tx. */
						writew(0x001c, ioaddr + ASICCtrl + 2);
#if 0					/* Do we need to reset the Tx pointer here? */
						writel(np->tx_ring_dma
							+ np->dirty_tx*sizeof(*np->tx_ring),
							dev->base_addr + TxListPtr);
#endif
					}
					if (tx_status & 0x1e) 		/* Restart the Tx. */
						writew(TxEnable, ioaddr + MACCtrl1);
				}
				/* Yup, this is a documentation bug.  It cost me *hours*. */
				writew(0, ioaddr + TxStatus);
				tx_status = readb(ioaddr + TxStatus);
				if (--boguscnt < 0)
					break;
			}
		}
		for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
			int entry = np->dirty_tx % TX_RING_SIZE;
			struct sk_buff *skb;

			if ( ! (np->tx_ring[entry].status & 0x00010000))
				break;
			skb = np->tx_skbuff[entry];
			/* Free the original skb. */
			pci_unmap_single(np->pci_dev, 
				np->tx_ring[entry].frag[0].addr, 
				skb->len, PCI_DMA_TODEVICE);
			dev_kfree_skb_irq(skb);
			np->tx_skbuff[entry] = 0;
		}
		if (np->tx_full
			&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
			/* The ring is no longer full, clear tbusy. */
			np->tx_full = 0;
			netif_wake_queue(dev);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & (IntrDrvRqst | IntrPCIErr | LinkChange | StatsMax))
			netdev_error(dev, intr_status);
		if (--boguscnt < 0) {
			get_stats(dev);
			if (debug > 1) 
				printk(KERN_WARNING "%s: Too much work at interrupt, "
				   "status=0x%4.4x / 0x%4.4x.\n",
				   dev->name, intr_status, readw(ioaddr + IntrClear));
			/* Re-enable us in 3.2msec. */
			writew(0, ioaddr + IntrEnable);
			writew(1000, ioaddr + DownCounter);
			writew(IntrDrvRqst, ioaddr + IntrEnable);
			break;
		}
	} while (1);

	if (debug > 3)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
			   dev->name, readw(ioaddr + IntrStatus));

	spin_unlock(&np->lock);
}

/* This routine is logically part of the interrupt handler, but separated
   for clarity and better register allocation. */
static int netdev_rx(struct net_device *dev)
{
	struct netdev_private *np = dev->priv;
	int entry = np->cur_rx % RX_RING_SIZE;
	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;

	if (debug > 4) {
		printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n",
			   entry, np->rx_ring[entry].status);
	}

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while (1) {
		struct netdev_desc *desc = &(np->rx_ring[entry]);
		u32 frame_status;
		int pkt_len;

		if (!(desc->status & DescOwn))
			break;
		frame_status = le32_to_cpu(desc->status);
		pkt_len = frame_status & 0x1fff;	/* Chip omits the CRC. */
		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n",
				   frame_status);
		if (--boguscnt < 0)
			break;
		pci_dma_sync_single(np->pci_dev, desc->frag[0].addr,
			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
		
		if (frame_status & 0x001f4000) {
			/* There was a error. */
			if (debug > 2)
				printk(KERN_DEBUG "  netdev_rx() Rx error was %8.8x.\n",
					   frame_status);
			np->stats.rx_errors++;
			if (frame_status & 0x00100000) np->stats.rx_length_errors++;
			if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
			if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
			if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
			if (frame_status & 0x00100000) {
				printk(KERN_WARNING "%s: Oversized Ethernet frame,"
					   " status %8.8x.\n",
					   dev->name, frame_status);
			}
		} else {
			struct sk_buff *skb;

#ifndef final_version
			if (debug > 4)
				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
					   ", bogus_cnt %d.\n",
					   pkt_len, boguscnt);
#endif
			/* Check if the packet is long enough to accept without copying
			   to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak
				&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
				eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
				skb_put(skb, pkt_len);
			} else {
				pci_unmap_single(np->pci_dev, 
					desc->frag[0].addr,
					np->rx_buf_sz, 
					PCI_DMA_FROMDEVICE);
				skb_put(skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			/* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
			netif_rx(skb);
			dev->last_rx = jiffies;
		}
		entry = (++np->cur_rx) % RX_RING_SIZE;
	}

	/* Refill the Rx ring buffers. */
	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
		struct sk_buff *skb;
		entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(np->rx_buf_sz);
			np->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;		/* Better luck next round. */
			skb->dev = dev;		/* Mark as being used by this device. */
			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
			np->rx_ring[entry].frag[0].addr = cpu_to_le32(
				pci_map_single(np->pci_dev, skb->tail, 
					np->rx_buf_sz, PCI_DMA_FROMDEVICE));
		}
		/* Perhaps we need not reset this field. */
		np->rx_ring[entry].frag[0].length =
			cpu_to_le32(np->rx_buf_sz | LastFrag);
		np->rx_ring[entry].status = 0;
	}

	/* No need to restart Rx engine, it will poll. */
	return 0;
}

static void netdev_error(struct net_device *dev, int intr_status)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = dev->priv;
	u16 mii_reg0, mii_reg4, mii_reg5;
	int speed;

	if (intr_status & IntrDrvRqst) {
		/* Stop the down counter and turn interrupts back on. */
		if (debug > 1)
			printk("%s: Turning interrupts back on.\n", dev->name);
		writew(0, ioaddr + IntrEnable);
		writew(0, ioaddr + DownCounter);
		writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst |
			   IntrTxDone | StatsMax | LinkChange, ioaddr + IntrEnable);
		/* Ack buggy InRequest */
		writew (IntrDrvRqst, ioaddr + IntrStatus);
	}
	if (intr_status & LinkChange) {
		if (np->an_enable) {
			mii_reg4 = mdio_read (dev, np->phys[0], 4);
			mii_reg5= mdio_read (dev, np->phys[0], 5);
			mii_reg4 &= mii_reg5;
			printk (KERN_INFO "%s: Link changed: ", dev->name);
			if (mii_reg4 & 0x0100)
				printk ("100Mbps, full duplex\n");
			else if (mii_reg4 & 0x0080)
				printk ("100Mbps, half duplex\n");
			else if (mii_reg4 & 0x0040)
				printk ("10Mbps, full duplex\n");
			else if (mii_reg4 & 0x0020)
				printk ("10Mbps, half duplex\n");
			else
				printk ("\n");

		} else {
			mii_reg0 = mdio_read (dev, np->phys[0], 0);
			speed = (mii_reg0 & 0x2000) ? 100 : 10;
			printk (KERN_INFO "%s: Link changed: %dMbps ,",
				dev->name, speed);
			printk ("%s duplex.\n", (mii_reg0 & 0x0100) ?
				"full" : "half");
		}
		check_duplex (dev);
	}
	if (intr_status & StatsMax) {
		get_stats(dev);
	}
	if (intr_status & IntrPCIErr) {
		printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
			   dev->name, intr_status);
		/* We must do a global reset of DMA to continue. */
	}
}

static struct net_device_stats *get_stats(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = dev->priv;
	int i;

	/* We should lock this segment of code for SMP eventually, although
	   the vulnerability window is very small and statistics are
	   non-critical. */
	/* The chip only need report frame silently dropped. */
	np->stats.rx_missed_errors	+= readb(ioaddr + RxMissed);
	np->stats.tx_packets += readw(ioaddr + TxFramesOK);
	np->stats.rx_packets += readw(ioaddr + RxFramesOK);
	np->stats.collisions += readb(ioaddr + StatsLateColl);
	np->stats.collisions += readb(ioaddr + StatsMultiColl);
	np->stats.collisions += readb(ioaddr + StatsOneColl);
	readb(ioaddr + StatsCarrierError);
	readb(ioaddr + StatsTxDefer);
	for (i = StatsTxDefer; i <= StatsMcastRx; i++)
		readb(ioaddr + i);
	np->stats.tx_bytes += readw(ioaddr + TxOctetsLow);
	np->stats.tx_bytes += readw(ioaddr + TxOctetsHigh) << 16;
	np->stats.rx_bytes += readw(ioaddr + RxOctetsLow);
	np->stats.rx_bytes += readw(ioaddr + RxOctetsHigh) << 16;

	return &np->stats;
}

/* The little-endian AUTODIN II ethernet CRC calculations.
   A big-endian version is also available.
   This is slow but compact code.  Do not use this routine for bulk data,
   use a table-based routine instead.
   This is common code and should be moved to net/core/crc.c.
   Chips may use the upper or lower CRC bits, and may reverse and/or invert
   them.  Select the endian-ness that results in minimal calculations.
*/
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline unsigned ether_crc_le(int length, unsigned char *data)
{
	unsigned int crc = 0xffffffff;	/* Initial value. */
	while(--length >= 0) {
		unsigned char current_octet = *data++;
		int bit;
		for (bit = 8; --bit >= 0; current_octet >>= 1) {
			if ((crc ^ current_octet) & 1) {
				crc >>= 1;
				crc ^= ethernet_polynomial_le;
			} else
				crc >>= 1;
		}
	}
	return crc;
}

static void set_rx_mode(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	u16 mc_filter[4];			/* Multicast hash filter */
	u32 rx_mode;
	int i;

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		/* Unconditionally log net taps. */
		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
	} else if ((dev->mc_count > multicast_filter_limit)
			   ||  (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
	} else if (dev->mc_count) {
		struct dev_mc_list *mclist;
		memset(mc_filter, 0, sizeof(mc_filter));
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f,
					mc_filter);
		}
		rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
	} else {
		writeb(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
		return;
	}
	for (i = 0; i < 4; i++)
		writew(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
	writeb(rx_mode, ioaddr + RxMode);
}

static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr)
{
	struct netdev_private *np = dev->priv;
	u32 ethcmd;
		
	if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
		return -EFAULT;

        switch (ethcmd) {
        case ETHTOOL_GDRVINFO: {
		struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
		strcpy(info.driver, DRV_NAME);
		strcpy(info.version, DRV_VERSION);
		strcpy(info.bus_info, np->pci_dev->slot_name);
		if (copy_to_user(useraddr, &info, sizeof(info)))
			return -EFAULT;
		return 0;
	}

        }
	
	return -EOPNOTSUPP;
}

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&rq->ifr_data;

	switch(cmd) {
	case SIOCETHTOOL:
		return netdev_ethtool_ioctl(dev, (void *) rq->ifr_data);
	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
	case SIOCDEVPRIVATE:		/* for binary compat, remove in 2.5 */
		data->phy_id = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f;
		/* Fall Through */

	case SIOCGMIIREG:		/* Read MII PHY register. */
	case SIOCDEVPRIVATE+1:		/* for binary compat, remove in 2.5 */
		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
		return 0;

	case SIOCSMIIREG:		/* Write MII PHY register. */
	case SIOCDEVPRIVATE+2:		/* for binary compat, remove in 2.5 */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int netdev_close(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = dev->priv;
	struct sk_buff *skb;
	int i;

	netif_stop_queue(dev);

	if (debug > 1) {
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
			   "Rx %4.4x Int %2.2x.\n",
			   dev->name, readb(ioaddr + TxStatus),
			   readl(ioaddr + RxStatus), readw(ioaddr + IntrStatus));
		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
			   dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
	}

	/* Disable interrupts by clearing the interrupt mask. */
	writew(0x0000, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */
	writew(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);

#ifdef __i386__
	if (debug > 2) {
		printk("\n"KERN_DEBUG"  Tx ring at %8.8x:\n",
			   (int)(np->tx_ring_dma));
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
				   i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
				   np->tx_ring[i].frag[0].length);
		printk("\n"KERN_DEBUG "  Rx ring %8.8x:\n",
			   (int)(np->rx_ring_dma));
		for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
			printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
				   i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
				   np->rx_ring[i].frag[0].length);
		}
	}
#endif /* __i386__ debugging only */

	free_irq(dev->irq, dev);

	del_timer_sync(&np->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].status = 0;
		np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
		skb = np->rx_skbuff[i];
		if (skb) {
			pci_unmap_single(np->pci_dev, 
				np->rx_ring[i].frag[0].addr, np->rx_buf_sz, 
				PCI_DMA_FROMDEVICE);
			dev_kfree_skb(skb);
			np->rx_skbuff[i] = 0;
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		skb = np->tx_skbuff[i];
		if (skb) {
			pci_unmap_single(np->pci_dev, 
				np->tx_ring[i].frag[0].addr, skb->len,
				PCI_DMA_TODEVICE);
			dev_kfree_skb(skb);
			np->tx_skbuff[i] = 0;
		}
	}

	return 0;
}

static void __devexit sundance_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	
	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
	if (dev) {
		struct netdev_private *np = dev->priv;

		unregister_netdev(dev);
        	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, 
			np->rx_ring_dma);
	        pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, 
			np->tx_ring_dma);
		pci_release_regions(pdev);
#ifndef USE_IO_OPS
		iounmap((char *)(dev->base_addr));
#endif
		kfree(dev);
		pci_set_drvdata(pdev, NULL);
	}
}

static struct pci_driver sundance_driver = {
	name:		DRV_NAME,
	id_table:	sundance_pci_tbl,
	probe:		sundance_probe1,
	remove:		sundance_remove1,
};

static int __init sundance_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
#endif
	return pci_module_init(&sundance_driver);
}

static void __exit sundance_exit(void)
{
	pci_unregister_driver(&sundance_driver);
}

module_init(sundance_init);
module_exit(sundance_exit);