1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@cambridge.redhat.com>
*
* The original JFFS, from which the design for JFFS2 was derived,
* was designed and implemented by Axis Communications AB.
*
* The contents of this file are subject to the Red Hat eCos Public
* License Version 1.1 (the "Licence"); you may not use this file
* except in compliance with the Licence. You may obtain a copy of
* the Licence at http://www.redhat.com/
*
* Software distributed under the Licence is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
* See the Licence for the specific language governing rights and
* limitations under the Licence.
*
* The Original Code is JFFS2 - Journalling Flash File System, version 2
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU General Public License version 2 (the "GPL"), in
* which case the provisions of the GPL are applicable instead of the
* above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use your
* version of this file under the RHEPL, indicate your decision by
* deleting the provisions above and replace them with the notice and
* other provisions required by the GPL. If you do not delete the
* provisions above, a recipient may use your version of this file
* under either the RHEPL or the GPL.
*
* $Id: gc.c,v 1.52 2001/09/19 21:53:47 dwmw2 Exp $
*
*/
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/slab.h>
#include <linux/jffs2.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include "nodelist.h"
#include "crc32.h"
static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dnode *fd);
static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dirent *fd);
static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dirent *fd);
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *indeo, struct jffs2_full_dnode *fn,
__u32 start, __u32 end);
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dnode *fn,
__u32 start, __u32 end);
/* Called with erase_completion_lock held */
static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
{
struct jffs2_eraseblock *ret;
struct list_head *nextlist = NULL;
/* Pick an eraseblock to garbage collect next. This is where we'll
put the clever wear-levelling algorithms. Eventually. */
if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > JFFS2_RESERVED_BLOCKS_GCBAD) {
D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
nextlist = &c->bad_used_list;
} else if (jiffies % 100 && !list_empty(&c->dirty_list)) {
/* Most of the time, pick one off the dirty list */
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
nextlist = &c->dirty_list;
} else if (!list_empty(&c->clean_list)) {
D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
nextlist = &c->clean_list;
} else if (!list_empty(&c->dirty_list)) {
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
nextlist = &c->dirty_list;
} else {
/* Eep. Both were empty */
printk(KERN_NOTICE "jffs2: No clean _or_ dirty blocks to GC from! Where are they all?\n");
return NULL;
}
ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
list_del(&ret->list);
c->gcblock = ret;
ret->gc_node = ret->first_node;
if (!ret->gc_node) {
printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
BUG();
}
return ret;
}
/* jffs2_garbage_collect_pass
* Make a single attempt to progress GC. Move one node, and possibly
* start erasing one eraseblock.
*/
int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
{
struct jffs2_eraseblock *jeb;
struct jffs2_inode_info *f;
struct jffs2_raw_node_ref *raw;
struct jffs2_node_frag *frag;
struct jffs2_full_dnode *fn = NULL;
struct jffs2_full_dirent *fd;
__u32 start = 0, end = 0, nrfrags = 0;
__u32 inum;
struct inode *inode;
int ret = 0;
if (down_interruptible(&c->alloc_sem))
return -EINTR;
spin_lock_bh(&c->erase_completion_lock);
/* First, work out which block we're garbage-collecting */
jeb = c->gcblock;
if (!jeb)
jeb = jffs2_find_gc_block(c);
if (!jeb) {
printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n");
spin_unlock_bh(&c->erase_completion_lock);
up(&c->alloc_sem);
return -EIO;
}
D1(printk(KERN_DEBUG "garbage collect from block at phys 0x%08x\n", jeb->offset));
if (!jeb->used_size)
goto eraseit;
raw = jeb->gc_node;
while(raw->flash_offset & 1) {
D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", raw->flash_offset &~3));
jeb->gc_node = raw = raw->next_phys;
if (!raw) {
printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
spin_unlock_bh(&c->erase_completion_lock);
up(&c->alloc_sem);
BUG();
}
}
D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", raw->flash_offset &~3));
if (!raw->next_in_ino) {
/* Inode-less node. Clean marker, snapshot or something like that */
spin_unlock_bh(&c->erase_completion_lock);
jffs2_mark_node_obsolete(c, raw);
goto eraseit_lock;
}
inum = jffs2_raw_ref_to_inum(raw);
D1(printk(KERN_DEBUG "Inode number is #%u\n", inum));
spin_unlock_bh(&c->erase_completion_lock);
D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x, ino #%u\n", jeb->offset, raw->flash_offset&~3, inum));
inode = iget(OFNI_BS_2SFFJ(c), inum);
if (is_bad_inode(inode)) {
printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u\n", inum);
/* NB. This will happen again. We need to do something appropriate here. */
iput(inode);
up(&c->alloc_sem);
return -EIO;
}
f = JFFS2_INODE_INFO(inode);
down(&f->sem);
/* Now we have the lock for this inode. Check that it's still the one at the head
of the list. */
if (raw->flash_offset & 1) {
D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
/* They'll call again */
goto upnout;
}
/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
if (f->metadata && f->metadata->raw == raw) {
fn = f->metadata;
ret = jffs2_garbage_collect_metadata(c, jeb, inode, fn);
goto upnout;
}
for (frag = f->fraglist; frag; frag = frag->next) {
if (frag->node && frag->node->raw == raw) {
fn = frag->node;
end = frag->ofs + frag->size;
if (!nrfrags++)
start = frag->ofs;
if (nrfrags == frag->node->frags)
break; /* We've found them all */
}
}
if (fn) {
/* We found a datanode. Do the GC */
if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
/* It crosses a page boundary. Therefore, it must be a hole. */
ret = jffs2_garbage_collect_hole(c, jeb, inode, fn, start, end);
} else {
/* It could still be a hole. But we GC the page this way anyway */
ret = jffs2_garbage_collect_dnode(c, jeb, inode, fn, start, end);
}
goto upnout;
}
/* Wasn't a dnode. Try dirent */
for (fd = f->dents; fd; fd=fd->next) {
if (fd->raw == raw)
break;
}
if (fd && fd->ino) {
ret = jffs2_garbage_collect_dirent(c, jeb, inode, fd);
} else if (fd) {
ret = jffs2_garbage_collect_deletion_dirent(c, jeb, inode, fd);
} else {
printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%lu\n", raw->flash_offset&~3, inode->i_ino);
if (raw->flash_offset & 1) {
printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
} else {
ret = -EIO;
}
}
upnout:
up(&f->sem);
iput(inode);
eraseit_lock:
/* If we've finished this block, start it erasing */
spin_lock_bh(&c->erase_completion_lock);
eraseit:
if (c->gcblock && !c->gcblock->used_size) {
D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
/* We're GC'ing an empty block? */
list_add_tail(&c->gcblock->list, &c->erase_pending_list);
c->gcblock = NULL;
c->nr_erasing_blocks++;
jffs2_erase_pending_trigger(c);
}
spin_unlock_bh(&c->erase_completion_lock);
up(&c->alloc_sem);
return ret;
}
static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dnode *fn)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dnode *new_fn;
struct jffs2_raw_inode ri;
unsigned short dev;
char *mdata = NULL, mdatalen = 0;
__u32 alloclen, phys_ofs;
int ret;
if ((inode->i_mode & S_IFMT) == S_IFBLK ||
(inode->i_mode & S_IFMT) == S_IFCHR) {
/* For these, we don't actually need to read the old node */
dev = (MAJOR(to_kdev_t(inode->i_rdev)) << 8) |
MINOR(to_kdev_t(inode->i_rdev));
mdata = (char *)&dev;
mdatalen = sizeof(dev);
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
} else if ((inode->i_mode & S_IFMT) == S_IFLNK) {
mdatalen = fn->size;
mdata = kmalloc(fn->size, GFP_KERNEL);
if (!mdata) {
printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
return -ENOMEM;
}
ret = jffs2_read_dnode(c, fn, mdata, 0, mdatalen);
if (ret) {
printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
kfree(mdata);
return ret;
}
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
}
ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
if (ret) {
printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_metadata failed: %d\n",
sizeof(ri)+ mdatalen, ret);
goto out;
}
memset(&ri, 0, sizeof(ri));
ri.magic = JFFS2_MAGIC_BITMASK;
ri.nodetype = JFFS2_NODETYPE_INODE;
ri.totlen = sizeof(ri) + mdatalen;
ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
ri.ino = inode->i_ino;
ri.version = ++f->highest_version;
ri.mode = inode->i_mode;
ri.uid = inode->i_uid;
ri.gid = inode->i_gid;
ri.isize = inode->i_size;
ri.atime = inode->i_atime;
ri.ctime = inode->i_ctime;
ri.mtime = inode->i_mtime;
ri.offset = 0;
ri.csize = mdatalen;
ri.dsize = mdatalen;
ri.compr = JFFS2_COMPR_NONE;
ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
ri.data_crc = crc32(0, mdata, mdatalen);
new_fn = jffs2_write_dnode(inode, &ri, mdata, mdatalen, phys_ofs, NULL);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
ret = PTR_ERR(new_fn);
goto out;
}
jffs2_mark_node_obsolete(c, fn->raw);
jffs2_free_full_dnode(fn);
f->metadata = new_fn;
out:
if ((inode->i_mode & S_IFMT) == S_IFLNK)
kfree(mdata);
return ret;
}
static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dirent *fd)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dirent *new_fd;
struct jffs2_raw_dirent rd;
__u32 alloclen, phys_ofs;
int ret;
rd.magic = JFFS2_MAGIC_BITMASK;
rd.nodetype = JFFS2_NODETYPE_DIRENT;
rd.nsize = strlen(fd->name);
rd.totlen = sizeof(rd) + rd.nsize;
rd.hdr_crc = crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4);
rd.pino = inode->i_ino;
rd.version = ++f->highest_version;
rd.ino = fd->ino;
rd.mctime = max(inode->i_mtime, inode->i_ctime);
rd.type = fd->type;
rd.node_crc = crc32(0, &rd, sizeof(rd)-8);
rd.name_crc = crc32(0, fd->name, rd.nsize);
ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
if (ret) {
printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dirent failed: %d\n",
sizeof(rd)+rd.nsize, ret);
return ret;
}
new_fd = jffs2_write_dirent(inode, &rd, fd->name, rd.nsize, phys_ofs, NULL);
if (IS_ERR(new_fd)) {
printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
return PTR_ERR(new_fd);
}
jffs2_add_fd_to_list(c, new_fd, &f->dents);
return 0;
}
static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dirent *fd)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dirent **fdp = &f->dents;
int found = 0;
/* FIXME: When we run on NAND flash, we need to work out whether
this deletion dirent is still needed to actively delete a
'real' dirent with the same name that's still somewhere else
on the flash. For now, we know that we've actually obliterated
all the older dirents when they became obsolete, so we didn't
really need to write the deletion to flash in the first place.
*/
while (*fdp) {
if ((*fdp) == fd) {
found = 1;
*fdp = fd->next;
break;
}
fdp = &(*fdp)->next;
}
if (!found) {
printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%lu\n", fd->name, inode->i_ino);
}
jffs2_mark_node_obsolete(c, fd->raw);
jffs2_free_full_dirent(fd);
return 0;
}
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dnode *fn,
__u32 start, __u32 end)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_raw_inode ri;
struct jffs2_node_frag *frag;
struct jffs2_full_dnode *new_fn;
__u32 alloclen, phys_ofs;
int ret;
D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%lu from offset 0x%x to 0x%x\n",
inode->i_ino, start, end));
memset(&ri, 0, sizeof(ri));
if(fn->frags > 1) {
size_t readlen;
__u32 crc;
/* It's partially obsoleted by a later write. So we have to
write it out again with the _same_ version as before */
ret = c->mtd->read(c->mtd, fn->raw->flash_offset & ~3, sizeof(ri), &readlen, (char *)&ri);
if (readlen != sizeof(ri) || ret) {
printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %d. Data will be lost by writing new hold node\n", ret, readlen);
goto fill;
}
if (ri.nodetype != JFFS2_NODETYPE_INODE) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
fn->raw->flash_offset & ~3, ri.nodetype, JFFS2_NODETYPE_INODE);
return -EIO;
}
if (ri.totlen != sizeof(ri)) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%x\n",
fn->raw->flash_offset & ~3, ri.totlen, sizeof(ri));
return -EIO;
}
crc = crc32(0, &ri, sizeof(ri)-8);
if (crc != ri.node_crc) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
fn->raw->flash_offset & ~3, ri.node_crc, crc);
/* FIXME: We could possibly deal with this by writing new holes for each frag */
printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n",
start, end, inode->i_ino);
goto fill;
}
if (ri.compr != JFFS2_COMPR_ZERO) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", fn->raw->flash_offset & ~3);
printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n",
start, end, inode->i_ino);
goto fill;
}
} else {
fill:
ri.magic = JFFS2_MAGIC_BITMASK;
ri.nodetype = JFFS2_NODETYPE_INODE;
ri.totlen = sizeof(ri);
ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
ri.ino = inode->i_ino;
ri.version = ++f->highest_version;
ri.offset = start;
ri.csize = end - start;
ri.dsize = 0;
ri.compr = JFFS2_COMPR_ZERO;
}
ri.mode = inode->i_mode;
ri.uid = inode->i_uid;
ri.gid = inode->i_gid;
ri.isize = inode->i_size;
ri.atime = inode->i_atime;
ri.ctime = inode->i_ctime;
ri.mtime = inode->i_mtime;
ri.data_crc = 0;
ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
if (ret) {
printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_hole failed: %d\n",
sizeof(ri), ret);
return ret;
}
new_fn = jffs2_write_dnode(inode, &ri, NULL, 0, phys_ofs, NULL);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
return PTR_ERR(new_fn);
}
if (ri.version == f->highest_version) {
jffs2_add_full_dnode_to_inode(c, f, new_fn);
if (f->metadata) {
jffs2_mark_node_obsolete(c, f->metadata->raw);
jffs2_free_full_dnode(f->metadata);
f->metadata = NULL;
return 0;
}
}
for (frag = f->fraglist; frag; frag = frag->next) {
if (frag->ofs > fn->size + fn->ofs)
break;
if (frag->node == fn) {
frag->node = new_fn;
new_fn->frags++;
fn->frags--;
}
}
if (fn->frags) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
BUG();
}
if (!new_fn->frags) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
BUG();
}
jffs2_mark_node_obsolete(c, fn->raw);
jffs2_free_full_dnode(fn);
return 0;
}
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct inode *inode, struct jffs2_full_dnode *fn,
__u32 start, __u32 end)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dnode *new_fn;
struct jffs2_raw_inode ri;
__u32 alloclen, phys_ofs, offset, orig_end;
int ret = 0;
unsigned char *comprbuf = NULL, *writebuf;
struct page *pg;
unsigned char *pg_ptr;
memset(&ri, 0, sizeof(ri));
D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%lu from offset 0x%x to 0x%x\n",
inode->i_ino, start, end));
orig_end = end;
/* If we're looking at the last node in the block we're
garbage-collecting, we allow ourselves to merge as if the
block was already erasing. We're likely to be GC'ing a
partial page, and the next block we GC is likely to have
the other half of this page right at the beginning, which
means we'd expand it _then_, as nr_erasing_blocks would have
increased since we checked, and in doing so would obsolete
the partial node which we'd have written here. Meaning that
the GC would churn and churn, and just leave dirty blocks in
it's wake.
*/
if(c->nr_free_blocks + c->nr_erasing_blocks > JFFS2_RESERVED_BLOCKS_GCMERGE - (fn->raw->next_phys?0:1)) {
/* Shitloads of space */
/* FIXME: Integrate this properly with GC calculations */
start &= ~(PAGE_CACHE_SIZE-1);
end = min_t(__u32, start + PAGE_CACHE_SIZE, inode->i_size);
D1(printk(KERN_DEBUG "Plenty of free space, so expanding to write from offset 0x%x to 0x%x\n",
start, end));
if (end < orig_end) {
printk(KERN_WARNING "Eep. jffs2_garbage_collect_dnode extended node to write, but it got smaller: start 0x%x, orig_end 0x%x, end 0x%x\n", start, orig_end, end);
end = orig_end;
}
}
/* First, use readpage() to read the appropriate page into the page cache */
/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
* triggered garbage collection in the first place?
* A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
* page OK. We'll actually write it out again in commit_write, which is a little
* suboptimal, but at least we're correct.
*/
pg = read_cache_page(inode->i_mapping, start >> PAGE_CACHE_SHIFT, (void *)jffs2_do_readpage_unlock, inode);
if (IS_ERR(pg)) {
printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg));
return PTR_ERR(pg);
}
pg_ptr = (char *)kmap(pg);
comprbuf = kmalloc(end - start, GFP_KERNEL);
offset = start;
while(offset < orig_end) {
__u32 datalen;
__u32 cdatalen;
char comprtype = JFFS2_COMPR_NONE;
ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
if (ret) {
printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dnode failed: %d\n",
sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
break;
}
cdatalen = min(alloclen - sizeof(ri), end - offset);
datalen = end - offset;
writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
if (comprbuf) {
comprtype = jffs2_compress(writebuf, comprbuf, &datalen, &cdatalen);
}
if (comprtype) {
writebuf = comprbuf;
} else {
datalen = cdatalen;
}
ri.magic = JFFS2_MAGIC_BITMASK;
ri.nodetype = JFFS2_NODETYPE_INODE;
ri.totlen = sizeof(ri) + cdatalen;
ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
ri.ino = inode->i_ino;
ri.version = ++f->highest_version;
ri.mode = inode->i_mode;
ri.uid = inode->i_uid;
ri.gid = inode->i_gid;
ri.isize = inode->i_size;
ri.atime = inode->i_atime;
ri.ctime = inode->i_ctime;
ri.mtime = inode->i_mtime;
ri.offset = offset;
ri.csize = cdatalen;
ri.dsize = datalen;
ri.compr = comprtype;
ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
ri.data_crc = crc32(0, writebuf, cdatalen);
new_fn = jffs2_write_dnode(inode, &ri, writebuf, cdatalen, phys_ofs, NULL);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
ret = PTR_ERR(new_fn);
break;
}
ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
offset += datalen;
if (f->metadata) {
jffs2_mark_node_obsolete(c, f->metadata->raw);
jffs2_free_full_dnode(f->metadata);
f->metadata = NULL;
}
}
if (comprbuf) kfree(comprbuf);
kunmap(pg);
/* XXX: Does the page get freed automatically? */
/* AAA: Judging by the unmount getting stuck in __wait_on_page, nope. */
page_cache_release(pg);
return ret;
}
|