1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/* Common Flash Interface structures
* See http://support.intel.com/design/flash/technote/index.htm
* $Id: cfi.h,v 1.25 2001/09/04 07:06:21 dwmw2 Exp $
*/
#ifndef __MTD_CFI_H__
#define __MTD_CFI_H__
#include <linux/config.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/cfi_endian.h>
/*
* You can optimize the code size and performance by defining only
* the geometry(ies) available on your hardware.
* CFIDEV_INTERLEAVE_n, where represents the interleave (number of chips to fill the bus width)
* CFIDEV_BUSWIDTH_n, where n is the bus width in bytes (1, 2 or 4 bytes)
*
* By default, all (known) geometries are supported.
*/
#ifndef CONFIG_MTD_CFI_GEOMETRY
#define CFIDEV_INTERLEAVE_1 (1)
#define CFIDEV_INTERLEAVE_2 (2)
#define CFIDEV_INTERLEAVE_4 (4)
#define CFIDEV_BUSWIDTH_1 (1)
#define CFIDEV_BUSWIDTH_2 (2)
#define CFIDEV_BUSWIDTH_4 (4)
#else
#ifdef CONFIG_MTD_CFI_I1
#define CFIDEV_INTERLEAVE_1 (1)
#endif
#ifdef CONFIG_MTD_CFI_I2
#define CFIDEV_INTERLEAVE_2 (2)
#endif
#ifdef CONFIG_MTD_CFI_I4
#define CFIDEV_INTERLEAVE_4 (4)
#endif
#ifdef CONFIG_MTD_CFI_B1
#define CFIDEV_BUSWIDTH_1 (1)
#endif
#ifdef CONFIG_MTD_CFI_B2
#define CFIDEV_BUSWIDTH_2 (2)
#endif
#ifdef CONFIG_MTD_CFI_B4
#define CFIDEV_BUSWIDTH_4 (4)
#endif
#endif
/*
* The following macros are used to select the code to execute:
* cfi_buswidth_is_*()
* cfi_interleave_is_*()
* [where * is either 1, 2 or 4]
* Those macros should be used with 'if' statements. If only one of few
* geometry arrangements are selected, they expand to constants thus allowing
* the compiler (most of them being 0) to optimize away all the unneeded code,
* while still validating the syntax (which is not possible with embedded
* #if ... #endif constructs).
*/
#ifdef CFIDEV_INTERLEAVE_1
# ifdef CFIDEV_INTERLEAVE
# undef CFIDEV_INTERLEAVE
# define CFIDEV_INTERLEAVE (cfi->interleave)
# else
# define CFIDEV_INTERLEAVE CFIDEV_INTERLEAVE_1
# endif
# define cfi_interleave_is_1() (CFIDEV_INTERLEAVE == CFIDEV_INTERLEAVE_1)
#else
# define cfi_interleave_is_1() (0)
#endif
#ifdef CFIDEV_INTERLEAVE_2
# ifdef CFIDEV_INTERLEAVE
# undef CFIDEV_INTERLEAVE
# define CFIDEV_INTERLEAVE (cfi->interleave)
# else
# define CFIDEV_INTERLEAVE CFIDEV_INTERLEAVE_2
# endif
# define cfi_interleave_is_2() (CFIDEV_INTERLEAVE == CFIDEV_INTERLEAVE_2)
#else
# define cfi_interleave_is_2() (0)
#endif
#ifdef CFIDEV_INTERLEAVE_4
# ifdef CFIDEV_INTERLEAVE
# undef CFIDEV_INTERLEAVE
# define CFIDEV_INTERLEAVE (cfi->interleave)
# else
# define CFIDEV_INTERLEAVE CFIDEV_INTERLEAVE_4
# endif
# define cfi_interleave_is_4() (CFIDEV_INTERLEAVE == CFIDEV_INTERLEAVE_4)
#else
# define cfi_interleave_is_4() (0)
#endif
#ifndef CFIDEV_INTERLEAVE
#error You must define at least one interleave to support!
#endif
#ifdef CFIDEV_BUSWIDTH_1
# ifdef CFIDEV_BUSWIDTH
# undef CFIDEV_BUSWIDTH
# define CFIDEV_BUSWIDTH (map->buswidth)
# else
# define CFIDEV_BUSWIDTH CFIDEV_BUSWIDTH_1
# endif
# define cfi_buswidth_is_1() (CFIDEV_BUSWIDTH == CFIDEV_BUSWIDTH_1)
#else
# define cfi_buswidth_is_1() (0)
#endif
#ifdef CFIDEV_BUSWIDTH_2
# ifdef CFIDEV_BUSWIDTH
# undef CFIDEV_BUSWIDTH
# define CFIDEV_BUSWIDTH (map->buswidth)
# else
# define CFIDEV_BUSWIDTH CFIDEV_BUSWIDTH_2
# endif
# define cfi_buswidth_is_2() (CFIDEV_BUSWIDTH == CFIDEV_BUSWIDTH_2)
#else
# define cfi_buswidth_is_2() (0)
#endif
#ifdef CFIDEV_BUSWIDTH_4
# ifdef CFIDEV_BUSWIDTH
# undef CFIDEV_BUSWIDTH
# define CFIDEV_BUSWIDTH (map->buswidth)
# else
# define CFIDEV_BUSWIDTH CFIDEV_BUSWIDTH_4
# endif
# define cfi_buswidth_is_4() (CFIDEV_BUSWIDTH == CFIDEV_BUSWIDTH_4)
#else
# define cfi_buswidth_is_4() (0)
#endif
#ifndef CFIDEV_BUSWIDTH
#error You must define at least one bus width to support!
#endif
/* NB: these values must represents the number of bytes needed to meet the
* device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
* These numbers are used in calculations.
*/
#define CFI_DEVICETYPE_X8 (8 / 8)
#define CFI_DEVICETYPE_X16 (16 / 8)
#define CFI_DEVICETYPE_X32 (32 / 8)
/* NB: We keep these structures in memory in HOST byteorder, except
* where individually noted.
*/
/* Basic Query Structure */
struct cfi_ident {
__u8 qry[3];
__u16 P_ID;
__u16 P_ADR;
__u16 A_ID;
__u16 A_ADR;
__u8 VccMin;
__u8 VccMax;
__u8 VppMin;
__u8 VppMax;
__u8 WordWriteTimeoutTyp;
__u8 BufWriteTimeoutTyp;
__u8 BlockEraseTimeoutTyp;
__u8 ChipEraseTimeoutTyp;
__u8 WordWriteTimeoutMax;
__u8 BufWriteTimeoutMax;
__u8 BlockEraseTimeoutMax;
__u8 ChipEraseTimeoutMax;
__u8 DevSize;
__u16 InterfaceDesc;
__u16 MaxBufWriteSize;
__u8 NumEraseRegions;
__u32 EraseRegionInfo[0]; /* Not host ordered */
} __attribute__((packed));
/* Extended Query Structure for both PRI and ALT */
struct cfi_extquery {
__u8 pri[3];
__u8 MajorVersion;
__u8 MinorVersion;
} __attribute__((packed));
/* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
struct cfi_pri_intelext {
__u8 pri[3];
__u8 MajorVersion;
__u8 MinorVersion;
__u32 FeatureSupport;
__u8 SuspendCmdSupport;
__u16 BlkStatusRegMask;
__u8 VccOptimal;
__u8 VppOptimal;
} __attribute__((packed));
struct cfi_pri_query {
__u8 NumFields;
__u32 ProtField[1]; /* Not host ordered */
} __attribute__((packed));
struct cfi_bri_query {
__u8 PageModeReadCap;
__u8 NumFields;
__u32 ConfField[1]; /* Not host ordered */
} __attribute__((packed));
#define P_ID_NONE 0
#define P_ID_INTEL_EXT 1
#define P_ID_AMD_STD 2
#define P_ID_INTEL_STD 3
#define P_ID_AMD_EXT 4
#define P_ID_MITSUBISHI_STD 256
#define P_ID_MITSUBISHI_EXT 257
#define P_ID_RESERVED 65535
#define CFI_MODE_CFI 0
#define CFI_MODE_JEDEC 1
struct cfi_private {
__u16 cmdset;
void *cmdset_priv;
int interleave;
int device_type;
int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */
int addr_unlock1;
int addr_unlock2;
int fast_prog;
struct mtd_info *(*cmdset_setup)(struct map_info *);
struct cfi_ident *cfiq; /* For now only one. We insist that all devs
must be of the same type. */
int mfr, id;
int numchips;
unsigned long chipshift; /* Because they're of the same type */
const char *im_name; /* inter_module name for cmdset_setup */
struct flchip chips[0]; /* per-chip data structure for each chip */
};
#define MAX_CFI_CHIPS 8 /* Entirely arbitrary to avoid realloc() */
/*
* Returns the command address according to the given geometry.
*/
static inline __u32 cfi_build_cmd_addr(__u32 cmd_ofs, int interleave, int type)
{
return (cmd_ofs * type) * interleave;
}
/*
* Transforms the CFI command for the given geometry (bus width & interleave.
*/
static inline __u32 cfi_build_cmd(u_char cmd, struct map_info *map, struct cfi_private *cfi)
{
__u32 val = 0;
if (cfi_buswidth_is_1()) {
/* 1 x8 device */
val = cmd;
} else if (cfi_buswidth_is_2()) {
if (cfi_interleave_is_1()) {
/* 1 x16 device in x16 mode */
val = cpu_to_cfi16(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 (x8, x16 or x32) devices in x8 mode */
val = cpu_to_cfi16((cmd << 8) | cmd);
}
} else if (cfi_buswidth_is_4()) {
if (cfi_interleave_is_1()) {
/* 1 x32 device in x32 mode */
val = cpu_to_cfi32(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 x16 device in x16 mode */
val = cpu_to_cfi32((cmd << 16) | cmd);
} else if (cfi_interleave_is_4()) {
/* 4 (x8, x16 or x32) devices in x8 mode */
val = (cmd << 16) | cmd;
val = cpu_to_cfi32((val << 8) | val);
}
}
return val;
}
#define CMD(x) cfi_build_cmd((x), map, cfi)
/*
* Read a value according to the bus width.
*/
static inline __u32 cfi_read(struct map_info *map, __u32 addr)
{
if (cfi_buswidth_is_1()) {
return map->read8(map, addr);
} else if (cfi_buswidth_is_2()) {
return map->read16(map, addr);
} else if (cfi_buswidth_is_4()) {
return map->read32(map, addr);
} else {
return 0;
}
}
/*
* Write a value according to the bus width.
*/
static inline void cfi_write(struct map_info *map, __u32 val, __u32 addr)
{
if (cfi_buswidth_is_1()) {
map->write8(map, val, addr);
} else if (cfi_buswidth_is_2()) {
map->write16(map, val, addr);
} else if (cfi_buswidth_is_4()) {
map->write32(map, val, addr);
}
}
/*
* Sends a CFI command to a bank of flash for the given geometry.
*
* Returns the offset in flash where the command was written.
* If prev_val is non-null, it will be set to the value at the command address,
* before the command was written.
*/
static inline __u32 cfi_send_gen_cmd(u_char cmd, __u32 cmd_addr, __u32 base,
struct map_info *map, struct cfi_private *cfi,
int type, __u32 *prev_val)
{
__u32 val;
__u32 addr = base + cfi_build_cmd_addr(cmd_addr, CFIDEV_INTERLEAVE, type);
val = cfi_build_cmd(cmd, map, cfi);
if (prev_val)
*prev_val = cfi_read(map, addr);
cfi_write(map, val, addr);
return addr - base;
}
static inline __u8 cfi_read_query(struct map_info *map, __u32 addr)
{
if (cfi_buswidth_is_1()) {
return map->read8(map, addr);
} else if (cfi_buswidth_is_2()) {
return cfi16_to_cpu(map->read16(map, addr));
} else if (cfi_buswidth_is_4()) {
return cfi32_to_cpu(map->read32(map, addr));
} else {
return 0;
}
}
static inline void cfi_udelay(int us)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
if (current->need_resched) {
unsigned long t = us * HZ / 1000000;
if (t < 1)
t = 1;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(t);
}
else
#endif
udelay(us);
}
static inline void cfi_spin_lock(spinlock_t *mutex)
{
spin_lock_bh(mutex);
}
static inline void cfi_spin_unlock(spinlock_t *mutex)
{
spin_unlock_bh(mutex);
}
#endif /* __MTD_CFI_H__ */
|