1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
/*
pdcraid.c Copyright (C) 2001 Red Hat, Inc. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Authors: Arjan van de Ven <arjanv@redhat.com>
Based on work done by Sren Schmidt for FreeBSD
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/genhd.h>
#include <linux/ioctl.h>
#include <linux/ide.h>
#include <asm/uaccess.h>
#include "ataraid.h"
static int pdcraid_open(struct inode * inode, struct file * filp);
static int pdcraid_release(struct inode * inode, struct file * filp);
static int pdcraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int pdcraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
static int pdcraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
struct disk_dev {
int major;
int minor;
int device;
};
static struct disk_dev devlist[]= {
{IDE0_MAJOR, 0, -1 },
{IDE0_MAJOR, 64, -1 },
{IDE1_MAJOR, 0, -1 },
{IDE1_MAJOR, 64, -1 },
{IDE2_MAJOR, 0, -1 },
{IDE2_MAJOR, 64, -1 },
{IDE3_MAJOR, 0, -1 },
{IDE3_MAJOR, 64, -1 },
{IDE4_MAJOR, 0, -1 },
{IDE4_MAJOR, 64, -1 },
{IDE5_MAJOR, 0, -1 },
{IDE5_MAJOR, 64, -1 },
{IDE6_MAJOR, 0, -1 },
{IDE6_MAJOR, 64, -1 },
};
struct pdcdisk {
kdev_t device;
unsigned long sectors;
struct block_device *bdev;
unsigned long last_pos;
};
struct pdcraid {
unsigned int stride;
unsigned int disks;
unsigned long sectors;
struct geom geom;
struct pdcdisk disk[8];
unsigned long cutoff[8];
unsigned int cutoff_disks[8];
};
static struct raid_device_operations pdcraid0_ops = {
open: pdcraid_open,
release: pdcraid_release,
ioctl: pdcraid_ioctl,
make_request: pdcraid0_make_request
};
static struct raid_device_operations pdcraid1_ops = {
open: pdcraid_open,
release: pdcraid_release,
ioctl: pdcraid_ioctl,
make_request: pdcraid1_make_request
};
static struct pdcraid raid[16];
static int pdcraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned int minor;
unsigned long sectors;
if (!inode || !inode->i_rdev)
return -EINVAL;
minor = MINOR(inode->i_rdev)>>SHIFT;
switch (cmd) {
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
sectors = ataraid_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
if (MINOR(inode->i_rdev)&15)
return put_user(sectors, (unsigned long *) arg);
return put_user(raid[minor].sectors , (unsigned long *) arg);
break;
case HDIO_GETGEO:
{
struct hd_geometry *loc = (struct hd_geometry *) arg;
unsigned short bios_cyl = raid[minor].geom.cylinders; /* truncate */
if (!loc) return -EINVAL;
if (put_user(raid[minor].geom.heads, (byte *) &loc->heads)) return -EFAULT;
if (put_user(raid[minor].geom.sectors, (byte *) &loc->sectors)) return -EFAULT;
if (put_user(bios_cyl, (unsigned short *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
case HDIO_GETGEO_BIG:
{
struct hd_big_geometry *loc = (struct hd_big_geometry *) arg;
if (!loc) return -EINVAL;
if (put_user(raid[minor].geom.heads, (byte *) &loc->heads)) return -EFAULT;
if (put_user(raid[minor].geom.sectors, (byte *) &loc->sectors)) return -EFAULT;
if (put_user(raid[minor].geom.cylinders, (unsigned int *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
case BLKROSET:
case BLKROGET:
case BLKSSZGET:
return blk_ioctl(inode->i_rdev, cmd, arg);
default:
printk("Invalid ioctl \n");
return -EINVAL;
};
return 0;
}
unsigned long partition_map_normal(unsigned long block, unsigned long partition_off, unsigned long partition_size, int stride)
{
return block + partition_off;
}
unsigned long partition_map_linux(unsigned long block, unsigned long partition_off, unsigned long partition_size, int stride)
{
unsigned long newblock;
newblock = stride - (partition_off%stride); if (newblock == stride) newblock = 0;
newblock += block;
newblock = newblock % partition_size;
newblock += partition_off;
return newblock;
}
static int funky_remap[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
unsigned long partition_map_linux_raid0_4disk(unsigned long block, unsigned long partition_off, unsigned long partition_size, int stride)
{
unsigned long newblock,temp,temp2;
newblock = stride - (partition_off%stride); if (newblock == stride) newblock = 0;
if (block < (partition_size / (8*stride))*8*stride ) {
temp = block % stride;
temp2 = block / stride;
temp2 = ((temp2>>3)<<3)|(funky_remap[temp2&7]);
block = temp2*stride+temp;
}
newblock += block;
newblock = newblock % partition_size;
newblock += partition_off;
return newblock;
}
static int pdcraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
unsigned long rsect;
unsigned long rsect_left,rsect_accum = 0;
unsigned long block;
unsigned int disk=0,real_disk=0;
int i;
int device;
struct pdcraid *thisraid;
rsect = bh->b_rsector;
/* Ok. We need to modify this sector number to a new disk + new sector number.
* If there are disks of different sizes, this gets tricky.
* Example with 3 disks (1Gb, 4Gb and 5 GB):
* The first 3 Gb of the "RAID" are evenly spread over the 3 disks.
* Then things get interesting. The next 2Gb (RAID view) are spread across disk 2 and 3
* and the last 1Gb is disk 3 only.
*
* the way this is solved is like this: We have a list of "cutoff" points where everytime
* a disk falls out of the "higher" count, we mark the max sector. So once we pass a cutoff
* point, we have to divide by one less.
*/
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
thisraid = &raid[device];
if (thisraid->stride==0)
thisraid->stride=1;
/* Partitions need adding of the start sector of the partition to the requested sector */
rsect = partition_map_normal(rsect, ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect, ataraid_gendisk.part[MINOR(bh->b_rdev)].nr_sects, thisraid->stride);
/* Woops we need to split the request to avoid crossing a stride barrier */
if ((rsect/thisraid->stride) != ((rsect+(bh->b_size/512)-1)/thisraid->stride)) {
return -1;
}
rsect_left = rsect;
for (i=0;i<8;i++) {
if (thisraid->cutoff_disks[i]==0)
break;
if (rsect > thisraid->cutoff[i]) {
/* we're in the wrong area so far */
rsect_left -= thisraid->cutoff[i];
rsect_accum += thisraid->cutoff[i]/thisraid->cutoff_disks[i];
} else {
block = rsect_left / thisraid->stride;
disk = block % thisraid->cutoff_disks[i];
block = (block / thisraid->cutoff_disks[i]) * thisraid->stride;
rsect = rsect_accum + (rsect_left % thisraid->stride) + block;
break;
}
}
for (i=0;i<8;i++) {
if ((disk==0) && (thisraid->disk[i].sectors > rsect_accum)) {
real_disk = i;
break;
}
if ((disk>0) && (thisraid->disk[i].sectors >= rsect_accum)) {
disk--;
}
}
disk = real_disk;
/*
* The new BH_Lock semantics in ll_rw_blk.c guarantee that this
* is the only IO operation happening on this bh.
*/
bh->b_rdev = thisraid->disk[disk].device;
bh->b_rsector = rsect;
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int pdcraid1_write_request(request_queue_t *q, int rw, struct buffer_head * bh)
{
struct buffer_head *bh1;
struct ataraid_bh_private *private;
int device;
int i;
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
private = ataraid_get_private();
if (private==NULL)
BUG();
private->parent = bh;
atomic_set(&private->count,raid[device].disks);
for (i = 0; i< raid[device].disks; i++) {
bh1=ataraid_get_bhead();
/* If this ever fails we're doomed */
if (!bh1)
BUG();
/* dupe the bufferhead and update the parts that need to be different */
memcpy(bh1, bh, sizeof(*bh));
bh1->b_end_io = ataraid_end_request;
bh1->b_private = private;
bh1->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect; /* partition offset */
bh1->b_rdev = raid[device].disk[i].device;
/* update the last known head position for the drive */
raid[device].disk[i].last_pos = bh1->b_rsector+(bh1->b_size>>9);
generic_make_request(rw,bh1);
}
return 0;
}
static int pdcraid1_read_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
int device;
int dist;
int bestsofar,bestdist,i;
static int previous;
/* Reads are simple in principle. Pick a disk and go.
Initially I cheat by just picking the one which the last known
head position is closest by.
Later on, online/offline checking and performance needs adding */
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
bh->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect;
bestsofar = 0;
bestdist = raid[device].disk[0].last_pos - bh->b_rsector;
if (bestdist<0)
bestdist=-bestdist;
if (bestdist>4095)
bestdist=4095;
for (i=1 ; i<raid[device].disks; i++) {
dist = raid[device].disk[i].last_pos - bh->b_rsector;
if (dist<0)
dist = -dist;
if (dist>4095)
dist=4095;
if (bestdist==dist) { /* it's a tie; try to do some read balancing */
if ((previous>bestsofar)&&(previous<=i))
bestsofar = i;
previous = (previous + 1) % raid[device].disks;
} else if (bestdist>dist) {
bestdist = dist;
bestsofar = i;
}
}
bh->b_rdev = raid[device].disk[bestsofar].device;
raid[device].disk[bestsofar].last_pos = bh->b_rsector+(bh->b_size>>9);
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int pdcraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
/* Read and Write are totally different cases; split them totally here */
if (rw==READA)
rw = READ;
if (rw==READ)
return pdcraid1_read_request(q,rw,bh);
else
return pdcraid1_write_request(q,rw,bh);
}
#include "pdcraid.h"
static unsigned long calc_pdcblock_offset (int major,int minor)
{
unsigned long lba = 0;
kdev_t dev;
ide_drive_t *ideinfo;
dev = MKDEV(major,minor);
ideinfo = get_info_ptr (dev);
if (ideinfo==NULL)
return 0;
/* first sector of the last cluster */
if (ideinfo->head==0)
return 0;
if (ideinfo->sect==0)
return 0;
lba = (ideinfo->capacity / (ideinfo->head*ideinfo->sect));
lba = lba * (ideinfo->head*ideinfo->sect);
lba = lba - ideinfo->sect;
return lba;
}
static int read_disk_sb (int major, int minor, unsigned char *buffer,int bufsize)
{
int ret = -EINVAL;
struct buffer_head *bh = NULL;
kdev_t dev = MKDEV(major,minor);
unsigned long sb_offset;
if (blksize_size[major]==NULL) /* device doesn't exist */
return -EINVAL;
/*
* Calculate the position of the superblock,
* it's at first sector of the last cylinder
*/
sb_offset = calc_pdcblock_offset(major,minor)/8;
/* The /8 transforms sectors into 4Kb blocks */
if (sb_offset==0)
return -1;
set_blocksize (dev, 4096);
bh = bread (dev, sb_offset, 4096);
if (bh) {
memcpy (buffer, bh->b_data, bufsize);
} else {
printk(KERN_ERR "pdcraid: Error reading superblock.\n");
goto abort;
}
ret = 0;
abort:
if (bh)
brelse (bh);
return ret;
}
static unsigned int calc_sb_csum (unsigned int* ptr)
{
unsigned int sum;
int count;
sum = 0;
for (count=0;count<511;count++)
sum += *ptr++;
return sum;
}
static int cookie = 0;
static void __init probedisk(int devindex,int device, int raidlevel)
{
int i;
int major, minor;
struct promise_raid_conf *prom;
static unsigned char block[4096];
struct block_device *bdev;
if (devlist[devindex].device!=-1) /* already assigned to another array */
return;
major = devlist[devindex].major;
minor = devlist[devindex].minor;
if (read_disk_sb(major,minor,(unsigned char*)&block,sizeof(block)))
return;
prom = (struct promise_raid_conf*)&block[512];
/* the checksums must match */
if (prom->checksum != calc_sb_csum((unsigned int*)prom))
return;
if (prom->raid.type!=raidlevel) /* different raidlevel */
return;
if ((cookie!=0) && (cookie != prom->raid.magic_1)) /* different array */
return;
cookie = prom->raid.magic_1;
/* This looks evil. But basically, we have to search for our adapternumber
in the arraydefinition, both of which are in the superblock */
for (i=0;(i<prom->raid.total_disks)&&(i<8);i++) {
if ( (prom->raid.disk[i].channel== prom->raid.channel) &&
(prom->raid.disk[i].device == prom->raid.device) ) {
bdev = bdget(MKDEV(major,minor));
if (bdev && blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0, BDEV_RAW) == 0) {
raid[device].disk[i].bdev = bdev;
}
raid[device].disk[i].device = MKDEV(major,minor);
raid[device].disk[i].sectors = prom->raid.disk_secs;
raid[device].stride = (1<<prom->raid.raid0_shift);
raid[device].disks = prom->raid.total_disks;
raid[device].sectors = prom->raid.total_secs;
raid[device].geom.heads = prom->raid.heads+1;
raid[device].geom.sectors = prom->raid.sectors;
raid[device].geom.cylinders = prom->raid.cylinders+1;
devlist[devindex].device=device;
}
}
}
static void __init fill_cutoff(int device)
{
int i,j;
unsigned long smallest;
unsigned long bar;
int count;
bar = 0;
for (i=0;i<8;i++) {
smallest = ~0;
for (j=0;j<8;j++)
if ((raid[device].disk[j].sectors < smallest) && (raid[device].disk[j].sectors>bar))
smallest = raid[device].disk[j].sectors;
count = 0;
for (j=0;j<8;j++)
if (raid[device].disk[j].sectors >= smallest)
count++;
smallest = smallest * count;
bar = smallest;
raid[device].cutoff[i] = smallest;
raid[device].cutoff_disks[i] = count;
}
}
static __init int pdcraid_init_one(int device,int raidlevel)
{
int i, count;
for (i=0; i<14; i++)
probedisk(i, device, raidlevel);
if (raidlevel==0)
fill_cutoff(device);
/* Initialize the gendisk structure */
ataraid_register_disk(device,raid[device].sectors);
count=0;
for (i=0;i<8;i++) {
if (raid[device].disk[i].device!=0) {
printk(KERN_INFO "Drive %i is %li Mb (%i / %i) \n",
i,raid[device].disk[i].sectors/2048,MAJOR(raid[device].disk[i].device),MINOR(raid[device].disk[i].device));
count++;
}
}
if (count) {
printk(KERN_INFO "Raid%i array consists of %i drives. \n",raidlevel,count);
return 0;
} else {
return -ENODEV;
}
}
static __init int pdcraid_init(void)
{
int retval, device, count = 0;
do {
cookie = 0;
device=ataraid_get_device(&pdcraid0_ops);
if (device<0)
break;
retval = pdcraid_init_one(device,0);
if (retval) {
ataraid_release_device(device);
break;
} else {
count++;
}
} while (1);
do {
cookie = 0;
device=ataraid_get_device(&pdcraid1_ops);
if (device<0)
break;
retval = pdcraid_init_one(device,1);
if (retval) {
ataraid_release_device(device);
break;
} else {
count++;
}
} while (1);
if (count) {
printk(KERN_INFO "Promise Fasttrak(tm) Softwareraid driver for linux version 0.03beta\n");
return 0;
}
printk(KERN_DEBUG "Promise Fasttrak(tm) Softwareraid driver 0.03beta: No raid array found\n");
return -ENODEV;
}
static void __exit pdcraid_exit (void)
{
int i,device;
for (device = 0; device<16; device++) {
for (i=0;i<8;i++) {
struct block_device *bdev = raid[device].disk[i].bdev;
raid[device].disk[i].bdev = NULL;
if (bdev)
blkdev_put(bdev, BDEV_RAW);
}
if (raid[device].sectors)
ataraid_release_device(device);
}
}
static int pdcraid_open(struct inode * inode, struct file * filp)
{
MOD_INC_USE_COUNT;
return 0;
}
static int pdcraid_release(struct inode * inode, struct file * filp)
{
MOD_DEC_USE_COUNT;
return 0;
}
module_init(pdcraid_init);
module_exit(pdcraid_exit);
MODULE_LICENSE("GPL");
|