1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#ifndef __ALPHA_MMU_CONTEXT_H
#define __ALPHA_MMU_CONTEXT_H
/*
* get a new mmu context..
*
* Copyright (C) 1996, Linus Torvalds
*/
#include <linux/config.h>
#include <asm/system.h>
#include <asm/machvec.h>
/*
* The maximum ASN's the processor supports. On the EV4 this is 63
* but the PAL-code doesn't actually use this information. On the
* EV5 this is 127.
*
* On the EV4, the ASNs are more-or-less useless anyway, as they are
* only used as an icache tag, not for TB entries. On the EV5 ASN's
* also validate the TB entries, and thus make a lot more sense.
*
* The EV4 ASN's don't even match the architecture manual, ugh. And
* I quote: "If a processor implements address space numbers (ASNs),
* and the old PTE has the Address Space Match (ASM) bit clear (ASNs
* in use) and the Valid bit set, then entries can also effectively be
* made coherent by assigning a new, unused ASN to the currently
* running process and not reusing the previous ASN before calling the
* appropriate PALcode routine to invalidate the translation buffer
* (TB)".
*
* In short, the EV4 has a "kind of" ASN capability, but it doesn't actually
* work correctly and can thus not be used (explaining the lack of PAL-code
* support).
*/
#define EV4_MAX_ASN 63
#define EV5_MAX_ASN 127
#define EV6_MAX_ASN 255
#ifdef CONFIG_ALPHA_GENERIC
# define MAX_ASN (alpha_mv.max_asn)
#else
# ifdef CONFIG_ALPHA_EV4
# define MAX_ASN EV4_MAX_ASN
# elif defined(CONFIG_ALPHA_EV5)
# define MAX_ASN EV5_MAX_ASN
# else
# define MAX_ASN EV6_MAX_ASN
# endif
#endif
#ifdef __SMP__
#define WIDTH_THIS_PROCESSOR 5
/*
* last_asn[processor]:
* 63 0
* +-------------+----------------+--------------+
* | asn version | this processor | hardware asn |
* +-------------+----------------+--------------+
*/
extern unsigned long last_asn[];
#define asn_cache last_asn[p->processor]
#else
#define WIDTH_THIS_PROCESSOR 0
/*
* asn_cache:
* 63 0
* +------------------------------+--------------+
* | asn version | hardware asn |
* +------------------------------+--------------+
*/
extern unsigned long asn_cache;
#endif /* __SMP__ */
#define WIDTH_HARDWARE_ASN 7
#define ASN_FIRST_VERSION (1UL << (WIDTH_THIS_PROCESSOR + WIDTH_HARDWARE_ASN))
#define HARDWARE_ASN_MASK ((1UL << WIDTH_HARDWARE_ASN) - 1)
/*
* NOTE! The way this is set up, the high bits of the "asn_cache" (and
* the "mm->context") are the ASN _version_ code. A version of 0 is
* always considered invalid, so to invalidate another process you only
* need to do "p->mm->context = 0".
*
* If we need more ASN's than the processor has, we invalidate the old
* user TLB's (tbiap()) and start a new ASN version. That will automatically
* force a new asn for any other processes the next time they want to
* run.
*/
#ifndef __EXTERN_INLINE
#define __EXTERN_INLINE extern inline
#define __MMU_EXTERN_INLINE
#endif
extern void get_new_mmu_context(struct task_struct *p, struct mm_struct *mm);
__EXTERN_INLINE void ev4_get_mmu_context(struct task_struct *p)
{
/* As described, ASN's are broken. */
}
__EXTERN_INLINE void ev5_get_mmu_context(struct task_struct *p)
{
struct mm_struct * mm = p->mm;
if (mm) {
unsigned long asn = asn_cache;
/* Check if our ASN is of an older version and thus invalid */
if ((mm->context ^ asn) & ~HARDWARE_ASN_MASK)
get_new_mmu_context(p, mm);
}
}
#ifdef CONFIG_ALPHA_GENERIC
# define get_mmu_context (alpha_mv.mv_get_mmu_context)
#else
# ifdef CONFIG_ALPHA_EV4
# define get_mmu_context ev4_get_mmu_context
# else
# define get_mmu_context ev5_get_mmu_context
# endif
#endif
extern inline void init_new_context(struct mm_struct *mm)
{
mm->context = 0;
}
extern inline void destroy_context(struct mm_struct *mm)
{
/* Nothing to do. */
}
/*
* Force a context reload. This is needed when we change the page
* table pointer or when we update the ASN of the current process.
*/
#if defined(CONFIG_ALPHA_GENERIC)
#define MASK_CONTEXT(tss) \
((struct thread_struct *)((unsigned long)(tss) & alpha_mv.mmu_context_mask))
#elif defined(CONFIG_ALPHA_DP264)
#define MASK_CONTEXT(tss) \
((struct thread_struct *)((unsigned long)(tss) & 0xfffffffffful))
#else
#define MASK_CONTEXT(tss) (tss)
#endif
__EXTERN_INLINE struct thread_struct *
__reload_tss(struct thread_struct *tss)
{
register struct thread_struct *a0 __asm__("$16");
register struct thread_struct *v0 __asm__("$0");
a0 = MASK_CONTEXT(tss);
__asm__ __volatile__(
"call_pal %2 #__reload_tss"
: "=r"(v0), "=r"(a0)
: "i"(PAL_swpctx), "r"(a0)
: "$1", "$16", "$22", "$23", "$24", "$25");
return v0;
}
__EXTERN_INLINE void
reload_context(struct task_struct *task)
{
__reload_tss(&task->tss);
}
/*
* After we have set current->mm to a new value, this activates the
* context for the new mm so we see the new mappings.
*/
__EXTERN_INLINE void
activate_context(struct task_struct *task)
{
get_mmu_context(task);
reload_context(task);
}
#ifdef __MMU_EXTERN_INLINE
#undef __EXTERN_INLINE
#undef __MMU_EXTERN_INLINE
#endif
#endif /* __ALPHA_MMU_CONTEXT_H */
|