1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
/*
* linux/include/asm-arm/proc-armv/pgtable.h
*
* Copyright (C) 1995, 1996, 1997 Russell King
*
* 12-01-1997 RMK Altered flushing routines to use function pointers
* now possible to combine ARM6, ARM7 and StrongARM versions.
*/
#ifndef __ASM_PROC_PGTABLE_H
#define __ASM_PROC_PGTABLE_H
#include <asm/arch/mmu.h>
#include <asm/arch/processor.h> /* For TASK_SIZE */
#define LIBRARY_TEXT_START 0x0c000000
/*
* Cache flushing...
*/
#define flush_cache_all() \
processor.u.armv3v4._flush_cache_all()
#define flush_cache_mm(_mm) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_cache_all(); \
} while (0)
#define flush_cache_range(_mm,_start,_end) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_cache_area \
((_start), (_end), 1); \
} while (0)
#define flush_cache_page(_vma,_vmaddr) \
do { \
if ((_vma)->vm_mm == current->mm) \
processor.u.armv3v4._flush_cache_area \
((_vmaddr), (_vmaddr) + PAGE_SIZE, \
((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
} while (0)
#define flush_icache_range(_start,_end) \
processor.u.armv3v4._flush_icache_area((_start), (_end))
/*
* We don't have a MEMC chip...
*/
#define update_memc_all() do { } while (0)
#define update_memc_task(tsk) do { } while (0)
#define update_memc_mm(mm) do { } while (0)
#define update_memc_addr(mm,addr,pte) do { } while (0)
/*
* This flushes back any buffered write data. We have to clean and flush the entries
* in the cache for this page. Is it necessary to invalidate the I-cache?
*/
#define flush_page_to_ram(_page) \
processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
/*
* Make the page uncacheable (must flush page beforehand).
*/
#define uncache_page(_page) \
processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
/*
* TLB flushing:
*
* - flush_tlb() flushes the current mm struct TLBs
* - flush_tlb_all() flushes all processes TLBs
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(mm, start, end) flushes a range of pages
*
* GCC uses conditional instructions, and expects the assembler code to do so as well.
*
* We drain the write buffer in here to ensure that the page tables in ram
* are really up to date. It is more efficient to do this here...
*/
#define flush_tlb() flush_tlb_all()
#define flush_tlb_all() \
processor.u.armv3v4._flush_tlb_all()
#define flush_tlb_mm(_mm) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_tlb_all(); \
} while (0)
#define flush_tlb_range(_mm,_start,_end) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_tlb_area \
((_start), (_end), 1); \
} while (0)
#define flush_tlb_page(_vma,_vmaddr) \
do { \
if ((_vma)->vm_mm == current->mm) \
processor.u.armv3v4._flush_tlb_area \
((_vmaddr), (_vmaddr) + PAGE_SIZE, \
((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
} while (0)
/*
* Since the page tables are in cached memory, we need to flush the dirty
* data cached entries back before we flush the tlb... This is also useful
* to flush out the SWI instruction for signal handlers...
*/
#define __flush_entry_to_ram(entry) \
processor.u.armv3v4._flush_cache_entry((unsigned long)(entry))
#define __flush_pte_to_ram(entry) \
processor.u.armv3v4._flush_cache_pte((unsigned long)(entry))
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 20
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 20
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the sa110 is two-level, so
* we don't really have any PMD directory physically.
*/
#define PTRS_PER_PTE 256
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 4096
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END (PAGE_OFFSET + 0x10000000)
/* PMD types (actually level 1 descriptor) */
#define PMD_TYPE_MASK 0x0003
#define PMD_TYPE_FAULT 0x0000
#define PMD_TYPE_TABLE 0x0001
#define PMD_TYPE_SECT 0x0002
#define PMD_UPDATABLE 0x0010
#define PMD_SECT_CACHEABLE 0x0008
#define PMD_SECT_BUFFERABLE 0x0004
#define PMD_SECT_AP_WRITE 0x0400
#define PMD_SECT_AP_READ 0x0800
#define PMD_DOMAIN(x) ((x) << 5)
/* PTE types (actially level 2 descriptor) */
#define PTE_TYPE_MASK 0x0003
#define PTE_TYPE_FAULT 0x0000
#define PTE_TYPE_LARGE 0x0001
#define PTE_TYPE_SMALL 0x0002
#define PTE_AP_READ 0x0aa0
#define PTE_AP_WRITE 0x0550
#define PTE_CACHEABLE 0x0008
#define PTE_BUFFERABLE 0x0004
/* Domains */
#define DOMAIN_USER 0
#define DOMAIN_KERNEL 1
#define DOMAIN_TABLE 1
#define DOMAIN_IO 2
#define _PAGE_CHG_MASK (0xfffff00c | PTE_TYPE_MASK)
/*
* We define the bits in the page tables as follows:
* PTE_BUFFERABLE page is dirty
* PTE_AP_WRITE page is writable
* PTE_AP_READ page is a young (unsetting this causes faults for any access)
* PTE_CACHEABLE page is readable
*
* A page will not be made writable without the dirty bit set.
* It is not legal to have a writable non-dirty page though (it breaks).
*
* A readable page is marked as being cacheable.
* Youngness is indicated by hardware read. If the page is old,
* then we will fault and make the page young again.
*/
#define _PTE_YOUNG PTE_AP_READ
#define _PTE_DIRTY PTE_BUFFERABLE
#define _PTE_READ PTE_CACHEABLE
#define _PTE_WRITE PTE_AP_WRITE
#define PAGE_NONE __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG)
#define PAGE_SHARED __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ | _PTE_WRITE)
#define PAGE_COPY __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ)
#define PAGE_READONLY __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ)
#define PAGE_KERNEL __pgprot(PTE_TYPE_SMALL | _PTE_READ | _PTE_DIRTY | _PTE_WRITE)
#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_USER))
#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))
/*
* The arm can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#undef TEST_VERIFY_AREA
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long *empty_zero_page;
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)
/* number of bits that fit into a memory pointer */
#define BYTES_PER_PTR (sizeof(unsigned long))
#define BITS_PER_PTR (8*BYTES_PER_PTR)
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
tsk->tss.memmap = __virt_to_phys((unsigned long)pgdir); \
if ((tsk) == current) \
__asm__ __volatile__( \
"mcr%? p15, 0, %0, c2, c0, 0\n" \
: : "r" (tsk->tss.memmap)); \
} while (0)
extern __inline__ int pte_none(pte_t pte)
{
return !pte_val(pte);
}
#define pte_clear(ptep) set_pte(ptep, __pte(0))
extern __inline__ int pte_present(pte_t pte)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pte_val(pte) & PTE_TYPE_MASK) {
case PTE_TYPE_LARGE:
case PTE_TYPE_SMALL:
return 1;
default:
return 0;
}
#else
return ((pte_val(pte) + 1) & 2);
#endif
}
extern __inline__ int pmd_none(pmd_t pmd)
{
return !pmd_val(pmd);
}
#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))
extern __inline__ int pmd_bad(pmd_t pmd)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pmd_val(pmd) & PMD_TYPE_MASK) {
case PMD_TYPE_FAULT:
case PMD_TYPE_TABLE:
return 0;
default:
return 1;
}
#else
return pmd_val(pmd) & 2;
#endif
}
extern __inline__ int pmd_present(pmd_t pmd)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pmd_val(pmd) & PMD_TYPE_MASK) {
case PMD_TYPE_TABLE:
return 1;
default:
return 0;
}
#else
return ((pmd_val(pmd) + 1) & 2);
#endif
}
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define pte_read(pte) (1)
#define pte_exec(pte) (1)
extern __inline__ int pte_write(pte_t pte)
{
return pte_val(pte) & _PTE_WRITE;
}
extern __inline__ int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PTE_DIRTY;
}
extern __inline__ int pte_young(pte_t pte)
{
return pte_val(pte) & _PTE_YOUNG;
}
extern __inline__ pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PTE_WRITE;
return pte;
}
extern __inline__ pte_t pte_nocache(pte_t pte)
{
pte_val(pte) &= ~PTE_CACHEABLE;
return pte;
}
extern __inline__ pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PTE_DIRTY;
return pte;
}
extern __inline__ pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PTE_YOUNG;
return pte;
}
extern __inline__ pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PTE_WRITE;
return pte;
}
extern __inline__ pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PTE_DIRTY;
return pte;
}
extern __inline__ pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PTE_YOUNG;
return pte;
}
/*
* The following are unable to be implemented on this MMU
*/
#if 0
extern __inline__ pte_t pte_rdprotect(pte_t pte)
{
pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
return pte;
}
extern __inline__ pte_t pte_exprotect(pte_t pte)
{
pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
return pte;
}
extern __inline__ pte_t pte_mkread(pte_t pte)
{
pte_val(pte) |= PTE_CACHEABLE;
return pte;
}
extern __inline__ pte_t pte_mkexec(pte_t pte)
{
pte_val(pte) |= PTE_CACHEABLE;
return pte;
}
#endif
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
return pte;
}
/* This takes a physical page address that is used by the remapping functions */
extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = physpage + pgprot_val(pgprot);
return pte;
}
extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pte;
}
extern __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
{
*pteptr = pteval;
__flush_pte_to_ram(pteptr);
}
extern __inline__ unsigned long pte_page(pte_t pte)
{
return __phys_to_virt(pte_val(pte) & PAGE_MASK);
}
extern __inline__ pmd_t mk_user_pmd(pte_t *ptep)
{
pmd_t pmd;
pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_USER_TABLE;
return pmd;
}
extern __inline__ pmd_t mk_kernel_pmd(pte_t *ptep)
{
pmd_t pmd;
pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_KERNEL_TABLE;
return pmd;
}
#if 1
#define set_pmd(pmdp,pmd) processor.u.armv3v4._set_pmd(pmdp,pmd)
#else
extern __inline__ void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;
__flush_pte_to_ram(pmdp);
}
#endif
extern __inline__ unsigned long pmd_page(pmd_t pmd)
{
return __phys_to_virt(pmd_val(pmd) & 0xfffffc00);
}
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, address) ((pmd_t *)(dir))
/* Find an entry in the third-level page table.. */
extern __inline__ pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
extern unsigned long get_small_page(int priority);
extern void free_small_page(unsigned long page);
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
#ifndef __SMP__
extern struct pgtable_cache_struct {
unsigned long *pgd_cache;
unsigned long *pte_cache;
unsigned long pgtable_cache_sz;
} quicklists;
#define pgd_quicklist (quicklists.pgd_cache)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (quicklists.pte_cache)
#define pgtable_cache_size (quicklists.pgtable_cache_sz)
#else
#error Pgtable caches have to be per-CPU, so that no locking is needed.
#endif
extern pgd_t *get_pgd_slow(void);
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_pages((unsigned long) pgd, 2);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_small_page((unsigned long)pte);
}
/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __bad_pmd(pmd_t *pmd);
extern void __bad_pmd_kernel(pmd_t *pmd);
#define pte_free_kernel(pte) free_pte_fast(pte)
#define pte_free(pte) free_pte_fast(pte)
#define pgd_free(pgd) free_pgd_fast(pgd)
#define pgd_alloc() get_pgd_fast()
extern __inline__ pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_kernel_slow(pmd, address);
set_pmd(pmd, mk_kernel_pmd(page));
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pmd_kernel(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
set_pmd(pmd, mk_user_pmd(page));
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pmd(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern __inline__ void pmd_free(pmd_t *pmd)
{
}
extern __inline__ pmd_t *pmd_alloc(pgd_t *pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
extern __inline__ void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/*
* The sa110 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
extern __inline__ void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
}
#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 9)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
#endif /* __ASM_PROC_PAGE_H */
|