1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
(* Example taken from https://github.com/tlaplus/Examples/blob/master/specifications/echo/Echo.tla *)
-------------------------------- MODULE Echo --------------------------------
(***************************************************************************)
(* The Echo algorithm for constructing a spanning tree in an undirected *)
(* graph starting from a single initiator, as a PlusCal algorithm. *)
(***************************************************************************)
EXTENDS Naturals, FiniteSets, Relation, TLC
CONSTANTS Node, \* set of nodes
initiator, \* single initiator, will be the root of the tree
R \* neighborhood relation, represented as a Boolean function over nodes
ASSUME /\ initiator \in Node
/\ R \in [Node \X Node -> BOOLEAN]
\* No edge from a node to itself (self-loops).
/\ IsIrreflexive(R, Node)
\* Undirected graph (there exists an edge from b
\* to a if there exists an edge from a to b).
/\ IsSymmetric(R, Node)
\* There exists a spanning tree consisting of *all* nodes.
\* (no forest of spanning trees).
/\ IsConnected(R, Node)
NoNode == CHOOSE x : x \notin Node
neighbors(n) == { m \in Node : R[m,n] }
(**
--algorithm Echo {
variable inbox = [n \in Node |-> {}]; \* model communication between nodes
define { \* sending and receiving messages
\* network obtained from net when p sends message of kind knd to q
send(net, p, q, knd) == [net EXCEPT ![q] = @ \cup {[kind |-> knd, sndr |-> p]}]
\* network obtained from net when p receives a message
receive(net, p, msg) == [net EXCEPT ![p] = @ \ {msg}]
\* network obtained from net when p send message of kind knd to all nodes in dest
multicast(net, p, dest, knd) ==
[m \in Node |-> IF m \in dest THEN net[m] \cup {[kind |-> knd, sndr |-> p]}
ELSE net[m]]
}
process (node \in Node)
variables parent = NoNode,
children = {},
rcvd = 0,
nbrs = neighbors(self); {
n0: if (self = initiator) {
\* initiator sends first message to all its neighbors
inbox := multicast(inbox, self, nbrs, "m")
};
n1: while (rcvd < Cardinality(nbrs)) {
\* receive some message from a neighbor
with (msg \in inbox[self],
net = receive(inbox, self, msg)) {
rcvd := rcvd+1;
if (self # initiator /\ rcvd = 1) {
assert(msg.kind = "m"); \* the first received message is always of type "m"
\* note the sender as the node's parent and send an "m" message to all remaining neighbors
parent := msg.sndr;
inbox := multicast(net, self, nbrs \ {msg.sndr}, "m")
}
else {
\* subsequent messages are counted but don't give rise to another message
inbox := net
};
if (msg.kind = "c") { children := children \cup {msg.sndr} }
} \* end with
}; \* end while
n2: if (self # initiator) {
\* when non-initiator has received messages from all neighbors, acknowledge
\* child relationship to the parent
assert(parent \in nbrs);
inbox := send(inbox, self, parent, "c")
}
} \* end process
}
**)
\* BEGIN TRANSLATION
VARIABLES inbox, pc
(* define statement *)
send(net, p, q, knd) == [net EXCEPT ![q] = @ \cup {[kind |-> knd, sndr |-> p]}]
receive(net, p, msg) == [net EXCEPT ![p] = @ \ {msg}]
multicast(net, p, dest, knd) ==
[m \in Node |-> IF m \in dest THEN net[m] \cup {[kind |-> knd, sndr |-> p]}
ELSE net[m]]
VARIABLES parent, children, rcvd, nbrs
vars == << inbox, pc, parent, children, rcvd, nbrs >>
ProcSet == (Node)
Init == (* Global variables *)
/\ inbox = [n \in Node |-> {}]
(* Process node *)
/\ parent = [self \in Node |-> NoNode]
/\ children = [self \in Node |-> {}]
/\ rcvd = [self \in Node |-> 0]
/\ nbrs = [self \in Node |-> neighbors(self)]
/\ pc = [self \in ProcSet |-> "n0"]
n0(self) == /\ pc[self] = "n0"
/\ IF self = initiator
THEN /\ inbox' = multicast(inbox, self, nbrs[self], "m")
ELSE /\ TRUE
/\ inbox' = inbox
/\ pc' = [pc EXCEPT ![self] = "n1"]
/\ UNCHANGED << parent, children, rcvd, nbrs >>
n1(self) == /\ pc[self] = "n1"
/\ IF rcvd[self] < Cardinality(nbrs[self])
THEN /\ \E msg \in inbox[self]:
LET net == receive(inbox, self, msg) IN
/\ rcvd' = [rcvd EXCEPT ![self] = rcvd[self]+1]
/\ IF self # initiator /\ rcvd'[self] = 1
THEN /\ Assert((msg.kind = "m"),
"Failure of assertion at line 50, column 16.")
/\ parent' = [parent EXCEPT ![self] = msg.sndr]
/\ inbox' = multicast(net, self, nbrs[self] \ {msg.sndr}, "m")
ELSE /\ inbox' = net
/\ UNCHANGED parent
/\ IF msg.kind = "c"
THEN /\ children' = [children EXCEPT ![self] = children[self] \cup {msg.sndr}]
ELSE /\ TRUE
/\ UNCHANGED children
/\ pc' = [pc EXCEPT ![self] = "n1"]
ELSE /\ pc' = [pc EXCEPT ![self] = "n2"]
/\ UNCHANGED << inbox, parent, children, rcvd >>
/\ nbrs' = nbrs
n2(self) == /\ pc[self] = "n2"
/\ IF self # initiator
THEN /\ Assert((parent[self] \in nbrs[self]),
"Failure of assertion at line 65, column 10.")
/\ inbox' = send(inbox, self, parent[self], "c")
ELSE /\ TRUE
/\ inbox' = inbox
/\ pc' = [pc EXCEPT ![self] = "Done"]
/\ UNCHANGED << parent, children, rcvd, nbrs >>
node(self) == n0(self) \/ n1(self) \/ n2(self)
(* Allow infinite stuttering to prevent deadlock on termination. *)
Terminating == /\ \A self \in ProcSet: pc[self] = "Done"
/\ UNCHANGED vars
Next == (\E self \in Node: node(self))
\/ Terminating
Spec == Init /\ [][Next]_vars
Termination == <>(\A self \in ProcSet: pc[self] = "Done")
\* END TRANSLATION
(***************************************************************************)
(* Correctness properties. *)
(***************************************************************************)
TypeOK ==
/\ parent \in [Node -> (Node \cup {NoNode})]
/\ children \in [Node -> SUBSET Node]
/\ rcvd \in [Node -> Nat]
/\ nbrs \in [Node -> SUBSET Node]
/\ \A n \in Node : nbrs[n] = neighbors(n) /\ rcvd[n] <= Cardinality(nbrs[n])
/\ inbox \in [Node -> SUBSET [kind : {"m","c"}, sndr : Node]]
/\ \A n \in Node : \A msg \in inbox[n] : msg.sndr \in nbrs[n]
(* The initiator never has a parent *)
InitiatorNoParent == parent[initiator] = NoNode
(* If a node has a parent, it is a neighbor node *)
ParentIsNeighbor == \A n \in Node : parent[n] \in neighbors(n) \cup {NoNode}
(* A node n is a child of node m only if m is the parent of n.
At the end of the computation, this is "if and only if". *)
ParentChild == \A m,n \in Node :
/\ n \in children[m] => m = parent[n]
/\ m = parent[n] /\ pc[m] = "Done" => n \in children[m]
(* Compute the ancestor relation *)
IsParent == [m,n \in Node |-> n = parent[m]]
IsAncestor == TransitiveClosure(IsParent, Node)
(* At the end of the computation, the initiator is an ancestor of every other node
and the ancestor relation is acyclic.
Beware: evaluating this property over any but tiny graphs is costly.
*)
AncestorProperties ==
(\A n \in Node : pc[n] = "Done")
=> LET anc == IsAncestor
IN /\ \A n \in Node \ {initiator} : anc[n, initiator]
/\ IsIrreflexive(anc, Node)
=============================================================================
\* Modification History
\* Last modified Wed Jun 17 09:23:17 PDT 2020 by markus
\* Last modified Sun Jun 14 17:11:39 CEST 2020 by merz
\* Created Tue Apr 26 09:42:23 CEST 2016 by merz
|