1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
|
/*KGB Archiver console version
2005-2006 Tomasz Pawlak, tomekp17@gmail.com, mod by Slawek (poczta-sn@gazeta.pl)
based on PAQ6 by Matt Mahoney
PAQ6v2 - File archiver and compressor.
(C) 2004, Matt Mahoney, mmahoney@cs.fit.edu
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation at
http://www.gnu.org/licenses/gpl.txt or (at your option) any later version.
This program is distributed without any warranty.
USAGE
To compress: PAQ6 -3 archive file file... (1 or more file names), or
or (MSDOS): dir/b | PAQ6 -3 archive (read file names from input)
or (UNIX): ls | PAQ6 -3 archive
To decompress: PAQ6 archive (no option)
To list contents: more < archive
Compression: The files listed are compressed and stored in the archive,
which is created. The archive must not already exist. File names may
specify a path, which is stored. If there are no file names on the command
line, then PAQ6 prompts for them, reading until the first blank line or
end of file.
The -3 is optional, and is used to trade off compression vs. speed
and memory. Valid options are -0 to -9. Higher numbers compress better
but run slower and use more memory. -3 is the default, and gives a
reasonable tradeoff. Recommended options are:
-0 to -2 for fast (2X over -3) but poor compression, uses 2-6 MB memory
-3 for reasonably fast and good compression, uses 18 MB (default)
-4 better compression but 3.5X slower, uses 64 MB
-5 slightly better compression, 6X slower than -3, uses 154 MB
-6 about like -5, uses 202 MB memory
-7 to -9 use 404 MB, 808 MB, 1616 MB, about the same speed as -5
Decompression: No file names are specified. The archive must exist.
If a path is stored, the file is extracted to the appropriate directory,
which must exist. PAQ6 does not create directories. If the file to be
extracted already exists, it is not replaced; rather it is compared with
the archived file, and the offset of the first difference is reported.
The decompressor requires as much memory as was used to compress.
There is no option.
It is not possible to add, remove, or update files in an existing archive.
If you want to do this, extract the files, delete the archive, and
create a new archive with just the files you want.
TO COMPILE
gxx -O PAQ6.cpp DJGPP 2.95.2
bcc32 -O2 PAQ6.cpp Borland 5.5.1
sc -o PAQ6.cpp Digital Mars 8.35n
g++ -O produces the fastest executable among free compilers, followed
by Borland and Mars. However Intel 8 will produce the fastest and smallest
Windows executable overall, followed by Microsoft VC++ .net 7.1 /O2 /G7
PAQ6 DESCRIPTION
1. OVERVIEW
A PAQ6 archive has a header, listing the names and lengths of the files
it contains in human-readable format, followed by the compressed data.
The first line of the header is "PAQ6 -m" where -m is the memory option.
The data is compressed as if all the files were concatenated into one
long string.
PAQ6 uses predictive arithmetic coding. The string, y, is compressed
by representing it as a base 256 number, x, such that:
P(s < y) <= x < P(s <= y) (1)
where s is chosen randomly from the probability distribution P, and x
has the minimum number of digits (bytes) needed to satisfy (1).
Such coding is within 1 byte of the Shannon limit, log 1/P(y), so
compression depends almost entirely on the goodness of the model, P,
i.e. how well it estimates the probability distribution of strings that
might be input to the compressor.
Coding and decoding are illustrated in Fig. 1. An encoder, given P and
y, outputs x. A decoder, given P and x, outputs y. Note that given
P in equation (1), that you can find either x from y or y from x.
Note also that both computations can be done incrementally. As the
leading characters of y are known, the range of possible x narrows, so
the leading digits can be output as they become known. For decompression,
as the digits of x are read, the set of possible y satisfying (1)
is restricted to an increasingly narrow lexicographical range containing y.
All of the strings in this range will share a growing prefix. Each time
the prefix grows, we can output a character.
y
+--------------------------+
Uncomp- | V
ressed | +---------+ p +----------+ x Compressed
Data --+--->| Model |----->| Encoder |----+ Data
+---------+ +----------+ |
|
+----------+
V
y +---------+ p +----------+ y Uncompressed
+--->| Model |----->| Decoder |----+---> Data
| +---------+ +----------+ |
| |
+-------------------------------------+
Fig. 1. Predictive arithmetic compression and decompression
Note that the model, which estimates P, is identical for compression
and decompression. Modeling can be expressed incrementally by the
chain rule:
P(y) = P(y_1) P(y_2|y_1) P(y_3|y_1 y_2) ... P(y_n|y_1 y_2 ... y_n-1) (2)
where y_i means the i'th character of the string y. The output of the
model is a distribution over the next character, y_i, given the context
of characters seen so far, y_1 ... y_i-1.
To simplify coding, PAQ6 uses a binary string alphabet. Thus, the
output of a model is an estimate of P(y_i = 1 | context) (henceforth p),
where y_i is the i'th bit, and the context is the previous i - 1 bits of
uncompressed data.
2. PAQ6 MODEL
The PAQ6 model consists of a weighted mix of independent submodels which
make predictions based on different contexts. The submodels are weighted
adaptively to favor those making the best predictions. The output of
two independent mixers (which use sets of weights selected by different
contexts) are averaged. This estimate is then adjusted by secondary
symbol estimation (SSE), which maps the probability to a new probability
based on previous experience and the current context. This final
estimate is then fed to the encoder as illustrated in Fig. 2.
Uncompressed input
-----+--------------------+-------------+-------------+
| | | |
V V | |
+---------+ n0, n1 +----------+ | |
| Model 1 |--------->| Mixer 1 |\ p | |
+---------+ \ / | | \ V V
\ / +----------+ \ +-----+ +------------+
+---------+ \ / \| | p | | Comp-
| Model 2 | \/ + | SSE |--->| Arithmetic |--> ressed
+---------+ /\ | | | Encoder | output
... / \ /| | | |
/ \ +----------+ / +-----+ +------------+
+---------+ / \ | Mixer 2 | /
| Model N |--------->| |/ p
+---------+ +----------+
Fig. 2. PAQ6 Model details for compression. The model is identical for
decompression, but the encoder is replaced with a decoder.
In Sections 2-6, the description applies to the default memory option
(-5, or MEM = 5). For smaller values of MEM, some components are
omitted and the number of contexts is less.
3. MIXER
The mixers compute a probability by a weighted summation of the N
models. Each model outputs two numbers, n0 and n1 represeting the
relative probability of a 0 or 1, respectively. These are
combined using weighted summations to estimate the probability p
that the next bit will be a 1:
SUM_i=1..N w_i n1_i (3)
p = -------------------, n_i = n0_i + n1_i
SUM_i=1..N w_i n_i
The weights w_i are adjusted after each bit of uncompressed data becomes
known in order to reduce the cost (code length) of that bit. The cost
of a 1 bit is -log(p), and the cost of a 0 is -log(1-p). We find the
gradient of the weight space by taking the partial derivatives of the
cost with respect to w_i, then adjusting w_i in the direction
of the gradient to reduce the cost. This adjustment is:
w_i := w_i + e[ny_i/(SUM_j (w_j+wo) ny_j) - n_i/(SUM_j (w_j+wo) n_j)]
where e and wo are small constants, and ny_i means n0_i if the actual
bit is a 0, or n1_i if the bit is a 1. The weight offset wo prevents
the gradient from going to infinity as the weights go to 0. e is set
to around .004, trading off between faster adaptation (larger e)
and less noise for better compression of stationary data (smaller e).
There are two mixers, whose outputs are averaged together before being
input to the SSE stage. Each mixer maintains a set of weights which
is selected by a context. Mixer 1 maintains 16 weight vectors, selected
by the 3 high order bits of the previous byte and on whether the data
is text or binary. Mixer 2 maintains 16 weight vectors, selected by the
2 high order bits of each of the previous 2 bytes.
To distinguish text from binary data, we use the heuristic that space
characters are more common in text than NUL bytes, while NULs are more
common in binary data. We compare the position of the 4th from last
space with the position of the 4th from last 0 byte.
4. CONTEXT MODELS
Individual submodels output a prediction in the form of two numbers,
n0 and n1, representing relative probabilities of 0 and 1. Generally
this is done by storing a pair of counters (c0,c1) in a hash table
indexed by context. When a 0 or 1 is encountered in a context, the
appropriate count is increased by 1. Also, in order to favor newer
data over old, the opposite count is decreased by the following
heuristic:
If the count > 25 then replace with sqrt(count) + 6 (rounding down)
Else if the count > 1 then replace with count / 2 (rounding down)
The outputs are derived from the counts in a way that favors highly
predictive contexts, i.e. those where one count is large and the
other is small. For the case of c1 >= c0 the following heuristic
is used.
If c0 = 0 then n0 = 0, n1 = 4 c0
Else n0 = 1, n1 = c1 / c0
For the case of c1 < c0 we use the same heuristic swapping 0 and 1.
In the following example, we encounter a long string of zeros followed
by a string of ones and show the model output. Note how n0 and n1 predict
the relative outcome of 0 and 1 respectively, favoring the most recent
data, with weight n = n0 + n1
Input c0 c1 n0 n1
----- -- -- -- --
0000000000 10 0 40 0
00000000001 5 1 5 1
000000000011 2 2 1 1
0000000000111 1 3 1 3
00000000001111 1 4 1 4
Table 1. Example of counter state (c0,c1) and outputs (n0,n1)
In order to represent (c0,c1) as an 8-bit state, counts are restricted
to the values 0-40, 44, 48, 56, 64, 96, 128, 160, 192, 224, or 255.
Large counts are incremented probabilistically. For example, if
c0 = 40 and a 0 is encountered, then c0 is set to 44 with
probability 1/4. Decreases in counter values are deterministic,
and are rounded down to the nearest representable state.
Counters are stored in a hash table indexed by contexts starting
on byte boundaries and ending on nibble (4-bit) boundaries. Each
hash element contains 15 counter states, representing the 15 possible
values for the 0-3 remaining bits of the context after the last nibble
boundary. Hash collisions are detected by storing an 8-bit checksum of
the context.
Each bucket contains 4 elements in a move-to-front queue. When a
new element is to be inserted, the priority of the two least recently
accessed elements are compared by using n (n0+n1) of the initial
counter as the priority, and the lower priority element is discarded.
Hash buckets are aligned on 64 byte addresses to minimize cache misses.
5. RUN LENGTH MODELS
A second type of model is used to efficiently represent runs of
up to 255 identical bytes within a context. For example, given the
sequence "abc...abc...abc..." then a run length model would map
"ab" -> ("c", 3) using a hash table indexed by "ab". If a new
value is seen, e.g. "abd", then the state is updated to the new
character and a count of 1, i.e. "ab" -> ("d", 1).
A run length context is accessed 8 times, once for each bit. If the
bits seen so far are consistent with the modeled character, then the output
of a run length model is (n0,n1) = (0,n) if the next bit is a 1,
or (n,0) if the next bit is a 0, where n is the count (1 to 255).
If the bits seen so far are not consistent with the predicted byte,
then the output is (0,0). These counts are added to the counter state
counts to produce the model output.
Run lengths are stored in a hash table without collision detection,
so an element occupies 2 bytes. Generally, most models store one run
length for every 8 counter pairs, so 20% of the memory is allocated to
them. Run lengths are used only for memory option (-MEM) of 5 or higher.
6. SUBMODEL DETAILS
Submodels differ mainly in their contexts. These are as follows:
a. DefaultModel. (n0,n1) = (1,1) regardless of context.
b. CharModel (N-gram model). A context consists of the last 0 to N whole
bytes, plus the 0 to 7 bits of the partially read current byte.
The maximum N depends on the -MEM option as shown in the table below.
The order 0 and 1 contexts use a counter state lookup table rather
than a hash table.
Order Counters Run lengths
----- -------- -----------
0 2^8
1 2^16
2 2^(MEM+15) 2^(MEM+12), MEM >= 5
3 2^(MEM+17) 2^(MEM+14), MEM >= 5
4 2^(MEM+18) 2^(MEM+15), MEM >= 5
5 2^(MEM+18), MEM >= 1 2^(MEM+15), MEM >= 5
6 2^(MEM+18), MEM >= 3 2^(MEM+15), MEM >= 5
7 2^(MEM+18), MEM >= 3 2^(MEM+15), MEM >= 5
8 2^20, MEM = 5 2^17, MEM = 5
2^(MEM+14), MEM >= 6 2^(MEM+14), MEM >= 6
9 2^20, MEM = 5 2^17, MEM = 5
2^(MEM+14), MEM >= 6 2^(MEM+14), MEM >= 6
Table 2. Number of modeled contexts of length 0-9
c. MatchModel (long context). A context is the last n whole bytes
(plus extra bits) where n >=8. Up to 4 matching contexts are found by
indexing into a rotating input buffer whose size depends on MEM. The
index is a hash table of 32-bit pointers with 1/4 as many elements as
the buffer (and therefore occupying an equal amount of memory). The
table is indexed by a hashes of 8 byte contexts. No collision detection
is used. In order to detect very long matches at a long distance
(for example, versions of a file compressed together), 1/16 of the
pointers (chosen randomly) are indexed by a hash of a 32 byte context.
For each match found, the output is (n0,n1) = (w,0) or (0,w) (depending on
the next bit) with a weight of w = length^2 / 4 (maximum 511), depending
on the length of the context in bytes. The four outputs are added together.
d. RecordModel. This models data with fixed length records, such as
tables. The model attempts to find the record length by searching for
characters that repeat in the pattern x..x..x..x where the interval
between 4 successive occurrences is identical and at least 2. Because
of uncertainty in this method, the two most recent values (which must
be different) are used. The following 5 contexts are modeled;
1. The two bytes above the current bit for each repeat length.
2. The byte above and the previous byte (to the left) for each repeat
length.
3. The byte above and the current position modulo the repeat length,
for the longer of the two lengths only.
e. SparseModel. This models contexts with gaps. It considers the
following contexts, where x denotes the bytes considered and ? denotes
the bit being predicted (plus preceding bits, which are included in
the context).
x.x? (first and third byte back)
x..x?
x...x?
x....x?
xx.?
x.x.?
xx..?
c ... c?, gap length
c ... xc?, gap length
Table 3. Sparse model contexts
The last two examples model variable gap lengths between the last byte
and its previous occurrence. The length of the gap (up to 255) is part
of the context.
e. AnalogModel. This is intended to model 16-bit audio (mono or stereo),
24-bit color images, 8-bit data (such as grayscale images). Contexts drop
the low order bits, and include the position within the file modulo
2, 3, or 4. There are 8 models, combined into 4 by addition before
mixing. An x represents those bits which are part of the context.
16 bit audio:
xxxxxx.. ........ xxxxxx.. ........ ? (position mod 2)
xxxx.... ........ xxxxxx.. ........ ? (position mod 2)
xxxxxx.. ........ ........ ........ xxxxxx.. ........ xxxxxx.. ........ ?
(position mod 4 for stereo audio)
24 bit color:
xxxx.... ........ ........ xxxxxxxx ........ ........ ? (position mod 3)
xxxxxx.. xxxx.... xxxx.... ? (position mod 3)
8 bit data:
xxx..... xxxxx... xxxxxxx. ?
CCITT images (1 bit per pixel, 216 bytes wide, e.g. calgary/pic)
xxxxxxxx (skip 215 bytes...) xxxxxxxx (skip 215 bytes...) ?
Table 4. Analog models.
f. WordModel. This is intended to model text files. There are
3 contexts:
1. The current word
2. The previous and current words
3. The second to last and current words (skipping a word)
A word is defined in two different ways, resulting in a total of 6
different contexts:
1. Any sequence of characters with ASCII code > 32 (not white space).
Upper case characters are converted to lower case.
2. Any sequence of A-Z and a-z (case sensitive).
g. ExeModel. This models 32-bit Intel .exe and .dll files by changing
relative 32-bit CALL addresses to absolute. These instructions have the
form (in hex) "E8 xx yy zz 00" or "E8 xx yy zz FF" where the 32-bit
operand is stored least significant byte first. These are converted
to absolute addresses by adding the position of the E8 byte, and then
stored in a 256 element table indexed by the low order byte (xx) along
with an 8-bit count. If another E8 xx ... 00/FF with the same value of
xx is encountered, then the old value is replaced and the count set back
to 1.
During modeling, when "E8 xx" is encountered, the bytes yy, zz, and 00/FF
are predicted by adjusting xx to absolute address, then looking up
the address in the table indexed by xx. If the context matches the table
entry up to the current bit, then the next bit from the table is
predicted with weight n for yy, 4n for zz, and 16n for 00/FF, where n
is the count.
7. SSE
The purpose of the SSE stage is to further adjust the probability
output from the mixers to agree with actual experience. Ideally this
should not be necessary, but in reality this can improve compression.
For example, when "compressing" random data, the output probability
should be 0.5 regardless of what the models say. SSE will learn this
by mapping all input probabilities to 0.5.
| Output __
| p /
| /
| __/
| /
| /
| |
| /
|/ Input p
+-------------
Fig. 3. Example of an SSE mapping.
SSE maps the probability p back to p using a piecewise linear function
with 32 segments. Each vertex is represented by a pair of 8-bit counters
(n0, n1) except that now the counters use a stationary model. When the
input is p and a 0 or 1 is observed, then the corresponding count (n0
or n1) of the two vertices on either side of p are incremented. When
a count exceeds the maximum of 255, both counts are halved. The output
probability is a linear interpolation of n1/n between the vertices on
either side.
The vertices are scaled to be longer in the middle of the graph and short
near the ends. The intial counts are set so that p maps to itself.
SSE is context sensitive. There are 2048 separately maintained SSE
functions, selected by the 0-7 bits of the current (partial) byte and
the 2 high order bits of the previous byte, and on whether the data
is text or binary, using the same heuristic as for selecting the mixer
context.
The final output to the encoder is a weighted average of the SSE
input and output, with the output receiving 3/4 of the weight:
p := (3 SSE(p) + p) / 4. (4)
8. MEMORY USAGE
The -m option (MEM = 0 through 9) controls model and memory usage. Smaller
numbers compress faster and use less memory, while higher numbers compress
better.
For MEM < 5, only one mixer is used. For MEM < 4, bit counts are stored
in nonstationary counters, but no run length is stored (decreasing
memory by 20%). For MEM < 1, SSE is not used. For MEM < 5, the record,
sparse, and analog models are not used. For MEM < 4, the word model is
not used. The order of the char model ranges from 4 to 9 depending on
MEM for MEM as shown in Table 6.
Run Memory used by........................ Total
MEM Mixers Len Order Char Match Record Sparse Analog Word SSE Memory (MB)
--- ------ --- ----- ---- ----- ------ ------ ------ ---- --- -----------
0 1 no 4 .5 1 1.5
1 1 no 5 1 2 .12 3
2 1 no 5 2 4 .12 6
3 1 no 7 10 8 .12 18
4 1 no 7 20 16 6 6 1 15 .12 64
5 2 yes 9 66 32 13 11 2 30 .12 154
6 2 yes 9 112 32 13 11 4 30 .12 202
7 2 yes 9 224 64 25 22 9 60 .12 404
8 2 yes 9 448 128 50 45 18 120 .12 808
9 2 yes 9 992 256 100 90 36 240 .12 1616
Table 5. Memory usage depending on MEM (-0 to -9 option).
9. EXPERIMENTAL RESULTS
Results on the Calgary corpos are shown below for some top data compressors
as of Dec. 30, 2003. Options are set for maximum compression. When
possible, the files are all compressed into a single archive. Run times
are on a 705 MHz Duron with 256 MB memory, and include 3 seconds to run
WRT when applicable. PAQ6 was compiled with DJGPP (g++) 2.95.2 -O.
Original size Options 3,141,622 Time Author
------------- ------- --------- ---- ------
gzip 1.2.4 -9 1,017,624 2 Jean Loup Gailly
epm r9 c 668,115 49 Serge Osnach
rkc a -M80m -td+ 661,102 91 Malcolm Taylor
slim 20 a 659,213 159 Serge Voskoboynikov
compressia 1.0 beta 650,398 66 Yaakov Gringeler
durilca v.03a (as in README) 647,028 30 Dmitry Shkarin
PAQ5 661,811 361 Matt Mahoney
WRT11 + PAQ5 638,635 258 Przemyslaw Skibinski +
PAQ6 -0 858,954 52
-1 750,031 66
-2 725,798 76
-3 709,806 97
-4 655,694 354
-5 648,951 625
-6 648,892 636
WRT11 + PAQ6 -6 626,395 446
WRT20 + PAQ6 -6 617,734 439
Table 6. Compressed size of the Calgary corpus.
WRT11 is a word reducing transform written by Przemyslaw Skibinski. It
uses an external English dictionary to replace words with 1-3 byte
symbols to improve compression. rkc, compressia, and durilca use a
similar approach. WRT20 is a newer version of WRT11.
10. ACKNOWLEDGMENTS
Thanks to Serge Osnach for introducing me to SSE (in PAQ1SSE/PAQ2) and
the sparse models (PAQ3N). Also, credit to Eugene Shelwein,
Dmitry Shkarin for suggestions on using multiple character SSE contexts.
Credit to Eugene, Serge, and Jason Schmidt for developing faster and
smaller executables of previous versions. Credit to Werner Bergmans
and Berto Destasio for testing and evaluating them, including modifications
that improve compression at the cost of more memory. Credit to
Alexander Ratushnyak who found a bug in PAQ4 decompression, and also
in PAQ6 decompression for very small files (both fixed).
Thanks to Berto for writing PAQ5-EMILCONT-DEUTERIUM from which this
program is derived (which he derived from PAQ5). His improvements to
PAQ5 include a new Counter state table and additional contexts for
CharModel and SparseModel. I refined the state table by adding
more representable states and modified the return counts to give greater
weight when there is a large difference between the two counts.
I expect there will be better versions in the future. If you make any
changes, please change the name of the program (e.g. PAQ7), including
the string in the archive header by redefining PROGNAME below.
This will prevent any confusion about versions or archive compatibility.
Also, give yourself credit in the help message.
*/
#define PROGNAME "KGB_arch" // Please change this if you change the program
#define hash ___hash // To avoid Digital MARS name collision
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <ctime>
#include <cassert>
#include <stdint.h>
#include <new>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#undef hash
using namespace std;
typedef int int32_t;
const int PSCALE=4096; // Integer scale for representing probabilities
int MEM=3; // Use about 6 MB * 2^MEM bytes of memory
template <class T> inline int size(const T& t) {return t.size();}
// 8-32 bit unsigned types
typedef uint8_t U8;
typedef uint16_t U16;
typedef uint32_t U32;
// Fail if out of memory
void handler() {
printf("Out of memory\n");
exit(1);
}
// A ProgramChecker verifies some environmental assumptions and sets the
// out of memory handler. It also gets the program starting time.
// The global object programChecker should be initialized before any
// other global objects.
class ProgramChecker {
clock_t start;
public:
ProgramChecker() {
start=clock();
set_new_handler(handler);
// Test the compiler for common but not guaranteed assumptions
assert(sizeof(U8)==1);
assert(sizeof(U16)==2);
assert(sizeof(U32)==4);
assert(sizeof(int)==4);
}
clock_t start_time() const {return start;} // When the program started
} programChecker;
//////////////////////////// rnd ////////////////////////////
// 32-bit random number generator based on r(i) = r(i-24) ^ r(i-55)
class Random {
U32 table[55]; // Last 55 random values
int i; // Index of current random value in table
public:
Random();
U32 operator()() { // Return 32-bit random number
if (++i==55) i=0;
if (i>=24) return table[i]^=table[i-24];
else return table[i]^=table[i+31];
}
} rnd;
Random::Random(): i(0) { // Seed the table
table[0]=123456789;
table[1]=987654321;
for (int j=2; j<55; ++j)
table[j]=table[j-1]*11+table[j-2]*19/16;
}
//////////////////////////// hash ////////////////////////////
// Hash functoid, returns 32 bit hash of 1-4 chars
class Hash {
U32 table[8][256]; // Random number table
public:
Hash() {
for (int i=7; i>=0; --i)
for (int j=0; j<256; ++j)
table[i][j]=rnd();
assert(table[0][255]==3610026313LU);
}
U32 operator()(U8 i0) const {
return table[0][i0];
}
U32 operator()(U8 i0, U8 i1) const {
return table[0][i0]+table[1][i1];
}
U32 operator()(U8 i0, U8 i1, U8 i2) const {
return table[0][i0]+table[1][i1]+table[2][i2];
}
U32 operator()(U8 i0, U8 i1, U8 i2, U8 i3) const {
return table[0][i0]+table[1][i1]+table[2][i2]+table[3][i3];
}
} hash;
//////////////////////////// Counter ////////////////////////////
/* A Counter represents a pair (n0, n1) of counts of 0 and 1 bits
in a context.
get0() -- returns p(0) with weight n = get0()+get1()
get1() -- returns p(1) with weight n
add(y) -- increments n_y, where y is 0 or 1 and decreases n_1-y
priority() -- Returns a priority (n) for hash replacement such that
higher numbers should be favored.
*/
class Counter {
U8 state;
struct E { // State table entry
U16 n0, n1; // get0(), get1()
U8 s00, s01; // Next state on input 0 without/with probabilistic incr.
U8 s10, s11; // Next state on input 1
U32 p0, p1; // Probability of increment x 2^32 on inputs 0, 1
};
static E table[]; // State table
public:
Counter(): state(0) {}
int get0() const {return table[state].n0;}
int get1() const {return table[state].n1;}
int priority() const {return get0()+get1();}
void add(int y) {
if (y) {
if (state<208 || rnd()<table[state].p1)
state=table[state].s11;
else
state=table[state].s10;
}
else {
if (state<208 || rnd()<table[state].p0)
state=table[state].s01;
else
state=table[state].s00;
}
}
};
// State table generated by stgen6.cpp
Counter::E Counter::table[] = {
// get0 get1 s00 s01 s10 s11 p(s01) p(s11) state n0,n1
// ---- ---- --- --- --- --- --------- ---------- ----- -- --
{ 0, 0, 0, 2, 0, 1,4294967295u,4294967295u}, // 0 (0,0)
{ 0, 4, 1, 4, 1, 3,4294967295u,4294967295u}, // 1 (0,1)
{ 4, 0, 2, 5, 2, 4,4294967295u,4294967295u}, // 2 (1,0)
{ 0, 8, 1, 4, 3, 6,4294967295u,4294967295u}, // 3 (0,2)
{ 1, 1, 4, 8, 4, 7,4294967295u,4294967295u}, // 4 (1,1)
{ 8, 0, 5, 9, 2, 4,4294967295u,4294967295u}, // 5 (2,0)
{ 0, 12, 1, 4, 6, 10,4294967295u,4294967295u}, // 6 (0,3)
{ 1, 2, 4, 8, 7, 11,4294967295u,4294967295u}, // 7 (1,2)
{ 2, 1, 8, 13, 4, 7,4294967295u,4294967295u}, // 8 (2,1)
{ 12, 0, 9, 14, 2, 4,4294967295u,4294967295u}, // 9 (3,0)
{ 0, 16, 3, 7, 10, 15,4294967295u,4294967295u}, // 10 (0,4)
{ 1, 3, 4, 8, 11, 16,4294967295u,4294967295u}, // 11 (1,3)
{ 1, 1, 8, 13, 7, 11,4294967295u,4294967295u}, // 12 (2,2)
{ 3, 1, 13, 19, 4, 7,4294967295u,4294967295u}, // 13 (3,1)
{ 16, 0, 14, 20, 5, 8,4294967295u,4294967295u}, // 14 (4,0)
{ 0, 20, 3, 7, 15, 21,4294967295u,4294967295u}, // 15 (0,5)
{ 1, 4, 7, 12, 16, 22,4294967295u,4294967295u}, // 16 (1,4)
{ 1, 1, 8, 13, 11, 16,4294967295u,4294967295u}, // 17 (2,3)
{ 1, 1, 13, 19, 7, 11,4294967295u,4294967295u}, // 18 (3,2)
{ 4, 1, 19, 26, 8, 12,4294967295u,4294967295u}, // 19 (4,1)
{ 20, 0, 20, 27, 5, 8,4294967295u,4294967295u}, // 20 (5,0)
{ 0, 24, 6, 11, 21, 28,4294967295u,4294967295u}, // 21 (0,6)
{ 1, 5, 7, 12, 22, 29,4294967295u,4294967295u}, // 22 (1,5)
{ 1, 2, 12, 18, 16, 22,4294967295u,4294967295u}, // 23 (2,4)
{ 1, 1, 13, 19, 11, 16,4294967295u,4294967295u}, // 24 (3,3)
{ 2, 1, 19, 26, 12, 17,4294967295u,4294967295u}, // 25 (4,2)
{ 5, 1, 26, 34, 8, 12,4294967295u,4294967295u}, // 26 (5,1)
{ 24, 0, 27, 35, 9, 13,4294967295u,4294967295u}, // 27 (6,0)
{ 0, 28, 6, 11, 28, 36,4294967295u,4294967295u}, // 28 (0,7)
{ 1, 6, 11, 17, 29, 37,4294967295u,4294967295u}, // 29 (1,6)
{ 1, 2, 12, 18, 22, 29,4294967295u,4294967295u}, // 30 (2,5)
{ 1, 1, 18, 25, 16, 22,4294967295u,4294967295u}, // 31 (3,4)
{ 1, 1, 19, 26, 17, 23,4294967295u,4294967295u}, // 32 (4,3)
{ 2, 1, 26, 34, 12, 17,4294967295u,4294967295u}, // 33 (5,2)
{ 6, 1, 34, 43, 13, 18,4294967295u,4294967295u}, // 34 (6,1)
{ 28, 0, 35, 44, 9, 13,4294967295u,4294967295u}, // 35 (7,0)
{ 0, 32, 10, 16, 36, 45,4294967295u,4294967295u}, // 36 (0,8)
{ 1, 7, 11, 17, 37, 46,4294967295u,4294967295u}, // 37 (1,7)
{ 1, 3, 17, 24, 29, 37,4294967295u,4294967295u}, // 38 (2,6)
{ 1, 1, 18, 25, 22, 29,4294967295u,4294967295u}, // 39 (3,5)
{ 1, 1, 25, 33, 23, 30,4294967295u,4294967295u}, // 40 (4,4)
{ 1, 1, 26, 34, 17, 23,4294967295u,4294967295u}, // 41 (5,3)
{ 3, 1, 34, 43, 18, 24,4294967295u,4294967295u}, // 42 (6,2)
{ 7, 1, 43, 53, 13, 18,4294967295u,4294967295u}, // 43 (7,1)
{ 32, 0, 44, 54, 14, 19,4294967295u,4294967295u}, // 44 (8,0)
{ 0, 36, 10, 16, 45, 55,4294967295u,4294967295u}, // 45 (0,9)
{ 1, 8, 16, 23, 46, 56,4294967295u,4294967295u}, // 46 (1,8)
{ 1, 3, 17, 24, 37, 46,4294967295u,4294967295u}, // 47 (2,7)
{ 1, 2, 24, 32, 29, 37,4294967295u,4294967295u}, // 48 (3,6)
{ 1, 1, 25, 33, 30, 38,4294967295u,4294967295u}, // 49 (4,5)
{ 1, 1, 33, 42, 23, 30,4294967295u,4294967295u}, // 50 (5,4)
{ 2, 1, 34, 43, 24, 31,4294967295u,4294967295u}, // 51 (6,3)
{ 3, 1, 43, 53, 18, 24,4294967295u,4294967295u}, // 52 (7,2)
{ 8, 1, 53, 61, 19, 25,4294967295u,4294967295u}, // 53 (8,1)
{ 36, 0, 54, 62, 14, 19,4294967295u,4294967295u}, // 54 (9,0)
{ 0, 40, 15, 22, 55, 63,4294967295u,4294967295u}, // 55 (0,10)
{ 1, 9, 16, 23, 56, 64,4294967295u,4294967295u}, // 56 (1,9)
{ 1, 4, 23, 31, 46, 56,4294967295u,4294967295u}, // 57 (2,8)
{ 1, 2, 24, 32, 37, 46,4294967295u,4294967295u}, // 58 (3,7)
{ 2, 1, 43, 53, 24, 31,4294967295u,4294967295u}, // 59 (7,3)
{ 4, 1, 53, 61, 25, 32,4294967295u,4294967295u}, // 60 (8,2)
{ 9, 1, 61, 69, 19, 25,4294967295u,4294967295u}, // 61 (9,1)
{ 40, 0, 62, 70, 20, 26,4294967295u,4294967295u}, // 62 (10,0)
{ 0, 44, 15, 22, 63, 71,4294967295u,4294967295u}, // 63 (0,11)
{ 1, 10, 22, 30, 64, 72,4294967295u,4294967295u}, // 64 (1,10)
{ 1, 4, 23, 31, 56, 64,4294967295u,4294967295u}, // 65 (2,9)
{ 1, 2, 31, 40, 46, 56,4294967295u,4294967295u}, // 66 (3,8)
{ 2, 1, 53, 61, 32, 40,4294967295u,4294967295u}, // 67 (8,3)
{ 4, 1, 61, 69, 25, 32,4294967295u,4294967295u}, // 68 (9,2)
{ 10, 1, 69, 77, 26, 33,4294967295u,4294967295u}, // 69 (10,1)
{ 44, 0, 70, 78, 20, 26,4294967295u,4294967295u}, // 70 (11,0)
{ 0, 48, 21, 29, 71, 79,4294967295u,4294967295u}, // 71 (0,12)
{ 1, 11, 22, 30, 72, 80,4294967295u,4294967295u}, // 72 (1,11)
{ 1, 5, 30, 39, 64, 72,4294967295u,4294967295u}, // 73 (2,10)
{ 1, 3, 31, 40, 56, 64,4294967295u,4294967295u}, // 74 (3,9)
{ 3, 1, 61, 69, 32, 40,4294967295u,4294967295u}, // 75 (9,3)
{ 5, 1, 69, 77, 33, 41,4294967295u,4294967295u}, // 76 (10,2)
{ 11, 1, 77, 85, 26, 33,4294967295u,4294967295u}, // 77 (11,1)
{ 48, 0, 78, 86, 27, 34,4294967295u,4294967295u}, // 78 (12,0)
{ 0, 52, 21, 29, 79, 87,4294967295u,4294967295u}, // 79 (0,13)
{ 1, 12, 29, 38, 80, 88,4294967295u,4294967295u}, // 80 (1,12)
{ 1, 5, 30, 39, 72, 80,4294967295u,4294967295u}, // 81 (2,11)
{ 1, 3, 39, 49, 64, 72,4294967295u,4294967295u}, // 82 (3,10)
{ 3, 1, 69, 77, 41, 50,4294967295u,4294967295u}, // 83 (10,3)
{ 5, 1, 77, 85, 33, 41,4294967295u,4294967295u}, // 84 (11,2)
{ 12, 1, 85, 91, 34, 42,4294967295u,4294967295u}, // 85 (12,1)
{ 52, 0, 86, 92, 27, 34,4294967295u,4294967295u}, // 86 (13,0)
{ 0, 56, 28, 37, 87, 93,4294967295u,4294967295u}, // 87 (0,14)
{ 1, 13, 29, 38, 88, 94,4294967295u,4294967295u}, // 88 (1,13)
{ 1, 6, 38, 48, 80, 88,4294967295u,4294967295u}, // 89 (2,12)
{ 6, 1, 85, 91, 42, 51,4294967295u,4294967295u}, // 90 (12,2)
{ 13, 1, 91, 97, 34, 42,4294967295u,4294967295u}, // 91 (13,1)
{ 56, 0, 92, 98, 35, 43,4294967295u,4294967295u}, // 92 (14,0)
{ 0, 60, 28, 37, 93, 99,4294967295u,4294967295u}, // 93 (0,15)
{ 1, 14, 37, 47, 94,100,4294967295u,4294967295u}, // 94 (1,14)
{ 1, 6, 38, 48, 88, 94,4294967295u,4294967295u}, // 95 (2,13)
{ 6, 1, 91, 97, 42, 51,4294967295u,4294967295u}, // 96 (13,2)
{ 14, 1, 97,103, 43, 52,4294967295u,4294967295u}, // 97 (14,1)
{ 60, 0, 98,104, 35, 43,4294967295u,4294967295u}, // 98 (15,0)
{ 0, 64, 36, 46, 99,105,4294967295u,4294967295u}, // 99 (0,16)
{ 1, 15, 37, 47,100,106,4294967295u,4294967295u}, // 100 (1,15)
{ 1, 7, 47, 58, 94,100,4294967295u,4294967295u}, // 101 (2,14)
{ 7, 1, 97,103, 52, 59,4294967295u,4294967295u}, // 102 (14,2)
{ 15, 1,103,109, 43, 52,4294967295u,4294967295u}, // 103 (15,1)
{ 64, 0,104,110, 44, 53,4294967295u,4294967295u}, // 104 (16,0)
{ 0, 68, 36, 46,105,111,4294967295u,4294967295u}, // 105 (0,17)
{ 1, 16, 46, 57,106,112,4294967295u,4294967295u}, // 106 (1,16)
{ 1, 7, 47, 58,100,106,4294967295u,4294967295u}, // 107 (2,15)
{ 7, 1,103,109, 52, 59,4294967295u,4294967295u}, // 108 (15,2)
{ 16, 1,109,113, 53, 60,4294967295u,4294967295u}, // 109 (16,1)
{ 68, 0,110,114, 44, 53,4294967295u,4294967295u}, // 110 (17,0)
{ 0, 72, 45, 56,111,115,4294967295u,4294967295u}, // 111 (0,18)
{ 1, 17, 46, 57,112,116,4294967295u,4294967295u}, // 112 (1,17)
{ 17, 1,113,119, 53, 60,4294967295u,4294967295u}, // 113 (17,1)
{ 72, 0,114,120, 54, 61,4294967295u,4294967295u}, // 114 (18,0)
{ 0, 76, 45, 56,115,121,4294967295u,4294967295u}, // 115 (0,19)
{ 1, 18, 56, 65,116,122,4294967295u,4294967295u}, // 116 (1,18)
{ 1, 8, 57, 66,112,116,4294967295u,4294967295u}, // 117 (2,17)
{ 8, 1,113,119, 60, 67,4294967295u,4294967295u}, // 118 (17,2)
{ 18, 1,119,125, 61, 68,4294967295u,4294967295u}, // 119 (18,1)
{ 76, 0,120,126, 54, 61,4294967295u,4294967295u}, // 120 (19,0)
{ 0, 80, 55, 64,121,127,4294967295u,4294967295u}, // 121 (0,20)
{ 1, 19, 56, 65,122,128,4294967295u,4294967295u}, // 122 (1,19)
{ 1, 9, 65, 74,116,122,4294967295u,4294967295u}, // 123 (2,18)
{ 9, 1,119,125, 68, 75,4294967295u,4294967295u}, // 124 (18,2)
{ 19, 1,125,131, 61, 68,4294967295u,4294967295u}, // 125 (19,1)
{ 80, 0,126,132, 62, 69,4294967295u,4294967295u}, // 126 (20,0)
{ 0, 84, 55, 64,127,133,4294967295u,4294967295u}, // 127 (0,21)
{ 1, 20, 64, 73,128,134,4294967295u,4294967295u}, // 128 (1,20)
{ 1, 9, 65, 74,122,128,4294967295u,4294967295u}, // 129 (2,19)
{ 9, 1,125,131, 68, 75,4294967295u,4294967295u}, // 130 (19,2)
{ 20, 1,131,137, 69, 76,4294967295u,4294967295u}, // 131 (20,1)
{ 84, 0,132,138, 62, 69,4294967295u,4294967295u}, // 132 (21,0)
{ 0, 88, 63, 72,133,139,4294967295u,4294967295u}, // 133 (0,22)
{ 1, 21, 64, 73,134,140,4294967295u,4294967295u}, // 134 (1,21)
{ 1, 10, 73, 82,128,134,4294967295u,4294967295u}, // 135 (2,20)
{ 10, 1,131,137, 76, 83,4294967295u,4294967295u}, // 136 (20,2)
{ 21, 1,137,143, 69, 76,4294967295u,4294967295u}, // 137 (21,1)
{ 88, 0,138,144, 70, 77,4294967295u,4294967295u}, // 138 (22,0)
{ 0, 92, 63, 72,139,145,4294967295u,4294967295u}, // 139 (0,23)
{ 1, 22, 72, 81,140,146,4294967295u,4294967295u}, // 140 (1,22)
{ 1, 10, 73, 82,134,140,4294967295u,4294967295u}, // 141 (2,21)
{ 10, 1,137,143, 76, 83,4294967295u,4294967295u}, // 142 (21,2)
{ 22, 1,143,147, 77, 84,4294967295u,4294967295u}, // 143 (22,1)
{ 92, 0,144,148, 70, 77,4294967295u,4294967295u}, // 144 (23,0)
{ 0, 96, 71, 80,145,149,4294967295u,4294967295u}, // 145 (0,24)
{ 1, 23, 72, 81,146,150,4294967295u,4294967295u}, // 146 (1,23)
{ 23, 1,147,151, 77, 84,4294967295u,4294967295u}, // 147 (23,1)
{ 96, 0,148,152, 78, 85,4294967295u,4294967295u}, // 148 (24,0)
{ 0,100, 63, 72,149,153,4294967295u,4294967295u}, // 149 (0,25)
{ 1, 24, 80, 89,150,154,4294967295u,4294967295u}, // 150 (1,24)
{ 24, 1,151,155, 85, 90,4294967295u,4294967295u}, // 151 (24,1)
{100, 0,152,156, 70, 77,4294967295u,4294967295u}, // 152 (25,0)
{ 0,104, 63, 72,153,157,4294967295u,4294967295u}, // 153 (0,26)
{ 1, 25, 72, 81,154,158,4294967295u,4294967295u}, // 154 (1,25)
{ 25, 1,155,159, 77, 84,4294967295u,4294967295u}, // 155 (25,1)
{104, 0,156,160, 70, 77,4294967295u,4294967295u}, // 156 (26,0)
{ 0,108, 63, 72,157,161,4294967295u,4294967295u}, // 157 (0,27)
{ 1, 26, 72, 81,158,162,4294967295u,4294967295u}, // 158 (1,26)
{ 26, 1,159,163, 77, 84,4294967295u,4294967295u}, // 159 (26,1)
{108, 0,160,164, 70, 77,4294967295u,4294967295u}, // 160 (27,0)
{ 0,112, 63, 72,161,165,4294967295u,4294967295u}, // 161 (0,28)
{ 1, 27, 72, 81,162,166,4294967295u,4294967295u}, // 162 (1,27)
{ 27, 1,163,167, 77, 84,4294967295u,4294967295u}, // 163 (27,1)
{112, 0,164,168, 70, 77,4294967295u,4294967295u}, // 164 (28,0)
{ 0,116, 63, 72,165,169,4294967295u,4294967295u}, // 165 (0,29)
{ 1, 28, 72, 81,166,170,4294967295u,4294967295u}, // 166 (1,28)
{ 28, 1,167,171, 77, 84,4294967295u,4294967295u}, // 167 (28,1)
{116, 0,168,172, 70, 77,4294967295u,4294967295u}, // 168 (29,0)
{ 0,120, 63, 72,169,173,4294967295u,4294967295u}, // 169 (0,30)
{ 1, 29, 72, 81,170,174,4294967295u,4294967295u}, // 170 (1,29)
{ 29, 1,171,175, 77, 84,4294967295u,4294967295u}, // 171 (29,1)
{120, 0,172,176, 70, 77,4294967295u,4294967295u}, // 172 (30,0)
{ 0,124, 63, 72,173,177,4294967295u,4294967295u}, // 173 (0,31)
{ 1, 30, 72, 81,174,178,4294967295u,4294967295u}, // 174 (1,30)
{ 30, 1,175,179, 77, 84,4294967295u,4294967295u}, // 175 (30,1)
{124, 0,176,180, 70, 77,4294967295u,4294967295u}, // 176 (31,0)
{ 0,128, 63, 72,177,181,4294967295u,4294967295u}, // 177 (0,32)
{ 1, 31, 72, 81,178,182,4294967295u,4294967295u}, // 178 (1,31)
{ 31, 1,179,183, 77, 84,4294967295u,4294967295u}, // 179 (31,1)
{128, 0,180,184, 70, 77,4294967295u,4294967295u}, // 180 (32,0)
{ 0,132, 63, 72,181,185,4294967295u,4294967295u}, // 181 (0,33)
{ 1, 32, 72, 81,182,186,4294967295u,4294967295u}, // 182 (1,32)
{ 32, 1,183,187, 77, 84,4294967295u,4294967295u}, // 183 (32,1)
{132, 0,184,188, 70, 77,4294967295u,4294967295u}, // 184 (33,0)
{ 0,136, 63, 72,185,189,4294967295u,4294967295u}, // 185 (0,34)
{ 1, 33, 72, 81,186,190,4294967295u,4294967295u}, // 186 (1,33)
{ 33, 1,187,191, 77, 84,4294967295u,4294967295u}, // 187 (33,1)
{136, 0,188,192, 70, 77,4294967295u,4294967295u}, // 188 (34,0)
{ 0,140, 63, 72,189,193,4294967295u,4294967295u}, // 189 (0,35)
{ 1, 34, 72, 81,190,194,4294967295u,4294967295u}, // 190 (1,34)
{ 34, 1,191,195, 77, 84,4294967295u,4294967295u}, // 191 (34,1)
{140, 0,192,196, 70, 77,4294967295u,4294967295u}, // 192 (35,0)
{ 0,144, 71, 80,193,197,4294967295u,4294967295u}, // 193 (0,36)
{ 1, 35, 72, 81,194,198,4294967295u,4294967295u}, // 194 (1,35)
{ 35, 1,195,199, 77, 84,4294967295u,4294967295u}, // 195 (35,1)
{144, 0,196,200, 78, 85,4294967295u,4294967295u}, // 196 (36,0)
{ 0,148, 71, 80,197,201,4294967295u,4294967295u}, // 197 (0,37)
{ 1, 36, 80, 89,198,202,4294967295u,4294967295u}, // 198 (1,36)
{ 36, 1,199,203, 85, 90,4294967295u,4294967295u}, // 199 (36,1)
{148, 0,200,204, 78, 85,4294967295u,4294967295u}, // 200 (37,0)
{ 0,152, 71, 80,201,205,4294967295u,4294967295u}, // 201 (0,38)
{ 1, 37, 80, 89,202,206,4294967295u,4294967295u}, // 202 (1,37)
{ 37, 1,203,207, 85, 90,4294967295u,4294967295u}, // 203 (37,1)
{152, 0,204,208, 78, 85,4294967295u,4294967295u}, // 204 (38,0)
{ 0,156, 71, 80,205,209,4294967295u,4294967295u}, // 205 (0,39)
{ 1, 38, 80, 89,206,210,4294967295u,4294967295u}, // 206 (1,38)
{ 38, 1,207,211, 85, 90,4294967295u,4294967295u}, // 207 (38,1)
{156, 0,208,212, 78, 85,4294967295u,4294967295u}, // 208 (39,0)
{ 0,160, 71, 80,209,215,4294967295u,1073741823u}, // 209 (0,40)
{ 1, 39, 80, 89,210,213,4294967295u,4294967295u}, // 210 (1,39)
{ 39, 1,211,214, 85, 90,4294967295u,4294967295u}, // 211 (39,1)
{160, 0,212,216, 78, 85,1073741823u,4294967295u}, // 212 (40,0)
{ 1, 40, 80, 89,213,217,4294967295u,1073741823u}, // 213 (1,40)
{ 40, 1,214,218, 85, 90,1073741823u,4294967295u}, // 214 (40,1)
{ 0,176, 71, 80,215,219,4294967295u,1073741823u}, // 215 (0,44)
{176, 0,216,220, 78, 85,1073741823u,4294967295u}, // 216 (44,0)
{ 1, 44, 80, 89,217,221,4294967295u,1073741823u}, // 217 (1,44)
{ 44, 1,218,222, 85, 90,1073741823u,4294967295u}, // 218 (44,1)
{ 0,192, 71, 80,219,223,4294967295u, 536870911u}, // 219 (0,48)
{192, 0,220,224, 78, 85, 536870911u,4294967295u}, // 220 (48,0)
{ 1, 48, 80, 89,221,225,4294967295u, 536870911u}, // 221 (1,48)
{ 48, 1,222,226, 85, 90, 536870911u,4294967295u}, // 222 (48,1)
{ 0,224, 79, 88,223,227,4294967295u, 536870911u}, // 223 (0,56)
{224, 0,224,228, 86, 91, 536870911u,4294967295u}, // 224 (56,0)
{ 1, 56, 88, 95,225,229,4294967295u, 536870911u}, // 225 (1,56)
{ 56, 1,226,230, 91, 96, 536870911u,4294967295u}, // 226 (56,1)
{ 0,256, 87, 94,227,231,4294967295u, 134217727u}, // 227 (0,64)
{256, 0,228,232, 92, 97, 134217727u,4294967295u}, // 228 (64,0)
{ 1, 64, 94,101,229,233,4294967295u, 134217727u}, // 229 (1,64)
{ 64, 1,230,234, 97,102, 134217727u,4294967295u}, // 230 (64,1)
{ 0,384, 93,100,231,235,4294967295u, 134217727u}, // 231 (0,96)
{384, 0,232,236, 98,103, 134217727u,4294967295u}, // 232 (96,0)
{ 1, 96,100,107,233,237,4294967295u, 134217727u}, // 233 (1,96)
{ 96, 1,234,238,103,108, 134217727u,4294967295u}, // 234 (96,1)
{ 0,512,105,112,235,239,4294967295u, 134217727u}, // 235 (0,128)
{512, 0,236,240,110,113, 134217727u,4294967295u}, // 236 (128,0)
{ 1,128,112,117,237,241,4294967295u, 134217727u}, // 237 (1,128)
{128, 1,238,242,113,118, 134217727u,4294967295u}, // 238 (128,1)
{ 0,640,111,116,239,243,4294967295u, 134217727u}, // 239 (0,160)
{640, 0,240,244,114,119, 134217727u,4294967295u}, // 240 (160,0)
{ 1,160,116,123,241,245,4294967295u, 134217727u}, // 241 (1,160)
{160, 1,242,246,119,124, 134217727u,4294967295u}, // 242 (160,1)
{ 0,768,115,122,243,247,4294967295u, 134217727u}, // 243 (0,192)
{768, 0,244,248,120,125, 134217727u,4294967295u}, // 244 (192,0)
{ 1,192,122,129,245,249,4294967295u, 134217727u}, // 245 (1,192)
{192, 1,246,250,125,130, 134217727u,4294967295u}, // 246 (192,1)
{ 0,896,121,128,247,251,4294967295u, 138547332u}, // 247 (0,224)
{896, 0,248,252,126,131, 138547332u,4294967295u}, // 248 (224,0)
{ 1,224,128,135,249,253,4294967295u, 138547332u}, // 249 (1,224)
{224, 1,250,254,131,136, 138547332u,4294967295u}, // 250 (224,1)
{ 0,1020,127,134,251,251,4294967295u, 0u}, // 251 (0,255)
{1020, 0,252,252,132,137, 0u,4294967295u}, // 252 (255,0)
{ 1,255,134,141,253,253,4294967295u, 0u}, // 253 (1,255)
{255, 1,254,254,137,142, 0u,4294967295u} // 254 (255,1)
};
//////////////////////////// ch ////////////////////////////
/* ch is a global object that provides common services to models.
It stores all the input so far in a rotating buffer of the last N bytes
ch -- Global object
ch.init() -- Initialize (after MEM is set)
ch(i) -- Returns i'th byte from end
ch(0) -- Returns the 0-7 bits of the partially read byte with a leading 1
ch() -- ch(0)
ch.update(y) -- Appends bit y to the buffer
ch.pos() -- The number of whole bytes appended, possibly > N
ch.bpos() -- The number of bits (0-7) of the current partial byte at (0)
ch[i] -- ch(pos()-i)
ch.lo() -- Low order nibble so far (1-15 with leading 1)
ch.hi() -- Previous nibble, 0-15 (no leading 1 bit)
ch.pos(c) -- Position of the last occurrence of byte c (0-255)
ch.pos(c, i) -- Position of the i'th to last occurrence, i = 0 to 3
*/
class Ch {
U32 N; // Buffer size
U8 *buf; // [N] last N bytes
U32 p; // pos()
U32 bp; // bpos()
U32 hi_nibble, lo_nibble; // hi(), lo()
U32 lpos[256][4]; // pos(c, i)
public:
Ch(): N(0), buf(0), p(0), bp(0), hi_nibble(0), lo_nibble(1) {
memset(lpos, 0, 256*4*sizeof(U32));
}
void init() {
N = 1 << 19+MEM-(MEM>=6);
buf=(U8*)calloc(N, 1);
if (!buf)
handler();
buf[0]=1;
}
U32 operator()(int i) const {return buf[(p-i)&(N-1)];}
U32 operator()() const {return buf[p&(N-1)];}
void update(int y) {
U8& r=buf[p&(N-1)];
r+=r+y;
if (++bp==8) {
lpos[r][3]=lpos[r][2];
lpos[r][2]=lpos[r][1];
lpos[r][1]=lpos[r][0];
lpos[r][0]=p;
bp=0;
++p;
buf[p&(N-1)]=1;
}
if ((lo_nibble+=lo_nibble+y)>=16) {
hi_nibble=lo_nibble-16;
lo_nibble=1;
}
}
U32 pos() const {return p;}
U32 pos(U8 c, int i=0) const {return lpos[c][i&3];}
U32 bpos() const {return bp;}
U32 operator[](int i) const {return buf[i&(N-1)];}
U32 hi() const {return hi_nibble;}
U32 lo() const {return lo_nibble;}
} ch; // Global object
//////////////////////////// Hashtable ////////////////////////////
/* A Hashtable stores Counters. It is organized to minimize cache
misses for 64-byte cache lines. The size is fixed at 2^n bytes. It
uses LRU replacement for buckets of size 4, except that the next to
oldest element is replaced if it has lower priority than the oldest.
Each bucket represents 15 counters for a context on a half-byte boundary.
Hashtable<Counter> ht(n) -- Create hash table of 2^n bytes (15/16 of
these are 1-byte Counters).
ht.set(h) -- Set major context to h, a 32 bit hash of a context ending on a
nibble (4-bit) boundary.
ht(c) -- Retrieve a reference to counter associated with partial nibble c
(1-15) in context h.
Normally there should be 4 calls to ht(c) after each ht.set(h).
*/
template<class T>
class Hashtable {
private:
const U32 N; // log2 size in bytes
struct HashElement {
U8 checksum; // Checksum of context, used to detect collisions
T c[15]; // 1-byte counters in minor context c
HashElement(): checksum(0) {}
};
HashElement *table; // [2^(N-4)]
U32 cxt; // major context
public:
Hashtable(U32 n);
// Set major context to h, a 32 bit hash. Create a new element if needed.
void set(U32 h) {
// Search 4 elements for h within a 64-byte cache line
const U8 checksum=(h>>24)^h;
const U32 lo= (h>>(32-N)) & -4;
const U32 hi=lo+4;
U32 i;
for (i=lo; i<hi; ++i) {
U32 pri=table[i].c[0].priority();
if (table[i].checksum==checksum) { // found
cxt=i;
break;
}
else if (pri==0) { // empty bucket
table[i].checksum=checksum;
cxt=i;
break;
}
}
// Put new element in front, pushing the lower priority of the two
// oldest off the back
if (i==hi) {
cxt=lo;
if (table[lo+2].c[0].priority()<table[lo+3].c[0].priority())
memmove(table+lo+1, table+lo, 32);
else
memmove(table+lo+1, table+lo, 48);
memset(table+lo, 0, 16);
table[cxt].checksum=checksum;
}
// Move newest to front
else if (cxt!=lo) {
HashElement he=table[cxt];
memmove(table+lo+1, table+lo, (cxt-lo)*16);
table[lo]=he;
cxt=lo;
}
}
// Get element c (1-15) of bucket cxt
T& operator()(U32 c) {
--c;
assert(c<15);
return table[cxt].c[c];
}
};
template <class T>
Hashtable<T>::Hashtable(U32 n): N(n>4?n-4:1), table(0), cxt(0) {
assert(sizeof(HashElement)==16);
assert(sizeof(char)==1);
// Align the hash table on a 64 byte cache page boundary
char *p=(char*)calloc((16<<N)+64, 1);
if (!p)
handler();
p+=64-(((long)p)&63); // Aligned
table=(HashElement*)p;
}
//////////////////////////// mixer ////////////////////////////
/* A Mixer combines a weighted set of probabilities (expressed as 0 and
1 counts) into a single probability P(1) that the next bit will be a 1.
Mixer m(C); -- Create Mixer with C sets of N weights (N is fixed)
m.write(n0, n1); -- Store a prediction P(1) = n1/(n0+n1), with confidence
0 <= n0+n1 < 1024. There should be at most N calls
to write() followed by predict() and update().
Write order should be consistent.
m.add(n0, n1); -- Adds to a previous write.
m.predict(c); -- Return P(1)*PSCALE (range 0 to PSCALE-1) for
weight set c (0 to C-1).
m.update(y); -- Tune the N internal weights for set c such that
predict(c) would return a result closer to y*PSCALE,
y = 0 or 1.
*/
class Mixer {
enum {N=64}; // Max writes before update
const int C;
U32 *bc0, *bc1; // 0,1 counts for N models
U32 (*wt)[N]; // wt[c][n] is n'th weight in context c
int n; // number of bit count pairs written
int c; // weight set context
public:
Mixer(int C_);
~Mixer();
U32 getN() const {return N;}
U32 getC() const {return C;}
// Store next counts n0, n1 from model
void write(int n0, int n1) {
bc0[n]=n0;
bc1[n]=n1;
++n;
}
// Add to the last write
void add(int n0, int n1) {
bc0[n-1]+=n0;
bc1[n-1]+=n1;
}
int predict(int c_);
void update(int y);
};
// Return weighted average of models in context c_
int Mixer::predict(int c_) {
assert(n>0 && n<=N);
assert(c_>=0 && c_<C);
c=c_;
int n0=1, n1=n0;
for (int j=0; j<n; ++j) {
U32 w=wt[c][j];
n0+=bc0[j]*w;
n1+=bc1[j]*w;
}
int sum=n0+n1;
while (sum>2000000000/PSCALE) sum/=4, n1/=4;
assert(sum>0);
return (PSCALE-1)*n1/sum;
}
// Adjust the weights by gradient descent to reduce cost of bit y
void Mixer::update(int y) {
U32 s0=0, s1=0;
for (int i=0; i<n; ++i) {
s0+=(wt[c][i]+48)*bc0[i];
s1+=(wt[c][i]+48)*bc1[i];
}
if (s0>0 && s1>0) {
const U32 s=s0+s1;
const U32 sy=y?s1:s0;
const U32 sy1=0xffffffff/sy+(rnd()&1023) >> 10;
const U32 s1 =0xffffffff/s +(rnd()&1023) >> 10;
for (int i=0; i<n; ++i) {
const int dw=int((y?bc1[i]:bc0[i])*sy1-(bc0[i]+bc1[i])*s1
+ (rnd()&255)) >> 8;
wt[c][i]=min(65535, max(1, int(wt[c][i]+dw)));
}
}
n=0;
}
Mixer::Mixer(int C_): C(C_), bc0(new U32[N]), bc1(new U32[N]),
wt(new U32[C_][N]), n(0), c(0) {
for (int i=0; i<C; ++i) {
for (int j=0; j<N; ++j)
wt[i][j]=1;
}
for (int i=0; i<N; ++i)
bc0[i]=bc1[i]=0;
}
Mixer::~Mixer() {
/*
// Uncomment this to print the weights. This is useful for testing
// new models or weight vector contexts.
if (n==0)
return;
printf(" ");
for (int i=0; i<n; ++i)
printf("%4d", i);
printf("\n");
fflush(stdout);
for (int i=0; i<C && i<16; ++i) {
printf("%2d", i);
for (int j=0; j<n; ++j)
printf("%4d", wt[i][j]/10);
printf("\n");
fflush(stdout);
} */
}
// A MultiMixer averages the output of 2 mixers using different contexts
class MultiMixer {
enum {MINMEM=5}; // Lowest MEM to use 2 mixers
Mixer m1, m2;
public:
MultiMixer(): m1(16), m2(16) {}
void write(int n0, int n1) {
m1.write(n0, n1);
if (MEM>=MINMEM)
m2.write(n0, n1);
}
void add(int n0, int n1) {
if (MEM>=MINMEM) {
m1.add(n0, n1);
m2.add(n0, n1);
}
else
m1.add(n0, n1);
}
int predict() {
U32 p1=m1.predict((ch(1) >> 5) + 8*(ch.pos(0, 3) < ch.pos(32, 3)));
if (MEM>=MINMEM) {
U32 p2=m2.predict((ch(1) >> 6)+4*(ch(2) >> 6));
return (p1+p2)/2;
}
else
return p1;
}
void update(int y) {
m1.update(y);
if (MEM>=MINMEM)
m2.update(y);
}
U32 getC() const {return 256;}
U32 getN() const {return m1.getN();}
};
MultiMixer mixer;
//////////////////////////// CounterMap ////////////////////////////
/* CounterMap maintains a model and one context
Countermap cm(N); -- Create, size 2^N bytes
cm.update(h); -- Update model, then set next context hash to h
cm.write(); -- Predict next bit and write counts to mixer
cm.add(); -- Predict and add to previously written counts
There should be 8 calls to either write() or add() between each update(h).
h is a 32-bit hash of the context which should be set after a whole number
of bytes are read. */
// Stores only the most recent byte and its count per context (run length)
// in a hash table without collision detection
class CounterMap1 {
const int N;
struct S {
U8 c; // char
U8 n; // count
};
S* t; // cxt -> c repeated last n times
U32 cxt;
public:
CounterMap1(int n): N(n>1?n-1:1), cxt(0) {
assert(sizeof(S)==2);
t=(S*)calloc(1<<N, 2);
if (!t)
handler();
}
void update(U32 h) {
if (ch.bpos()==0) {
if (t[cxt].n==0) {
t[cxt].n=1;
t[cxt].c=ch(1);
}
else if (U32(t[cxt].c)==ch(1)) {
if (t[cxt].n<255)
++t[cxt].n;
}
else {
t[cxt].c=ch(1);
t[cxt].n=1;
}
}
cxt = h >> 32-N;
}
void add() {
if ((U32)((t[cxt].c+256) >> 8-ch.bpos())==ch()) {
if ((t[cxt].c >> 7-ch.bpos()) & 1)
mixer.add(0, t[cxt].n);
else
mixer.add(t[cxt].n, 0);
}
}
void write() {
mixer.write(0, 0);
add();
}
};
// Uses a nibble-oriented hash table of contexts (counter state)
class CounterMap2 {
private:
const U32 N2; // Size of ht2 in elements
U32 cxt; // Major context
Hashtable<Counter> ht2; // Secondary hash table
Counter* cp[8]; // Pointers into ht2 or 0 if not used
public:
CounterMap2(int n); // Use 2^n bytes memory
void add();
void update(U32 h);
void write() {
mixer.write(0, 0);
add();
}
};
CounterMap2::CounterMap2(int n): N2(n), cxt(0), ht2(N2) {
for (int i=0; i<8; ++i)
cp[i]=0;
}
// Predict the next bit given the bits so far in ch()
void CounterMap2::add() {
const U32 bcount = ch.bpos();
if (bcount==4) {
cxt^=hash(ch.hi(), cxt);
ht2.set(cxt);
}
cp[bcount]=&ht2(ch.lo());
mixer.add(cp[bcount]->get0(), cp[bcount]->get1());
}
// After 8 predictions, update the models with the last input char, ch(1),
// then set the new context hash to h
void CounterMap2::update(U32 h) {
const U32 c=ch(1);
// Update the secondary context
for (int i=0; i<8; ++i) {
if (cp[i]) {
cp[i]->add((c>>(7-i))&1);
cp[i]=0;
}
}
cxt=h;
ht2.set(cxt);
}
// Combines 1 and 2 above.
class CounterMap3 {
enum {MINMEM=5}; // Smallest MEM to use cm1
CounterMap1 cm1;
CounterMap2 cm2;
public:
CounterMap3(int n): cm1(MEM>=MINMEM ? n-2 : 0), cm2(n) {}
void update(U32 h) {
if (MEM>=MINMEM)
cm1.update(h);
cm2.update(h);
}
void write() {
cm2.write();
if (MEM>=MINMEM)
cm1.add();
}
void add() {
cm2.add();
if (MEM>=MINMEM)
cm1.add();
}
};
#define CounterMap CounterMap3
//////////////////////////// Model ////////////////////////////
// All models have a function model() which updates the model with the
// last bit of input (in ch) then writes probabilities for the following
// bit into mixer.
class Model {
public:
virtual void model() = 0;
virtual ~Model() {}
};
//////////////////////////// defaultModel ////////////////////////////
// DefaultModel predicts P(1) = 0.5
class DefaultModel: public Model {
public:
void model() {mixer.write(1, 1);}
};
//////////////////////////// charModel ////////////////////////////
// A CharModel contains n-gram models from 0 to 9
class CharModel: public Model {
enum {N=10}; // Number of models
Counter *t0, *t1; // Model orders 0, 1 [256], [65536]
CounterMap t2, t3, t4, t5, t6, t7, t8, t9; // Model orders 2-9
U32 *cxt; // Context hashes [N]
Counter *cp0, *cp1; // Pointers to counters in t0, t1
public:
CharModel(): t0(new Counter[256]), t1(new Counter[65536]),
t2(MEM+15), t3(MEM+17), t4(MEM+18), t5((MEM>=1)*(MEM+18)),
t6((MEM>=3)*(MEM+18)), t7((MEM>=3)*(MEM+18)),
t8((MEM>=5)*(MEM+18-(MEM>=6))),
t9((MEM>=5)*(MEM+18-(MEM>=6))),
cxt(new U32[N]) {
cp0=&t0[0];
cp1=&t1[0];
memset(cxt, 0, N*sizeof(U32));
memset(t0, 0, 256*sizeof(Counter));
memset(t1, 0, 65536*sizeof(Counter));
}
void model(); // Update and predict
};
// Update with bit y, put array of 0 counts in n0 and 1 counts in n1
inline void CharModel::model() {
// Update models
int y = ch(ch.bpos()==0)&1; // last input bit
cp0->add(y);
cp1->add(y);
// Update context
if (ch.bpos()==0) { // Start new byte
for (int i=N-1; i>0; --i)
cxt[i]=cxt[i-1]^hash(ch(1), i);
t2.update(cxt[2]);
t3.update(cxt[3]);
t4.update(cxt[4]);
if (MEM>=1)
t5.update(cxt[5]);
if (MEM>=3) {
t6.update(cxt[6]);
t7.update(cxt[7]);
}
if (MEM>=5) {
t8.update(cxt[8]);
t9.update(cxt[9]);
}
}
cp0=&t0[ch()];
cp1=&t1[ch()+256*ch(1)];
// Write predictions to the mixer
mixer.write(cp0->get0(), cp0->get1());
mixer.write(cp1->get0(), cp1->get1());
t2.write();
t3.write();
t4.write();
if (MEM>=1)
t5.add();
if (MEM>=3) {
t6.write();
t7.add();
}
if (MEM>=5) {
t8.write();
t9.add();
}
}
//////////////////////////// matchModel ////////////////////////////
/* A MatchModel looks for a match of length n >= 8 bytes between
the current context and previous input, and predicts the next bit
in the previous context with weight n. If the next bit is 1, then
the mixer is assigned (0, n), else (n, 0). Matchies are found using
an index (a hash table of pointers into ch). */
class MatchModel: public Model {
const int N; // 2^N = hash table size
enum {M=4}; // Number of strings to match
U32 hash[2]; // Hashes of current context up to pos-1
U32 begin[M]; // Points to first matching byte
U32 end[M]; // Points to last matching byte + 1, 0 if no match
U32 *ptr; // Hash table of pointers [2^(MEM+17)]
public:
MatchModel(): N(17+MEM-(MEM>=6)), ptr(new U32[1 << N]) {
memset(ptr, 0, (1 << N)*sizeof(U32));
hash[0]=hash[1]=0;
for (int i=0; i<M; ++i)
begin[i]=end[i]=0;
}
void model();
};
inline void MatchModel::model() {
if (ch.bpos()==0) { // New byte
hash[0]=hash[0]*(16*56797157)+ch(1)+1; // Hash last 8 bytes
hash[1]=hash[1]*(2*45684217)+ch(1)+1; // Hash last 32 bytes
U32 h=hash[0] >> (32-N);
if ((hash[0]>>28)==0)
h=hash[1] >> (32-N); // 1/16 of 8-contexts are hashed to 32 bytes
for (int i=0; i<M; ++i) {
if (end[i] && ch(1)==ch[end[i]])
++end[i];
}
for (int i=0; i<M; ++i) {
if (!end[i]) { // Search for a matching context
int j;
for (j=0; j<M; ++j) // Search for duplicate match
if (ptr[h]==end[j])
break;
if (j!=M) // Context already matched?
break;
end[i]=ptr[h];
if (end[i]>0) {
begin[i]=end[i];
U32 p=ch.pos();
while (begin[i]>0 && p>0 && begin[i]!=p+1
&& ch[begin[i]-1]==ch[p-1]) {
--begin[i];
--p;
}
}
if (end[i]==begin[i]) // No match found
begin[i]=end[i]=0;
break;
}
}
ptr[h]=ch.pos();
}
// Test whether the current context is valid in the last 0-7 bits
for (int i=0; i<M; ++i) {
if (end[i] && ((ch[end[i]]+256) >> (8-ch.bpos())) != ch())
begin[i]=end[i]=0;
}
// Predict the bit found in the matching contexts
int n0=0, n1=0;
for (int i=0; i<M; ++i) {
if (end[i]) {
U32 wt=(end[i]-begin[i]);
wt=wt*wt/4;
if (wt>511)
wt=511;
int y=(ch[end[i]]>>(7-ch.bpos()))&1;
if (y)
n1+=wt;
else
n0+=wt;
}
}
mixer.write(n0, n1);
}
//////////////////////////// recordModel ////////////////////////////
/* A RecordModel finds fixed length records and models bits in the context
of the two bytes above (the same position in the two previous records)
and in the context of the byte above and to the left (the previous byte).
The record length is assumed to be the interval in the most recent
occurrence of a byte occuring 4 times in a row equally spaced, e.g.
"x..x..x..x" would imply a record size of 3. There are models for
the 2 most recent, different record lengths of at least 2. */
class RecordModel: public Model {
const int SIZE;
enum {N=2}; // Number of models
CounterMap t0, t1, t2, t3, t4; // Model
int repeat1, repeat2; // 2 last cycle lengths
public:
RecordModel(): SIZE((MEM>=4)*(16+MEM-(MEM>=6))),
t0(SIZE), t1(SIZE), t2(SIZE), t3(SIZE), t4(SIZE),
repeat1(2), repeat2(3) {}
void model();
};
// Update the model with bit y, then put predictions of the next update
// as 0 counts in n0[0..N-1] and 1 counts in n1[0..N-1]
inline void RecordModel::model() {
if (ch.bpos()==0) {
// Check for a repeating pattern of interval 3 or more
const int c=ch(1);
const int d1=ch.pos(c,0)-ch.pos(c,1);
const int d2=ch.pos(c,1)-ch.pos(c,2);
const int d3=ch.pos(c,2)-ch.pos(c,3);
if (d1>1 && d1==d2 && d2==d3) {
if (d1==repeat1)
swap(repeat1, repeat2);
else if (d1!=repeat2) {
repeat1=repeat2;
repeat2=d1;
}
}
// Compute context hashes
int r1=repeat1, r2=repeat2;
if (r1>r2)
swap(r1, r2);
t0.update(hash(ch(r1), ch(r1*2), r1)); // 2 above (shorter repeat)
t1.update(hash(ch(1), ch(r1), r1)); // above and left
t2.update(hash(ch(r1), ch.pos()%r1)); // above and pos
t3.update(hash(ch(r2), ch(r2*2), r2)); // 2 above (longer repeat)
t4.update(hash(ch(1), ch(r2), r2)); // above and left
}
t0.write();
t1.write();
t2.write();
t3.write();
t4.write();
}
//////////////////////////// sparseModel ////////////////////////////
// A SparseModel models several order-2 contexts with gaps
class SparseModel: public Model {
const int SIZE;
enum {N=10}; // Number of models
CounterMap t0, t1, t2, t3, t4, t5, t6, t7, t8; // Sparse models
public:
SparseModel(): SIZE((MEM>=4)*(MEM+15-(MEM>=6))),
t0(SIZE), t1(SIZE), t2(SIZE), t3(SIZE), t4(SIZE),
t5(SIZE), t6(SIZE), t7(SIZE), t8(SIZE) {}
void model(); // Update and predict
};
inline void SparseModel::model() {
// Update context
if (ch.bpos()==0) {
t0.update(hash(ch(1), ch(3)));
t1.update(hash(ch(1), ch(4)));
t2.update(hash(ch(1), ch(5)));
t3.update(hash(ch(1), ch(6)));
t4.update(hash(ch(2), ch(3)));
t5.update(hash(ch(2), ch(4)));
t6.update(hash(ch(3), ch(4)));
const int g=min(255, int(ch.pos()-ch.pos(ch(1), 2))); // gap to prior ch1
t7.update(hash(ch(1), g));
t8.update(hash(ch(1), ch(2), g));
}
// Predict
t0.write();
t1.write();
t2.write();
t3.write();
t4.write();
t5.write();
t6.write();
t7.write();
t8.write();
}
//////////////////////////// analogModel ////////////////////////////
// An AnalogModel is intended for 16-bit mono or stereo (WAV files)
// 24-bit images (BMP files), and 8 bit analog data (such as grayscale
// images), and CCITT images.
class AnalogModel: public Model {
const int SIZE;
enum {N=6};
CounterMap t0, t1, t2, t3, t4, t5, t6;
int pos3; // pos % 3
public:
AnalogModel(): SIZE((MEM>=4)*(MEM+13)), t0(SIZE), t1(SIZE),
t2(SIZE), t3(SIZE), t4(SIZE), t5(SIZE), t6(SIZE), pos3(0) {}
void model() {
if (ch.bpos()==0) {
if (++pos3==3) pos3=0;
t0.update(hash(ch(2)/4, ch(4)/4, ch.pos()%2)); // 16 bit mono model
t1.update(hash(ch(2)/16, ch(4)/16, ch.pos()%2));
t2.update(hash(ch(2)/4, ch(4)/4, ch(8)/4, ch.pos()%4)); // Stereo
t3.update(hash(ch(3), ch(6)/4, pos3)); // 24 bit image models
t4.update(hash(ch(1)/16, ch(2)/16, ch(3)/4, pos3));
t5.update(hash(ch(1)/2, ch(2)/8, ch(3)/32)); // 8-bit data model
t6.update(hash(ch(216), ch(432))); // CCITT images
}
t0.write();
t1.add();
t2.add();
t3.write();
t4.add();
t5.write();
t6.write();
}
};
//////////////////////////// wordModel ////////////////////////////
// A WordModel models words, which are any characters > 32 separated
// by whitespace ( <= 32). There is a unigram, bigram and sparse
// bigram model (skipping 1 word).
class WordModel: public Model {
const int SIZE;
enum {N=3};
CounterMap t0, t1, t2, t3, t4, t5;
U32 cxt[N]; // Hashes of last N words broken on whitespace
U32 word[N]; // Hashes of last N words of letters only, lower case
public:
WordModel(): SIZE((MEM>=4)*(MEM+17-(MEM>=6))),
t0(SIZE), t1(SIZE), t2(SIZE), t3(SIZE), t4(SIZE), t5(SIZE) {
for (int i=0; i<N; ++i)
cxt[i]=word[i]=0;
}
void model() {
if (ch.bpos()==0) {
int c=ch(1);
if (c>32) {
cxt[0]^=hash(cxt[0], c);
}
else if (cxt[0]) {
for (int i=N-1; i>0; --i)
cxt[i]=cxt[i-1];
cxt[0]=0;
}
if (isalpha(c) || c>=192)
word[0]^=hash(word[0], tolower(c), 1);
else {
for (int i=N-1; i>0; --i)
word[i]=word[i-1];
word[0]=0;
}
t0.update(cxt[0]);
t1.update(cxt[1]+cxt[0]);
t2.update(cxt[2]+cxt[0]);
t3.update(word[0]);
t4.update(word[1]+word[0]);
t5.update(word[2]+word[0]);
}
t0.write();
t1.write();
t2.write();
t3.write();
t4.write();
t5.write();
}
};
//////////////////////////// exeModel ////////////////////////////
// Model 32-bit Intel executables, changing relative call (E8) operands
// to absolute addresses
class ExeModel {
struct S {
U32 a; // absolute address, indexed on 8 low order bytes
U8 n; // how many times?
S(): a(0), n(0) {}
};
S t[256]; // E8 history indexed on low order byte
public:
void model() {
// Convert E8 relative little-endian address to absolute by adding
// file offset, then store in table t indexed by its low byte
if (ch.bpos()==0) {
if (ch(5)==0xe8 && (ch(1)==0 || ch(1)==0xff)) {
U32 a=ch(4)+(ch(3)<<8)+(ch(2)<<16)+(ch(1)<<24)+ch.pos()-5;
int i=a&0xff;
if (t[i].a==a && t[i].n<255)
++t[i].n;
else {
t[i].a=a;
t[i].n=1;
}
}
}
int n0=0, n1=0;
// Model 4th byte of address
if (ch(4)==0xe8) {
int i=(ch(3)+ch.pos()-4)&0xff; // index in t
if (t[i].n>0) {
U32 r=t[i].a-ch.pos()+4; // predicted relative address
U32 ck=(((r&0xff000000)>>8)+0x1000000)>>(24-ch.bpos());
// ch(0) should be this if context matches so far
int y=(r>>(31-ch.bpos()))&1; // predicted bit
if (ch(0)==ck && ch(1)==((r>>16)&0xff)) {
if (y)
n1=t[i].n*16;
else
n0=t[i].n*16;
}
}
}
// Model 3rd byte of address
if (ch(3)==0xe8) {
int i=(ch(2)+ch.pos()-3)&0xff;
if (t[i].n>0) {
U32 r=t[i].a-ch.pos()+3;
U32 ck=((r&0xff0000)+0x1000000)>>(24-ch.bpos());
int y=(r>>(23-ch.bpos()))&1;
if (ch(0)==ck && ch(1)==((r>>8)&0xff)) {
if (y)
n1=t[i].n*4;
else
n0=t[i].n*4;
}
}
}
// Model 2nd byte of address
else if (ch(2)==0xe8) {
int i=(ch(1)+ch.pos()-2)&0xff;
if (t[i].n>0) {
U32 r=t[i].a-ch.pos()+2;
U32 ck=((r&0xff00)+0x10000)>>(16-ch.bpos());
int y=(r>>(15-ch.bpos()))&1;
if (ch(0)==ck) {
if (y)
n1=t[i].n;
else
n0=t[i].n;
}
}
}
mixer.write(n0, n1);
}
};
//////////////////////////// Predictor ////////////////////////////
/* A Predictor adjusts the model probability using SSE and passes it
to the encoder. An SSE model is a table of counters, sse[SSE1][SSE2]
which maps a context and a probability into a new, more accurate
probability. The context, SSE1, consists of the 0-7 bits of the current
byte and the 2 leading bits of the previous byte. The probability
to be mapped, SSE2 is first stretched near 0 and 1 using SSEMap, then
quantized into SSE2=32 intervals. Each SSE element is a pair of 0
and 1 counters of the bits seen so far in the current context and
probability range. Both the bin below and above the current probability
is updated by adding 1 to the appropriate count (n0 or n1). The
output probability for an SSE element is n1/(n0+n1) interpolated between
the bins below and above the input probability. This is averaged
with the original probability with 25% weight to give the final
probability passed to the encoder. */
class Predictor {
// Models
DefaultModel defaultModel;
CharModel charModel;
MatchModel matchModel;
RecordModel recordModel;
SparseModel sparseModel;
AnalogModel analogModel;
WordModel wordModel;
ExeModel exeModel;
enum {SSE1=256*4*2, SSE2=32, // SSE dimensions (contexts, probability bins)
SSESCALE=1024/SSE2}; // Number of mapped probabilities between bins
// Scale probability p into a context in the range 0 to 1K-1 by
// stretching the ends of the range.
class SSEMap {
U16 table[PSCALE];
public:
int operator()(int p) const {return table[p];}
SSEMap();
} ssemap; // functoid
// Secondary source encoder element
struct SSEContext {
U8 c1, n; // Count of 1's, count of bits
int p() const {return PSCALE*(c1*64+1)/(n*64+2);}
void update(int y) {
if (y)
++c1;
if (++n>254) { // Roll over count overflows
c1/=2;
n/=2;
}
}
SSEContext(): c1(0), n(0) {}
};
SSEContext (*sse)[SSE2+1]; // [SSE1][SSE2+1] context, mapped probability
U32 nextp; // p()
U32 ssep; // Output of sse
U32 context; // SSE context
public:
Predictor();
int p() const {return nextp;} // Returns pr(y = 1) * PSCALE
void update(int y); // Update model with bit y = 0 or 1
};
Predictor::SSEMap::SSEMap() {
for (int i=0; i<PSCALE; ++i) {
int p=int(64*log((i+0.5)/(PSCALE-0.5-i))+512);
if (p>1023) p=1023;
if (p<0) p=0;
table[i]=p;
}
}
Predictor::Predictor(): sse(0), nextp(PSCALE/2), ssep(512), context(0) {
ch.init();
// Initialize to sse[context][ssemap(p)] = p
if (MEM>=1) {
sse=(SSEContext(*)[SSE2+1]) new SSEContext[SSE1][SSE2+1];
int N=PSCALE;
int oldp=SSE2+1;
for (int i=N-1; i>=0; --i) {
int p=(ssemap(i*PSCALE/N)+SSESCALE/2)/SSESCALE;
int n=1+N*N/((i+1)*(N-i));
if (n>254) n=254;
int c1=(i*n+N/2)/N;
for (int j=oldp-1; j>=p; --j) {
for (int k=0; k<SSE1; ++k) {
sse[k][j].n=n;
sse[k][j].c1=c1;
}
}
oldp=p;
}
}
}
inline void Predictor::update(int y) {
// Update the bins below and above the last input probability, ssep
if (MEM>=1) {
sse[context][ssep/SSESCALE].update(y);
sse[context][ssep/SSESCALE+1].update(y);
}
// Adjust model mixing weights
mixer.update(y);
// Update individual models
ch.update(y);
defaultModel.model();
charModel.model();
if (MEM>=2)
matchModel.model();
if (MEM>=4) {
recordModel.model();
sparseModel.model();
analogModel.model();
wordModel.model();
}
if (MEM>=3)
exeModel.model();
// Combine probabilities
nextp=mixer.predict();
// Get final probability, interpolate SSE and average with original
if (MEM>=1) {
context=(ch(0)*4+ch(1)/64)*2+(ch.pos(0,3)<ch.pos(32,3)); // for SSE
ssep=ssemap(nextp);
U32 wt=ssep%SSESCALE;
U32 i=ssep/SSESCALE;
nextp=(((sse[context][i].p()*(SSESCALE-wt)+sse[context][i+1].p()*wt)
/SSESCALE)*3+nextp)/4;
}
}
//////////////////////////// Encoder ////////////////////////////
/* An Encoder does arithmetic encoding. Methods:
Encoder(COMPRESS, f) creates encoder for compression to archive f, which
must be open past the header for writing in binary mode
Encoder(DECOMPRESS, f) creates encoder for decompression from archive f,
which must be open past the header for reading in binary mode
encode(bit) in COMPRESS mode compresses bit to file f.
decode() in DECOMPRESS mode returns the next decompressed bit from file f.
flush() should be called when there is no more to compress
*/
typedef enum {COMPRESS, DECOMPRESS} Mode;
class Encoder {
private:
Predictor predictor;
const Mode mode; // Compress or decompress?
FILE* archive; // Compressed data file
U32 x1, x2; // Range, initially [0, 1), scaled by 2^32
U32 x; // Last 4 input bytes of archive.
public:
Encoder(Mode m, FILE* f);
void encode(int y); // Compress bit y
int decode(); // Uncompress and return bit y
void flush(); // Call when done compressing
};
// Constructor
Encoder::Encoder(Mode m, FILE* f): predictor(), mode(m), archive(f), x1(0),
x2(0xffffffff), x(0) {
// In DECOMPRESS mode, initialize x to the first 4 bytes of the archive
if (mode==DECOMPRESS) {
for (int i=0; i<4; ++i) {
int c=getc(archive);
if (c==EOF) c=0; // PAQ6v2 bug fix (thanks to Alexander Ratushnyak)
x=(x<<8)+(c&0xff);
}
}
}
/* encode(y) -- Encode bit y by splitting the range [x1, x2] in proportion
to P(1) and P(0) as given by the predictor and narrowing to the appropriate
subrange. Output leading bytes of the range as they become known. */
inline void Encoder::encode(int y) {
// Split the range
const U32 p=predictor.p()*(4096/PSCALE)+2048/PSCALE; // P(1) * 4K
assert(p<4096);
const U32 xdiff=x2-x1;
U32 xmid=x1; // = x1+p*(x2-x1) multiply without overflow, round down
if (xdiff>=0x4000000) xmid+=(xdiff>>12)*p;
else if (xdiff>=0x100000) xmid+=((xdiff>>6)*p)>>6;
else xmid+=(xdiff*p)>>12;
// Update the range
if (y)
x2=xmid;
else
x1=xmid+1;
predictor.update(y);
// Shift equal MSB's out
while (((x1^x2)&0xff000000)==0) {
putc(x2>>24, archive);
x1<<=8;
x2=(x2<<8)+255;
}
}
/* Decode one bit from the archive, splitting [x1, x2] as in the encoder
and returning 1 or 0 depending on which subrange the archive point x is in.
*/
inline int Encoder::decode() {
// Split the range
const U32 p=predictor.p()*(4096/PSCALE)+2048/PSCALE; // P(1) * 4K
assert(p<4096);
const U32 xdiff=x2-x1;
U32 xmid=x1; // = x1+p*(x2-x1) multiply without overflow, round down
if (xdiff>=0x4000000) xmid+=(xdiff>>12)*p;
else if (xdiff>=0x100000) xmid+=((xdiff>>6)*p)>>6;
else xmid+=(xdiff*p)>>12;
// Update the range
int y=0;
if (x<=xmid) {
y=1;
x2=xmid;
}
else
x1=xmid+1;
predictor.update(y);
// Shift equal MSB's out
while (((x1^x2)&0xff000000)==0) {
x1<<=8;
x2=(x2<<8)+255;
int c=getc(archive);
if (c==EOF) c=0;
x=(x<<8)+c;
}
return y;
}
// Should be called when there is no more to compress
void Encoder::flush() {
// In COMPRESS mode, write out the remaining bytes of x, x1 < x < x2
if (mode==COMPRESS) {
while (((x1^x2)&0xff000000)==0) {
putc(x2>>24, archive);
x1<<=8;
x2=(x2<<8)+255;
}
putc(x2>>24, archive); // First unequal byte
}
}
//////////////////////////// Transformer ////////////////////////////
/* A transformer compresses 1 byte at a time. It also provides a
place to insert transforms or filters in the future.
Transformer tf(COMPRESS, f) -- Initialize for compression to archive f
which must be open in "wb" mode with the header already written
Transformer tf(DECOMPRESS, f) -- Initialize for decompression from f which
must be open in "rb" mode past the header
tf.encode(c) -- Compress byte c
c = tf.decode() -- Decompress byte c
tf.flush() -- Should be called when compression is finished
*/
class Transformer {
Encoder e;
public:
Transformer(Mode mode, FILE* f): e(mode, f) {}
void encode(int c) {
for (int i=7; i>=0; --i)
e.encode((c>>i)&1);
}
U32 decode() {
U32 c=0;
for (int i=0; i<8; ++i)
c=c+c+e.decode();
return c;
}
void flush() {
e.flush();
}
};
//////////////////////////// main ////////////////////////////
// Read and return a line of input from FILE f (default stdin) up to
// first control character except tab. Skips CR in CR LF.
string getline(FILE* f=stdin) {
int c;
string result="";
while ((c=getc(f))!=EOF && (c>=32 || c=='\t'))
result+=char(c);
if (c=='\r')
(void) getc(f);
return result;
}
// User interface
int main(int argc, char** argv) {
int _mode = 0;
// Check arguments
if (argc<2) {
printf("KGB Archiver v1.0, (C) 2005-2006 Tomasz Pawlak\nBased on PAQ6 by Matt Mahoney\nmod by Slawek (poczta-sn@gazeta.pl)\n\n"
"Compression:\t\tkgb -<m> archive.kgb files <@files_list>\n"
"Decompression:\t\tkgb archive.kgb\n"
"Table of contents:\tmore < archive.kgb\n\n"
"m argument\tmemory usage\n"
"----------\t------------------------------\n"
" -0 \t 2 MB (the fastest compression)\n"
" -1 \t 3 MB\n"
" -2 \t 6 MB\n"
" -3 \t 18 MB (default)\n"
" -4 \t 64 MB\n"
" -5 \t 154 MB\n"
" -6 \t 202 MB\n"
" -7 \t 404 MB\n"
" -8 \t 808 MB\n"
" -9 \t 1616 MB (the best compression)\n");
return 1;
}
// Read and remove -MEM option
if (argc>1 && argv[1][0]=='-') {
if (isdigit(argv[1][1]) && argv[1][2]==0) {
MEM=argv[1][1]-'0';
}
else
printf("Option %s ignored\n", argv[1]);
argc--;
argv++;
}
// File names and sizes from input or archive
vector<string> filename; // List of names
vector<long long> filesize; // Size or -1 if error
int uncompressed_bytes=0, compressed_bytes=0; // Input, output sizes
// Extract files
FILE* archive=fopen(argv[1], "rb");
if (archive) {
_mode = 0;
if (argc>2) {
printf("File %s already exists\n", argv[1]);
return 1;
}
// Read PROGNAME " -m\r\n" at start of archive
string s=getline(archive);
if (s.substr(0, string(PROGNAME).size()) != PROGNAME) {
printf("Archive %s is not in KGB Archiver format\n", argv[1]);
return 1;
}
// Get option -m where m is a digit
if (s.size()>2 && s[s.size()-2]=='-') {
int c=s[s.size()-1];
if (c>='0' && c<='9')
MEM=c-'0';
}
printf("Extracting archive " PROGNAME " -%d %s ...\n", MEM, argv[1]);
// Read "size filename" in "%d\t%s\r\n" format
while (true) {
string s=getline(archive);
if (s.size()>1) {
filesize.push_back(atol(s.c_str()));
string::iterator tab=find(s.begin(), s.end(), '\t');
if (tab!=s.end())
filename.push_back(string(tab+1, s.end()));
else
filename.push_back("");
}
else
break;
}
// Test end of header for "\f\0"
{
int c1=0, c2=0;
if ((c1=getc(archive))!='\f' || (c2=getc(archive))!=0) {
printf("%s: Incorrect format of file header %d %d\n", argv[1],
c1, c2);
return 1;
}
}
// Extract files from archive data
Transformer e(DECOMPRESS, archive);
for (int i=0; i<int(filename.size()); ++i) {
printf("%10lldKB %s: ", filesize[i]/1024, filename[i].c_str());
if (!filename[i].empty() && filename[i][0] == '/')
{
printf("warning: converting absolute filename to a relative one: ");
filename[i].erase(0, 1);
}
// Compare with existing file
FILE* f=fopen(filename[i].c_str(), "rb");
const long long size=filesize[i];
uncompressed_bytes+=size;
if (f) {
bool different=false;
for (long j=0; j<size; ++j) {
int c1=e.decode();
int c2=getc(f);
if (!different && c1!=c2) {
printf("different: offset %ld, archive=%d file=%d\n",
j, c1, c2);
different=true;
}
}
if (!different)
printf("equal\n");
fclose(f);
}
// Extract to new file
else {
/* security bug fixed by Joxean Koret, 1/04/2006, Thanks!*/
/* f=fopen(filename[i].c_str(), "wb");
if (!f)
printf("cannot create, skipping...\n");
for (long j=0; j<size; ++j) {
int c=e.decode();
if (f)
putc(c, f);
*/
if (!((filename[i].find("../") != string::npos) || (filename[i].find("..\\") != string::npos)))
{
f=fopen(filename[i].c_str(), "wb");
if (!f)
printf("cannot create, skipping...\n");
for (long j=0; j<size; ++j) {
int c=e.decode();
if (f)
putc(c, f);
}
}
else
{
printf("cannot create file.\n");
printf("Directory traversal attack found while trying to create '%s' file\n", filename[i].c_str());
exit(EXIT_FAILURE);
}
/*end of security update*/
if (f) {
printf("extracted\n");
fclose(f);
}
}
}
compressed_bytes=ftell(archive);
fclose(archive);
}
// Compress files
else {
_mode = 1;
// Read file names from command line, input or @file with list of files
if (argc>2)
for (int i=2; i<argc; ++i) {//@sth: if @sth exists, compress it; if not, find file sth
if(argv[i][0]=='@'&&argv[i][1]!='\0') {
string fname=""; FILE* File;
File=fopen(argv[i],"r");
if(!File) {//checks if file @sth.ext does not exist
for(uint a=1; a<strlen(argv[i]); a++)
fname+=argv[i][a];
File=fopen(fname.c_str(),"r");
if(!File) {
printf("Cannot find listing file %s.\n",fname.c_str());
continue;
}
else {
char fchar=' ';
string sWork="";
while(true)
{
fchar=fgetc(File);
if(feof(File)) {
if(sWork!="")
filename.push_back(sWork);
break;
}
if(fchar>31&&fchar<127)
sWork+=fchar;
else if(fchar=='\n') {
if(sWork!="") {
filename.push_back(sWork);
sWork="";
}
}
else {
printf("The file %s is not valid listing file%d.\n",fname.c_str(),fchar);
break;
}
}
continue;
}
fclose(File);
}
else
fclose(File);
}
filename.push_back(argv[i]);
}
else {
printf(
"Type filenames to compress, finish with empty line:\n");
while (true) {
string s=getline(stdin);
if (s=="")
break;
else
filename.push_back(s);
}
}
// Get file sizes
for (int i=0; i<int(filename.size()); ++i) {
int f=open64(filename[i].c_str(), O_RDONLY);
if (!f) {
printf("File not found, skipping: %s\n",
filename[i].c_str());
filesize.push_back(-1);
}
else {
struct stat64 finfo;
if (fstat64(f, &finfo) != 0)
perror("fstat64() error");
else
filesize.push_back(finfo.st_size);
close(f);
}
}
if (filesize.empty() || *max_element(filesize.begin(), filesize.end())<0){
printf("Nothing to compress, archive won't be created.\n");
return 1;
}
// Write header
archive=fopen(argv[1], "wb");
if (!archive) {
printf("Cannot create archive: %s\n", argv[1]);
return 1;
}
fprintf(archive, PROGNAME " -%d\r\n", MEM);
for (int i=0; i<int(filename.size()); ++i) {
if (filename[i][0] == '/')
printf("warning: file name will be stored as absolute but uncompressed as relative: %s\n", filename[i].c_str());
if (filesize[i]>=0)
fprintf(archive, "%lld\t%s\r\n", filesize[i], filename[i].c_str());
}
putc(032, archive); // MSDOS EOF
putc('\f', archive);
putc(0, archive);
// Write data
Transformer e(COMPRESS, archive);
long long file_start=ftell(archive);
for (int i=0; i<int(filename.size()); ++i) {
const long long size=filesize[i];
if (size>=0) {
uncompressed_bytes+=size;
printf("%-23s %10lldKB -> ", filename[i].c_str(), size/1024);
FILE* f=fopen(filename[i].c_str(), "rb");
int c;
for (long long j=0; j<size; ++j) {
if (f)
c=getc(f);
else
c=0;
e.encode(c);
}
if (f)
fclose(f);
printf("%lldKB\n", (ftell(archive)-file_start)/1024);
file_start=ftell(archive);
}
}
e.flush();
compressed_bytes=ftell(archive);
fclose(archive);
}
// Report statistics
const double elapsed_time =
double(clock()-programChecker.start_time())/CLOCKS_PER_SEC;
if(_mode)
printf("%dKB -> %dKB w %1.2fs.", uncompressed_bytes/1024, compressed_bytes/1024,
elapsed_time);
else if(!_mode)
printf("%dKB -> %dKB w %1.2fs.", compressed_bytes/1024, uncompressed_bytes/1024,
elapsed_time);
if (uncompressed_bytes>0 && elapsed_time>0) {
printf(" (%1.2f%% czas: %1.0f KB/s)",
compressed_bytes*100.0/uncompressed_bytes,
uncompressed_bytes/(elapsed_time*1000.0));
}
printf("\n");
return 0;
}
|