File: test_sequence_validation.py

package info (click to toggle)
khmer 2.1.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 59,064 kB
  • sloc: cpp: 102,051; python: 19,654; ansic: 677; makefile: 578; sh: 167; xml: 19; javascript: 16
file content (346 lines) | stat: -rw-r--r-- 11,391 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# This file is part of khmer, https://github.com/dib-lab/khmer/, and is
# Copyright (C) 2013-2015, Michigan State University.
# Copyright (C) 2015-2016, The Regents of the University of California.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following
#       disclaimer in the documentation and/or other materials provided
#       with the distribution.
#
#     * Neither the name of the Michigan State University nor the names
#       of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written
#       permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Contact: khmer-project@idyll.org
# pylint: disable=missing-docstring,invalid-name

# Tests for the ReadParser and Read classes.
from __future__ import print_function
from __future__ import absolute_import
from khmer import _Countgraph, _Counttable, _SmallCountgraph, _SmallCounttable
from khmer import _Nodegraph, _Nodetable
from khmer import ReadParser, Nodegraph, _GraphLabels
from . import khmer_tst_utils as utils
import pytest


PRIMES_1m = [1000003, 1009837]


# all the table types!
@pytest.fixture(params=[_Countgraph, _Counttable, _SmallCountgraph,
                        _SmallCounttable, _Nodegraph, _Nodetable])
def Tabletype(request):
    return request.param


# all the counting types!
@pytest.fixture(params=[_Countgraph, _Counttable, _SmallCountgraph,
                        _SmallCounttable])
def Countingtype(request):
    return request.param


# all the graph types!
@pytest.fixture(params=[_Countgraph, _Nodegraph])
def Graphtype(request):
    return request.param


@pytest.yield_fixture
def reads():
    infile = utils.get_test_data('valid-read-testing.fq')
    reads = ReadParser(infile)
    yield reads
    reads.close()


def test_read_cleaning_consume_seqfile(Countingtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    x = Countingtype(15, PRIMES_1m)
    x.consume_seqfile(infile)

    # the relevant read will automatically get uppercased => abundance of 2
    kmer = "caggcgcccaccacc".upper()
    assert x.get(kmer) == 2

    # the 2nd read with this k-mer in it has an N in it.
    kmer = "CCTCATCGGCACCAG"
    assert x.get(kmer) == 2

    # the 2nd read with this k-mer in it has a Z in it
    kmer = "ACTGAGCTTCATGTC"
    assert x.get(kmer) == 2


def test_read_cleaning_consume_read_by_read(Countingtype, reads):
    x = Countingtype(15, PRIMES_1m)
    for read in reads:
        x.consume(read.sequence)          # consume raw sequence

    # the relevant read will be entirely ignored
    # (b/c ReadParser does not uppercase)
    kmer = "caggcgcccaccacc".upper()
    assert x.get(kmer) == 1

    # consume will ignore the invalid base in 2nd read containing this k-mer,
    # so the k-mer will have an abundance of 2.
    kmer = "CCTCATCGGCACCAG"
    assert x.get(kmer) == 2

    # consume will ignore the invalid base in 2nd read containing this k-mer,
    # so the k-mer will have an abundance of 2.
    kmer = "ACTGAGCTTCATGTC"
    assert x.get(kmer) == 2


def test_read_cleaning_consume_read_by_read_cleaned_seq(Countingtype, reads):
    x = Countingtype(15, PRIMES_1m)
    for read in reads:
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    # the relevant read will be cleaned & loaded
    kmer = "caggcgcccaccacc".upper()
    assert x.get(kmer) == 2

    # this k-mer will be correctly loaded
    kmer = "CCTCATCGGCACCAG"
    assert x.get(kmer) == 2

    # this k-mer will be correctly loaded
    kmer = "ACTGAGCTTCATGTC"
    assert x.get(kmer) == 2


def test_read_cleaning_abundance_distribution(Countingtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    x = Countingtype(15, PRIMES_1m)
    y = _Nodegraph(15, PRIMES_1m)

    x.consume_seqfile(infile)

    dist = x.abundance_distribution(infile, y)
    assert dist[1] == 35                  # k-mers with non-ACGTN => ignored.
    assert dist[2] == 69


def test_read_cleaning_trim_functions_lowercase(Tabletype, reads):
    # read this in using "approved good" behavior w/cleaned_seq
    x = Tabletype(8, PRIMES_1m)
    for read in reads:
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    # all of these functions will fail to do anything, b/c lowercase != valid
    # BUT they will not raise an exception, either.

    s = "caggcgcccaccaccgtgccctccaacctgatggt"
    _, where = x.trim_on_abundance(s, 1)
    assert where == 0

    _, where = x.trim_below_abundance(s, 0)
    print(x.get_kmer_counts(s))
    assert where == 35                    # stays at 35 (abunds all == 0)

    posns = x.find_spectral_error_positions(s, 1)
    assert posns == []


def test_read_cleaning_trim_functions_N(Countingtype, reads):
    # read this in using "approved good" behavior w/cleaned_seq
    x = Countingtype(8, PRIMES_1m)
    for read in reads:
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    s = "ACTGGGCGTAGNCGGTGTCCTCATCGGCACCAGC"
    _, where = x.trim_on_abundance(s, 1)
    assert where == 11

    _, where = x.trim_below_abundance(s, 2)
    assert where == 34

    posns = x.find_spectral_error_positions(s, 1)
    assert posns == [11]


def test_read_cleaning_trim_functions_bad_dna(Countingtype, reads):
    # read this in using "approved good" behavior w/cleaned_seq
    x = Countingtype(8, PRIMES_1m)
    for read in reads:
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    # the precise behavior of these functions is all *undefined*
    # because different hash functions do different things with
    # non-ACTG characters.  So all we want to do is verify that the
    # functions execute w/o error on the k-mers before the "bad" DNA,
    # and don't return positions in the "good" DNA.

    s = "CCGGCGTGGTTZZYAGGTCACTGAGCTTCATGTC"
    _, where = x.trim_on_abundance(s, 1)
    assert where >= 11

    _, where = x.trim_below_abundance(s, 2)
    assert where >= 11

    posns = x.find_spectral_error_positions(s, 1)
    for p in posns:
        assert p >= 11


def test_read_cleaning_output_partitions(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')
    savepath = utils.get_temp_filename('foo')

    # read this in using "approved good" behavior w/cleaned_seq
    x = Graphtype(8, PRIMES_1m)
    for read in ReadParser(infile):
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    kmer = 'caggcgcc'.upper()
    x.add_tag(kmer)
    x.set_partition_id(kmer, 1)

    kmer = 'ACTGGGCG'
    x.add_tag(kmer)
    x.set_partition_id(kmer, 2)

    kmer = 'CCGGCGTG'
    x.add_tag(kmer)
    x.set_partition_id(kmer, 3)

    x.output_partitions(infile, savepath)

    read_names = [read.name for read in ReadParser(savepath)]
    print(read_names)
    assert len(read_names) == 6

    print(read_names)
    assert '895:1:1:1246:14654 1:N:0:NNNNN\t1\t1' in read_names
    assert '895:1:1:1248:9583 1:N:0:NNNNN\t2\t2' in read_names
    assert '895:1:1:1252:19493 1:N:0:NNNNN\t3\t3' in read_names

    assert 'lowercase_to_uppercase\t5\t1' in read_names
    assert 'n_in_read\t6\t2' in read_names
    assert 'zy_in_read\t7\t3' in read_names


def test_read_cleaning_trim_on_stoptags(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    # read this in using "approved good" behavior w/cleaned_seq
    x = Graphtype(8, PRIMES_1m)
    for read in ReadParser(infile):
        x.consume(read.cleaned_seq)       # consume cleaned_seq

    # add this as a stop tag
    kmer = 'caggcgcc'.upper()
    x.add_stop_tag(kmer)

    kmer = 'ACTGGGCG'
    x.add_stop_tag(kmer)

    kmer = 'CCGGCGTG'
    x.add_stop_tag(kmer)

    _, pos = x.trim_on_stoptags('caggcgcccaccaccgtgccctccaacctgatggt')
    assert pos == 35                      # no stoptag b/c lowercase => no trim

    _, pos = x.trim_on_stoptags('ACTGGGCGTAGNCGGTGTCCTCATCGGCACCAGC')
    assert pos == 6                       # N ignored

    _, pos = x.trim_on_stoptags('CCGGCGTGGTTZZYAGGTCACTGAGCTTCATGTC')
    assert pos == 6                       # ZZY ignored


def test_consume_seqfile_and_tag(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    # read this in consume_and_tag
    x = Graphtype(8, PRIMES_1m)
    x.consume_seqfile_and_tag(infile)
    _, n_tags = x.count_partitions()
    assert n_tags == 5                    # total # of tags


def test_consume_partitioned_seqfile(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    # read this in consume_and_tag
    x = Graphtype(15, PRIMES_1m)
    x.consume_partitioned_fasta(infile)
    n_partitions, n_tags = x.count_partitions()
    assert n_partitions == 6
    assert n_tags == 0


def test_output_partitioned_file(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')
    savepath = utils.get_temp_filename('foo')

    # read this in consume_and_tag
    x = Graphtype(15, PRIMES_1m)
    x.consume_partitioned_fasta(infile)
    x.output_partitions(infile, savepath)

    read_names = [read.name for read in ReadParser(savepath)]
    read_names = set(read_names)

    good_names = ['895:1:1:1246:14654 1:N:0:NNNNN\t1\t5',
                  '895:1:1:1248:9583 1:N:0:NNNNN\t2\t6',
                  '895:1:1:1252:19493 1:N:0:NNNNN\t3\t3',
                  '895:1:1:1255:18861 1:N:0:NNNNN\t4\t8',
                  'lowercase_to_uppercase\t5\t5',
                  '895:1:1:1255:18861 1:N:0:NNNNN\t8\t8',
                  'n_in_read\t6\t6',
                  'zy_in_read\t7\t7',
                  'bad_dna_in_beginning\t9\t9']
    good_names = set(good_names)

    assert good_names == read_names


def test_consume_seqfile_and_tag_with_labels(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    # read this in consume_and_tag
    graph = Graphtype(15, PRIMES_1m)
    x = _GraphLabels(graph)
    x.consume_seqfile_and_tag_with_labels(infile)

    assert x.n_labels() == 9


def test_consume_partitioned_seqfile_and_label(Graphtype):
    infile = utils.get_test_data('valid-read-testing.fq')

    # read this in consume_and_tag
    graph = Graphtype(15, PRIMES_1m)
    x = _GraphLabels(graph)
    x.consume_partitioned_fasta_and_tag_with_labels(infile)

    assert x.n_labels() == 9


# vim: set filetype=python tabstop=4 softtabstop=4 shiftwidth=4 expandtab:
# vim: set textwidth=79: