File: ratsnest.cpp

package info (click to toggle)
kicad 4.0.5%2Bdfsg1-4~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 716,324 kB
  • sloc: cpp: 417,187; ansic: 11,268; python: 3,181; sh: 1,425; awk: 294; makefile: 275; xml: 37; perl: 5
file content (929 lines) | stat: -rw-r--r-- 31,562 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
 * Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

/**
 * @file ratsnest.cpp
 * @brief Ratsnets functions.
 */

#include <fctsys.h>
#include <gr_basic.h>
#include <common.h>
#include <class_drawpanel.h>
#include <colors_selection.h>
#include <wxBasePcbFrame.h>
#include <macros.h>

#include <class_board.h>
#include <class_module.h>
#include <class_track.h>

#include <pcbnew.h>

#include <minimun_spanning_tree.h>

/**
 * @brief class MIN_SPAN_TREE_PADS (derived from MIN_SPAN_TREE) specializes
 * the base class to calculate a minimum spanning tree from a list of pads,
 * and to add this tree as ratsnest to the main ratsnest list.
 */
class MIN_SPAN_TREE_PADS: public MIN_SPAN_TREE
{
    friend class MIN_SPAN_TREE;
public:
    std::vector <D_PAD*>* m_PadsList;   // list of pads:
    /* these pads are the parents of nodes of the tree.
     * Each node position is the corresponding pad position.
     * This pad list is used to evaluate the weight of an edge in tree.
     * -> edge = link between 2 nodes = links between 2 pads.
     * -> weight of a link = rectilinear distance between the 2 pads
     */

public:
    MIN_SPAN_TREE_PADS(): MIN_SPAN_TREE()
    {
        m_PadsList = NULL;
    }

    void MSP_Init( std::vector <D_PAD*>* aPadsList )
    {
        m_PadsList = aPadsList;
        MIN_SPAN_TREE::MSP_Init( (int) m_PadsList->size() );
    }

    /**
     * Function AddTreeToRatsnest
     * Adds the current minimum spanning tree as ratsnest items
     * to the main ratsnest list
     * @param aRatsnestList = a ratsnest list to add to
     */
    void AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList );

    /**
     * Function GetWeight
     * calculates the weight between 2 items
     * NOTE: The weight between a node and itself should be 0
     * @param aItem1 = first item
     * @param aItem2 = other item
     * @return the weight between items ( the rectilinear distance )
     */
    int GetWeight( int aItem1, int aItem2 );
};


void MIN_SPAN_TREE_PADS::AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList )
{
    std::vector<D_PAD*>& padsBuffer = *m_PadsList;

    if( padsBuffer.empty() )
        return;

    int netcode = padsBuffer[0]->GetNetCode();

    // Note: to get edges in minimum spanning tree,
    // the index value 0 is not used: it is just
    // the entry point of the minimum spanning tree.
    // The first edge (i.e. rastnest) starts at index 1
    for( int ii = 1; ii < m_Size; ii++ )
    {
        // Create the new ratsnest
        RATSNEST_ITEM net;

        net.SetNet( netcode );
        net.m_Status   = CH_ACTIF | CH_VISIBLE;
        net.m_Lenght   = GetDist(ii);
        net.m_PadStart = padsBuffer[ii];
        net.m_PadEnd   = padsBuffer[ GetWhoTo(ii) ];

        aRatsnestList->push_back( net );
    }
}

/* Function GetWeight
 * calculates the weight between 2 items
 * Here it calculate the rectilinear distance between 2 pads (2 items)
 * NOTE: The weight between a node and itself should be <=0
 * aItem1 and aItem2 are the 2 items
 * return the rectilinear distance
 */
int MIN_SPAN_TREE_PADS::GetWeight( int aItem1, int aItem2 )
{
    // NOTE: The distance (weight) between a node and itself should be 0
    // so we add 1 to other distances to be sure we never have 0
    // in cases other than a node and itself

    D_PAD* pad1 = (*m_PadsList)[aItem1];
    D_PAD* pad2 = (*m_PadsList)[aItem2];

    if( pad1 == pad2 )
        return 0;

    int weight = abs( pad2->GetPosition().x - pad1->GetPosition().x ) +
                 abs( pad2->GetPosition().y - pad1->GetPosition().y );
    return weight + 1;
}


/* Note about the ratsnest computation:
 * Building the general ratsnest:
 * For each net, the ratsnest is the set of lines connecting pads,
 * using the shorter distance
 * Therefore this problem is well known in graph therory, and sloved
 * using the "minimum spanning tree".
 * We use here an algorithm to build the minimum spanning tree known as Prim's algorithm
 */

/**
 * Function Compile_Ratsnest
 *  Create the entire board ratsnest.
 *  Must be called after a board change (changes for
 *  pads, footprints or a read netlist ).
 * @param aDC = the current device context (can be NULL)
 * @param aDisplayStatus : if true, display the computation results
 */
void PCB_BASE_FRAME::Compile_Ratsnest( wxDC* aDC, bool aDisplayStatus )
{
    wxString msg;

    GetBoard()->m_Status_Pcb = 0;   // we want a full ratsnest computation, from the scratch
    ClearMsgPanel();

    // Rebuild the full pads and net info list
    RecalculateAllTracksNetcode();

    if( aDisplayStatus )
    {
        msg.Printf( wxT( " %d" ), m_Pcb->GetPadCount() );
        AppendMsgPanel( wxT( "Pads" ), msg, RED );
        msg.Printf( wxT( " %d" ), m_Pcb->GetNetCount() );
        AppendMsgPanel( wxT( "Nets" ), msg, CYAN );
    }

    /* Compute the full ratsnest
     *  which can be see like all the possible links or logical connections.
     *  some of them are active (no track connected) and others are inactive
     * (when tracks connect pads)
     *  This full ratsnest is not modified by track editing.
     *  It changes only when a netlist is read, or footprints are modified
     */
    Build_Board_Ratsnest();

    // Compute the pad connections due to the existing tracks (physical connections)
    TestConnections();

    /* Compute the active ratsnest, i.e. the unconnected links
     */
    TestForActiveLinksInRatsnest( 0 );

    // Redraw the active ratsnest ( if enabled )
    if( GetBoard()->IsElementVisible(RATSNEST_VISIBLE) && aDC )
        DrawGeneralRatsnest( aDC, 0 );

    if( aDisplayStatus )
        SetMsgPanel( m_Pcb );
}


/* Sort function used by  QSORT
 *  Sort pads by net code
 */
static bool sortByNetcode( const D_PAD* const & ref, const D_PAD* const & item )
{
    return ref->GetNetCode() < item->GetNetCode();
}


/**
 * Function to compute the full ratsnest
 * This is the "basic" ratsnest depending only on pads.
 *
 * Create the sorted pad list (if necessary)
 * The active pads (i.e included in a net ) are called nodes
 * This pad list is sorted by net codes
 * A ratsnest can be seen as a logical connection.
 *
 * Update :
 *      nb_nodes = Active pads count for the board
 *      nb_links = link count for the board (logical connection count)
 *      (there are n-1 links in a net which counting n active pads) .
 */
void PCB_BASE_FRAME::Build_Board_Ratsnest()
{
    D_PAD* pad;
    int    noconn;

    m_Pcb->SetUnconnectedNetCount( 0 );

    m_Pcb->m_FullRatsnest.clear();

    if( m_Pcb->GetPadCount() == 0 )
        return;

    // Created pad list and the net_codes if needed
    if( (m_Pcb->m_Status_Pcb & NET_CODES_OK) == 0 )
        m_Pcb->BuildListOfNets();

    for( unsigned ii = 0; ii<m_Pcb->GetPadCount(); ++ii )
    {
        pad = m_Pcb->GetPad( ii );
        pad->SetSubRatsnest( 0 );
    }

    if( m_Pcb->GetNodesCount() == 0 )
        return;                       // No useful connections.

    // Ratsnest computation
    unsigned current_net_code = 1;      // First net code is analyzed.
                                        // (net_code = 0 -> no connect)
    noconn = 0;
    MIN_SPAN_TREE_PADS min_spanning_tree;

    for( ; current_net_code < m_Pcb->GetNetCount(); current_net_code++ )
    {
        NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code );

        if( !net )       // Should not occur
        {
            UTF8 msg = StrPrintf( "%s: error, net %d not found", __func__, current_net_code );
            wxMessageBox( msg );   // BTW, it does happen.
            return;
        }

        net->m_RatsnestStartIdx = m_Pcb->GetRatsnestsCount();

        min_spanning_tree.MSP_Init( &net->m_PadInNetList );
        min_spanning_tree.BuildTree();
        min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_FullRatsnest );
        net->m_RatsnestEndIdx = m_Pcb->GetRatsnestsCount();
    }

    m_Pcb->SetUnconnectedNetCount( noconn );
    m_Pcb->m_Status_Pcb |= LISTE_RATSNEST_ITEM_OK;

    // Update the ratsnest display option (visible/invisible) flag
    for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
    {
        if( !GetBoard()->IsElementVisible( RATSNEST_VISIBLE ) )  // Clear VISIBLE flag
            m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE;
    }
}


/**
 *  function DrawGeneralRatsnest
 *  Only ratsnest items with the status bit CH_VISIBLE set are displayed
 * @param aDC = the current device context (can be NULL)
 * @param aNetcode: if > 0, Display only the ratsnest relative to the
 * corresponding net_code
 */
void PCB_BASE_FRAME::DrawGeneralRatsnest( wxDC* aDC, int aNetcode )
{
    if( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
        return;

    if( ( m_Pcb->m_Status_Pcb & DO_NOT_SHOW_GENERAL_RASTNEST ) )
        return;

    if( aDC == NULL )
        return;

    const int state = CH_VISIBLE | CH_ACTIF;

    for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
    {
        RATSNEST_ITEM& item = m_Pcb->m_FullRatsnest[ii];

        if( ( item.m_Status & state ) != state )
            continue;

        if( ( aNetcode <= 0 ) || ( aNetcode == item.GetNet() ) )
        {
            item.Draw( m_canvas, aDC, GR_XOR, wxPoint( 0, 0 ) );
        }
    }
}


/**
 * Function used by TestForActiveLinksInRatsnest
 *  Function testing the ratsnest between 2 blocks ( of the same net )
 *  The search is made between pads in block 1 and the others blocks
 *  The block n ( n > 1 ) is merged with block 1 and linked by the smallest ratsnest
 *  between block 1 and the block n (activate the logical connection)
 *  @param  aRatsnestBuffer = the buffer to store NETINFO_ITEM* items
 *  @param  aNetinfo = the current NETINFO_ITEM for the current net
 *  output: .state member, bit CH_ACTIF of the ratsnest item
 *  @return  last subratsnest id in use
 */
static int tst_links_between_blocks( NETINFO_ITEM*          aNetinfo,
                                     std::vector<RATSNEST_ITEM>& aRatsnestBuffer )
{
    int            subratsnest_id, min_id;
    RATSNEST_ITEM* link, * best_link;

    // Search a link from a block to another block
    best_link = NULL;

    for( unsigned ii = aNetinfo->m_RatsnestStartIdx; ii < aNetinfo->m_RatsnestEndIdx; ii++ )
    {
        link = &aRatsnestBuffer[ii];

        // If this link joints 2 pads inside the same block, do nothing
        // (these pads are already connected)
        if( link->m_PadStart->GetSubRatsnest() == link->m_PadEnd->GetSubRatsnest() )
            continue;

        // This link joints 2 pads of different blocks: this is a candidate,
        // but we want to select the shorter link, so use it only if it is shorter
        // than the previous candidate:
        if( best_link == NULL )  // no candidate
            best_link = link;
        else if( best_link->m_Lenght > link->m_Lenght )  // It is a better candidate.
            best_link = link;
    }

    if( best_link == NULL )
        return 1;

    /* At this point we have found a link between 2 different blocks (subratsnest)
     * we must set its status to ACTIVE and merge the 2 blocks
     */
    best_link->m_Status |= CH_ACTIF;
    subratsnest_id   = best_link->m_PadStart->GetSubRatsnest();
    min_id = best_link->m_PadEnd->GetSubRatsnest();

    if( min_id > subratsnest_id )
        std::swap( min_id, subratsnest_id );

    // Merge the 2 blocks in one sub ratsnest:
    for( unsigned ii = 0; ii < aNetinfo->m_PadInNetList.size(); ii++ )
    {
        if( aNetinfo->m_PadInNetList[ii]->GetSubRatsnest() == subratsnest_id )
        {
            aNetinfo->m_PadInNetList[ii]->SetSubRatsnest( min_id );
        }
    }

    return subratsnest_id;
}


/**
 * Function used by TestForActiveLinksInRatsnest_general
 *  The general ratsnest list must exists because this function explores this ratsnest
 *  Activates (i.e. set the CH_ACTIF flag) the ratsnest links between 2 pads when
 *  at least one pad not already connected (SubRatsnest = 0)
 *  and actives the corresponding link
 *
 * @param   aFirstItem = starting address for the ratsnest list
 * @param   aLastItem   = ending address for the ratsnest list
 * @param   aCurrSubRatsnestId =  last sub ratsnest id in use (computed from the track
 * analysis)
 *
 *      output:
 *          ratsnest list (status member bit CH_ACTIF set)
 *          and pads linked (m_SubRatsnest value set)
 *
 * @return new block number
 */
static void tst_links_between_pads( int &      aCurrSubRatsnestId,
                                RATSNEST_ITEM* aFirstItem,
                                RATSNEST_ITEM* aLastItem )
{
    for( RATSNEST_ITEM* item = aFirstItem; item < aLastItem; item++ )
    {
        D_PAD* pad_start = item->m_PadStart;
        D_PAD* pad_end   = item->m_PadEnd;

        /* Update the current SubRatsnest if the 2 pads are not connected :
         * a new cluster is created and the link activated
         */
        if( (pad_start->GetSubRatsnest() == 0) && (pad_end->GetSubRatsnest() == 0) )
        {
            aCurrSubRatsnestId++;
            pad_start->SetSubRatsnest( aCurrSubRatsnestId );
            pad_end->SetSubRatsnest( aCurrSubRatsnestId );
            item->m_Status |= CH_ACTIF;
        }

        /* If a pad is already connected to a subratsnest: activate the link
         * the pad other is merged in the existing subratsnest
         */
        else if( pad_start->GetSubRatsnest() == 0 )
        {
            pad_start->SetSubRatsnest( pad_end->GetSubRatsnest() );
            item->m_Status |= CH_ACTIF;
        }
        else if( pad_end->GetSubRatsnest() == 0 )
        {
            pad_end->SetSubRatsnest( pad_start->GetSubRatsnest() );
            item->m_Status |= CH_ACTIF;
        }
    }
}

/* function TestForActiveLinksInRatsnest
 * determine the active links inside the full ratsnest
 *
 * I used an algorithm inspired by the "Lee algorithm".
 * The idea is all pads must be connected by a physical track or a logical track
 * a physical track is the existing track on copper layers.
 * a logical track is the link that must be activated (visible) if
 * no track found between 2 pads.
 * The algorithm explore the existing full ratnest
 * This is a 2 steps algorithm (executed for each net).
 * - First:
 *   Initialise for each pad the subratsnest id to its subnet value
 *   explore the full ratnest (relative to the net) and active a link each time at least one pad of
 *   the given link is not connected to another pad by a track ( subratsnest = 0)
 *   If the 2 pads linked have both the subratsnest id = 0, a new subratsnest value is created
 * -  Second:
 *   explore the full ratnest (relative to the net) and find a link that links
 *   2 pads having different subratsnest values
 *   Active the link and merge the 2 subratsnest value.
 *
 * This is usually fast because the ratsnest is not built here: it is just explored
 * to see what link must be activated
 */
void PCB_BASE_FRAME::TestForActiveLinksInRatsnest( int aNetCode )
{
    RATSNEST_ITEM* rats;
    D_PAD*         pad;
    NETINFO_ITEM*  net;

    if( m_Pcb->GetPadCount() == 0 )
        return;

    if( (m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK) == 0 )
        Build_Board_Ratsnest();

    for( int net_code = 1; net_code < (int) m_Pcb->GetNetCount(); net_code++ )
    {
        net = m_Pcb->FindNet( net_code );

        wxCHECK_RET( net != NULL,
                     wxString::Format( wxT( "Net code %d not found!" ), net_code ) );

        if( aNetCode && (net_code != aNetCode) )
            continue;

        // Create subratsnests id from subnets created by existing tracks:
        int subratsnest = 0;
        for( unsigned ip = 0; ip < net->m_PadInNetList.size(); ip++ )
        {
            pad = net->m_PadInNetList[ip];
            int subnet = pad->GetSubNet();
            pad->SetSubRatsnest( subnet );
            subratsnest = std::max( subratsnest, subnet );
        }

        for( unsigned ii = net->m_RatsnestStartIdx; ii < net->m_RatsnestEndIdx; ii++ )
        {
            m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_ACTIF;
        }

        // First pass - activate links for not connected pads
        rats = &m_Pcb->m_FullRatsnest[0];
        tst_links_between_pads( subratsnest,
                                rats + net->m_RatsnestStartIdx,
                                rats + net->m_RatsnestEndIdx );

        // Second pass activate links between blocks (Iteration)
        while( subratsnest > 1 )
        {
            subratsnest = tst_links_between_blocks( net, m_Pcb->m_FullRatsnest );
        }
    }

    m_Pcb->SetUnconnectedNetCount( 0 );

    unsigned cnt = 0;

    for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
    {
        if( m_Pcb->m_FullRatsnest[ii].IsActive() )
            cnt++;
    }

    m_Pcb->SetUnconnectedNetCount( cnt );
}


void PCB_BASE_FRAME::build_ratsnest_module( MODULE* aModule )
{
    // for local ratsnest calculation when moving a footprint:
    // list of pads to use for this local ratsnets:
    // this is the list of connected pads of the current module,
    // and all pads connected to these pads:
    static std::vector <D_PAD*> localPadList;
    static unsigned pads_module_count;  // node count (node = pad with a net
                                        // code) for the footprint being moved
    static unsigned internalRatsCount;  // number of internal links (links
                                        // between pads of the module)
    D_PAD*          pad_ref;
    D_PAD*          pad_externe;
    int             current_net_code;
    int             distance;
    wxPoint         pad_pos;            // True pad position according to the
                                        // current footprint position

    if( (GetBoard()->m_Status_Pcb & LISTE_PAD_OK) == 0 )
    {
        GetBoard()->m_Status_Pcb = 0;
        GetBoard()->BuildListOfNets();
    }

    /* Compute the "local" ratsnest if needed (when this footprint starts move)
     *  and the list of external pads to consider, i.e pads in others
     * footprints which are "connected" to
     *  a pad in the current footprint
     */
    if( (m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) == 0 )
    {
        // Compute the "internal" ratsnest, i.e the links between the current
        // footprint pads
        localPadList.clear();
        m_Pcb->m_LocalRatsnest.clear();

        // collect active pads of the module:
        for( pad_ref = aModule->Pads();  pad_ref;  pad_ref = pad_ref->Next() )
        {
            if( pad_ref->GetNetCode() == NETINFO_LIST::UNCONNECTED )
                continue;

            localPadList.push_back( pad_ref );
            pad_ref->SetSubRatsnest( 0 );
            pad_ref->SetSubNet( 0 );
        }

        pads_module_count = localPadList.size();

        if( pads_module_count == 0 )
            return;  // no connection!

        sort( localPadList.begin(), localPadList.end(), sortByNetcode );

        // Build the list of pads linked to the current footprint pads
        current_net_code = 0;

        for( unsigned ii = 0; ii < pads_module_count; ii++ )
        {
            pad_ref = localPadList[ii];

            if( pad_ref->GetNetCode() == current_net_code )
                continue;

            // A new net was found, load all pads of others modules members of this net:
            NETINFO_ITEM* net = pad_ref->GetNet();

            if( net == NULL )       //Should not occur
            {
                wxMessageBox( wxT( "build_ratsnest_module() error: net not found" ) );
                return;
            }

            for( unsigned jj = 0; jj < net->m_PadInNetList.size(); jj++ )
            {
                pad_externe = net->m_PadInNetList[jj];

                if( pad_externe->GetParent() == aModule )
                    continue;

                pad_externe->SetSubRatsnest( 0 );
                pad_externe->SetSubNet( 0 );

                localPadList.push_back( pad_externe );
            }
        }

        // Sort the pad list by net_code
        sort( localPadList.begin() + pads_module_count, localPadList.end(),
               sortByNetcode );

        /* Compute the internal rats nest:
         *  this is the same as general ratsnest, but considers only the current
         * footprint pads it is therefore not time consuming, and it is made only
         * once
         */
        current_net_code = localPadList[0]->GetNetCode();

        MIN_SPAN_TREE_PADS  min_spanning_tree;
        std::vector<D_PAD*> padsBuffer;     // contains pads of only one net

        for( unsigned ii = 0; ii < pads_module_count; ii++ )
        {
            // Search the end of pad list relative to the current net
            unsigned jj = ii + 1;

            for( ; jj <= pads_module_count; jj++ )
            {
                if( jj >= pads_module_count )
                    break;

                if( localPadList[jj]->GetNetCode() != current_net_code )
                    break;
            }

            for( unsigned kk = ii;  kk < jj;  kk++ )
                padsBuffer.push_back( localPadList[kk] );

            min_spanning_tree.MSP_Init( &padsBuffer );
            min_spanning_tree.BuildTree();
            min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_LocalRatsnest );
            padsBuffer.clear();

            ii = jj;

            if( ii < localPadList.size() )
                current_net_code = localPadList[ii]->GetNetCode();
        }

        internalRatsCount = m_Pcb->m_LocalRatsnest.size();

        // set the flag LOCAL_RATSNEST_ITEM of the ratsnest status:
        for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
            m_Pcb->m_LocalRatsnest[ii].m_Status = LOCAL_RATSNEST_ITEM;

        m_Pcb->m_Status_Pcb |= RATSNEST_ITEM_LOCAL_OK;
    }   // End of internal ratsnest build

    /* This section computes the "external" ratsnest: it is done when the
     * footprint position changes
     *
     * This section search:
     *  for each current module pad the nearest neighbor external pad (of
     * course for the same net code).
     *  For each current footprint cluster of pad (pads having the same net
     * code),
     *  we search the smaller rats nest.
     *  so, for each net, only one rats nest item is created
     */
    RATSNEST_ITEM local_rats;

    local_rats.m_Lenght = INT_MAX;
    local_rats.m_Status = 0;
    bool addRats = false;

    // Erase external ratsnest items:
    if( internalRatsCount < m_Pcb->m_LocalRatsnest.size() )
        m_Pcb->m_LocalRatsnest.erase( m_Pcb->m_LocalRatsnest.begin() + internalRatsCount,
                                      m_Pcb->m_LocalRatsnest.end() );

    current_net_code = localPadList[0]->GetNetCode();

    for( unsigned ii = 0; ii < pads_module_count; ii++ )
    {
        pad_ref = localPadList[ii];

        if( pad_ref->GetNetCode() != current_net_code )
        {
            // if needed, creates a new ratsnest for the old net
            if( addRats )
            {
                m_Pcb->m_LocalRatsnest.push_back( local_rats );
            }

            addRats = false;
            current_net_code    = pad_ref->GetNetCode();
            local_rats.m_Lenght = INT_MAX;
        }

        pad_pos = pad_ref->GetPosition() - g_Offset_Module;

        // Search the nearest external pad of this current pad
        for( unsigned jj = pads_module_count; jj < localPadList.size(); jj++ )
        {
            pad_externe = localPadList[jj];

            // we search pads having the same net code
            if( pad_externe->GetNetCode() < pad_ref->GetNetCode() )
                continue;

            if( pad_externe->GetNetCode() > pad_ref->GetNetCode() ) // pads are sorted by net code
                break;

            distance = abs( pad_externe->GetPosition().x - pad_pos.x ) +
                       abs( pad_externe->GetPosition().y - pad_pos.y );

            if( distance < local_rats.m_Lenght )
            {
                local_rats.m_PadStart = pad_ref;
                local_rats.m_PadEnd   = pad_externe;
                local_rats.SetNet( pad_ref->GetNetCode() );
                local_rats.m_Lenght = distance;
                local_rats.m_Status = 0;

                addRats = true;
            }
        }
    }

    if( addRats ) // Ensure the last created rats nest item is stored in buffer
        m_Pcb->m_LocalRatsnest.push_back( local_rats );
}


void PCB_BASE_FRAME::TraceModuleRatsNest( wxDC* DC )
{
    if( DC == NULL )
        return;

    if( ( m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 )
        return;

    EDA_COLOR_T tmpcolor = g_ColorsSettings.GetItemColor(RATSNEST_VISIBLE);

    for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
    {
        RATSNEST_ITEM* rats = &m_Pcb->m_LocalRatsnest[ii];

        if( rats->m_Status & LOCAL_RATSNEST_ITEM )
        {
            g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, YELLOW);
            rats->Draw( m_canvas, DC, GR_XOR, g_Offset_Module );
        }
        else
        {
            g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor);

            wxPoint tmp = rats->m_PadStart->GetPosition();

            rats->m_PadStart->SetPosition( tmp - g_Offset_Module );
            rats->Draw( m_canvas, DC, GR_XOR, wxPoint( 0, 0 ) );

            rats->m_PadStart->SetPosition( tmp );
        }
    }

    g_ColorsSettings.SetItemColor( RATSNEST_VISIBLE, tmpcolor );
}


/*
 * PCB_BASE_FRAME::BuildAirWiresTargetsList and
 * PCB_BASE_FRAME::TraceAirWiresToTargets
 * are 2 function to show the near connecting points when
 * a new track is created, by displaying g_MaxLinksShowed airwires
 * between the on grid mouse cursor and these connecting points
 * during the creation of a track
 */

/* Buffer to store pads coordinates when creating a track.
 *  these pads are members of the net
 *  and when the mouse is moved, the g_MaxLinksShowed links to neighbors are
 * drawn
 */
static std::vector <wxPoint> s_TargetsLocations;
static wxPoint s_CursorPos; // Coordinate of the moving point (mouse cursor and
                            // end of current track segment)

/* Used by BuildAirWiresTargetsList(): sort function by link length
 * (rectilinear distance between s_CursorPos and item pos)
 */
static bool sort_by_distance( const wxPoint& ref, const wxPoint& compare )
{
    wxPoint deltaref = ref - s_CursorPos;       // relative coordinate of ref
    wxPoint deltacmp = compare - s_CursorPos;   // relative coordinate of compare

    // rectilinear distance between ref and s_CursorPos:
    int     lengthref = abs( deltaref.x ) + abs( deltaref.y );

    // rectilinear distance between compare and s_CursorPos:
    int     lengthcmp = abs( deltacmp.x ) + abs( deltacmp.y );

    return lengthref < lengthcmp;
}

static bool sort_by_point( const wxPoint& ref, const wxPoint& compare )
{
    if( ref.x == compare.x )
        return ref.y < compare.y;

    return ref.x < compare.x;
}

/* Function BuildAirWiresTargetsList
 * Build a list of candidates that can be a coonection point
 * when a track is started.
 * This functions prepares data to show airwires to nearest connecting points (pads)
 * from the current new track to candidates during track creation
 */
void PCB_BASE_FRAME::BuildAirWiresTargetsList( BOARD_CONNECTED_ITEM* aItemRef,
                                               const wxPoint& aPosition, bool aInit )
{
    if( ( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
       || ( ( m_Pcb->m_Status_Pcb & LISTE_PAD_OK ) == 0 )
       || ( ( m_Pcb->m_Status_Pcb & NET_CODES_OK ) == 0 ) )
    {
        s_TargetsLocations.clear();
        return;
    }

    s_CursorPos = aPosition;    // needed for sort_by_distance

    if( aInit )
    {
        s_TargetsLocations.clear();

        if( aItemRef == NULL )
            return;

        int net_code = aItemRef->GetNetCode();
        int subnet = aItemRef->GetSubNet();

        if( net_code <= 0 )
            return;

        NETINFO_ITEM* net = m_Pcb->FindNet( net_code );

        if( net == NULL )        // Should not occur
        {
            wxMessageBox( wxT( "BuildAirWiresTargetsList() error: net not found" ) );
            return;
        }

        // Create a list of pads candidates ( pads not already connected to the
        // current track ):
        for( unsigned ii = 0; ii < net->m_PadInNetList.size(); ii++ )
        {
            D_PAD* pad = net->m_PadInNetList[ii];

            if( pad == aItemRef )
                continue;

            if( !pad->GetSubNet() || (pad->GetSubNet() != subnet) )
                s_TargetsLocations.push_back( pad->GetPosition() );
        }

        // Create a list of tracks ends candidates, not already connected to the
        // current track:
        for( TRACK* track = m_Pcb->m_Track; track; track = track->Next() )
        {
            if( track->GetNetCode() < net_code )
                continue;
            if( track->GetNetCode() > net_code )
                break;

            if( !track->GetSubNet() || (track->GetSubNet() != subnet) )
            {
                if( aPosition != track->GetStart() )
                    s_TargetsLocations.push_back( track->GetStart() );
                if( aPosition != track->GetEnd() && track->GetStart() != track->GetEnd() )
                    s_TargetsLocations.push_back( track->GetEnd() );
            }
        }

        // Remove duplicate targets, using the C++ unique algorithm
        sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_point );
        std::vector< wxPoint >::iterator it = unique( s_TargetsLocations.begin(), s_TargetsLocations.end() );

        // Using the C++ unique algorithm only moves the duplicate entries to the end of
        // of the array.  This removes the duplicate entries from the array.
        s_TargetsLocations.resize( it - s_TargetsLocations.begin() );
    }   // end if Init

    // in all cases, sort by distances:
    sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_distance );
}


void PCB_BASE_FRAME::TraceAirWiresToTargets( wxDC* aDC )
{
    if( aDC == NULL )
        return;

    if( s_TargetsLocations.size() == 0 )
        return;

    GRSetDrawMode( aDC, GR_XOR );
    DISPLAY_OPTIONS* displ_opts = (DISPLAY_OPTIONS*)GetDisplayOptions();

    for( int ii = 0; ii < (int) s_TargetsLocations.size(); ii++ )
    {
        if( ii >= displ_opts->m_MaxLinksShowed )
            break;

        GRLine( m_canvas->GetClipBox(), aDC, s_CursorPos, s_TargetsLocations[ii], 0, YELLOW );
    }
}