File: cmaterial.cpp

package info (click to toggle)
kicad 5.0.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 234,592 kB
  • sloc: cpp: 505,330; ansic: 57,038; python: 4,886; sh: 879; awk: 294; makefile: 253; xml: 103; perl: 5
file content (325 lines) | stat: -rw-r--r-- 11,742 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
 * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

/**
 * @file  cmaterial.cpp
 * @brief
 */

#include "cmaterial.h"
#include <3d_math.h>
#include <wx/debug.h>

// This may be a good value if based on nr of lights
// that contribute to the illumination of that point
#define AMBIENT_FACTOR  (1.0f / 6.0f)
#define SPECULAR_FACTOR 1.0f

CMATERIAL::CMATERIAL()
{
    m_ambientColor  = SFVEC3F( 0.2f, 0.2f, 0.2f );
    m_emissiveColor = SFVEC3F( 0.0f, 0.0f, 0.0f );
    m_specularColor = SFVEC3F( 1.0f, 1.0f, 1.0f );
    m_shinness      = 50.2f;
    m_transparency  = 0.0f; // completely opaque
    m_cast_shadows  = true;
    m_reflection    = 0.0f;
    m_absorbance    = 1.0f;
    m_refraction_nr_samples = 4;
    m_reflections_nr_samples = 3;

    m_normal_perturbator = NULL;
}


CMATERIAL::CMATERIAL( const SFVEC3F &aAmbient,
                      const SFVEC3F &aEmissive,
                      const SFVEC3F &aSpecular,
                      float aShinness,
                      float aTransparency,
                      float aReflection )
{
    wxASSERT( aReflection >= 0.0f );
    wxASSERT( aReflection <= 1.0f );

    wxASSERT( aTransparency >= 0.0f );
    wxASSERT( aTransparency <= 1.0f );

    wxASSERT( aShinness >= 0.0f );
    wxASSERT( aShinness <= 180.0f );

    m_ambientColor  = aAmbient * SFVEC3F(AMBIENT_FACTOR);

    m_emissiveColor = aEmissive;
    m_specularColor = aSpecular;
    m_shinness      = aShinness;
    m_transparency  = aTransparency;
    m_absorbance    = 1.0f;
    m_reflection    = aReflection;
    m_cast_shadows  = true;
    m_refraction_nr_samples = 4;
    m_reflections_nr_samples = 3;

    m_normal_perturbator = NULL;
}


void CMATERIAL::PerturbeNormal( SFVEC3F &aNormal,
                                const RAY &aRay,
                                const HITINFO &aHitInfo ) const
{
    if( m_normal_perturbator )
    {
        aNormal = aNormal + m_normal_perturbator->Generate( aRay, aHitInfo );
        aNormal = glm::normalize( aNormal );
    }
}


// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
SFVEC3F CBLINN_PHONG_MATERIAL::Shade( const RAY &aRay,
                                      const HITINFO &aHitInfo,
                                      float NdotL,
                                      const SFVEC3F &aDiffuseObjColor,
                                      const SFVEC3F &aDirToLight,
                                      const SFVEC3F &aLightColor,
                                      float aShadowAttenuationFactor ) const
{
    wxASSERT( NdotL >= FLT_EPSILON );

    // This is a hack to get some kind of fake ambient illumination
    // There is no logic behind this, just pure artistic experimentation
    //const float ambientFactor = glm::max( ( (1.0f - NdotL) /** (1.0f - NdotL)*/ ) *
    //                                      ( AMBIENT_FACTOR + AMBIENT_FACTOR ),
    //                                      AMBIENT_FACTOR );

    if( aShadowAttenuationFactor > FLT_EPSILON )
    {
        // Calculate the diffuse light factoring in light color,
        // power and the attenuation
        const SFVEC3F diffuse = NdotL * aLightColor;

        // Calculate the half vector between the light vector and the view vector.
        const SFVEC3F H = glm::normalize( aDirToLight - aRay.m_Dir );

        //Intensity of the specular light
        const float NdotH = glm::dot( H, aHitInfo.m_HitNormal );
        const float intensitySpecular = glm::pow( glm::max( NdotH, 0.0f ),
                                                  m_shinness );

        return  m_ambientColor +
                aShadowAttenuationFactor * ( diffuse * aDiffuseObjColor +
                                             SPECULAR_FACTOR *
                                             aLightColor *
                                             intensitySpecular *
                                             m_specularColor );
    }

    return m_ambientColor;
}


CPROCEDURALGENERATOR::CPROCEDURALGENERATOR()
{
}


CBOARDNORMAL::CBOARDNORMAL( float aScale ) : CPROCEDURALGENERATOR()
{
    m_scale = (2.0f * glm::pi<float>()) / aScale;
}


SFVEC3F CBOARDNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
    const SFVEC3F &hitPos = aHitInfo.m_HitPoint;

    // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oc2luKHNpbih4KSoxLjkpKjEuNSkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjEwMDAsIndpbmRvdyI6WyItMC45NjIxMDU3MDgwNzg1MjYyIiwiNy45NzE0MjYyNjc2MDE0MyIsIi0yLjUxNzYyMDM1MTQ4MjQ0OSIsIjIuOTc5OTM3Nzg3Mzk3NTMwMyJdLCJzaXplIjpbNjQ2LDM5Nl19XQ--

    // Implement a texture as the "measling crazing blistering" method of FR4

    const float x = (glm::sin(glm::sin( glm::sin( hitPos.x * m_scale ) * 1.9f ) * 1.5f ) + 0.0f) * 0.10f;
    const float y = (glm::sin(glm::sin( glm::sin( hitPos.y * m_scale ) * 1.9f ) * 1.5f ) + 0.0f) * 0.10f;
    const float z = glm::sin( 2.0f * hitPos.z * m_scale + Fast_RandFloat() * 1.0f ) * 0.2f;

    return SFVEC3F( x, y, z );
}


CCOPPERNORMAL::CCOPPERNORMAL( float aScale, const CPROCEDURALGENERATOR *aBoardNormalGenerator )
{
    m_board_normal_generator = aBoardNormalGenerator;
    m_copper_perlin = PerlinNoise( 0 );
    m_scale = 1.0f / aScale;
}


SFVEC3F CCOPPERNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
    if( m_board_normal_generator )
    {
        const SFVEC3F boardNormal = m_board_normal_generator->Generate( aRay, aHitInfo );

        SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;

        const float noise = (m_copper_perlin.noise( hitPos.x + Fast_RandFloat() * 0.1f,
                                                    hitPos.y ) - 0.5f) * 2.0f;

        float scratchPattern = (m_copper_perlin.noise( hitPos.x / 100.0f, hitPos.y  * 20.0f ) - 0.5f);

        scratchPattern = glm::clamp( scratchPattern * 5.0f, -1.0f, 1.0f );

        const float x = glm::clamp( (noise + scratchPattern)           * 0.04f, -0.10f, 0.10f );
        const float y = glm::clamp( (noise + (noise * scratchPattern)) * 0.04f, -0.10f, 0.10f );

        return SFVEC3F( x, y, 0.0f ) + boardNormal * 0.85f;
    }
    else
        return SFVEC3F(0.0f);
}


CSOLDERMASKNORMAL::CSOLDERMASKNORMAL( const CPROCEDURALGENERATOR *aCopperNormalGenerator )
{
    m_copper_normal_generator = aCopperNormalGenerator;
}


SFVEC3F CSOLDERMASKNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
    if( m_copper_normal_generator )
    {
        const SFVEC3F copperNormal = m_copper_normal_generator->Generate( aRay, aHitInfo );

        return copperNormal * SFVEC3F(0.10f);
    }
    else
        return SFVEC3F(0.0f);
}


CPLASTICNORMAL::CPLASTICNORMAL( float aScale )
{
    m_scale = 1.0f / aScale;
}


SFVEC3F CPLASTICNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
        const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;

        const float noise1 = m_perlin.noise( hitPos.x * 1.0f,
                                             hitPos.y * 1.0f,
                                             hitPos.z * 1.0f ) - 0.5f;

        const float noise2 = m_perlin.noise( hitPos.x * 1.5f,
                                             hitPos.y * 1.5f,
                                             hitPos.z * 2.0f ) - 0.5f;

        const float noise3 = m_perlin.noise( hitPos.x * 2.0f,
                                             hitPos.y * 2.0f,
                                             hitPos.z * 2.0f ) - 0.5f;

        return SFVEC3F( noise1 * noise2 * noise3 * 4.00f,
                        noise1 * expf(noise2) * noise3 * 4.00f,
                        noise3 * noise3 * 1.00f );
}


CPLASTICSHINENORMAL::CPLASTICSHINENORMAL( float aScale )
{
    m_scale = 1.0f / aScale;
}


SFVEC3F CPLASTICSHINENORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
    const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;

    const float noise1 = m_perlin.noise( hitPos.x * 0.05f,
                                         hitPos.y * 0.05f,
                                         hitPos.z * 0.05f ) - 0.5f;

    const float noise2 = m_perlin.noise( hitPos.x * 0.2f,
                                         hitPos.y * 0.2f,
                                         hitPos.z * 0.2f ) - 0.5f;

    const float noise3 = m_perlin.noise( hitPos.x * 0.5f,
                                         hitPos.y * 0.5f,
                                         hitPos.z * 0.5f ) - 0.5f;

    return SFVEC3F( noise1 * 0.5f, noise2 * 0.5f, noise3 * 0.5f );
}


CMETALBRUSHEDNORMAL::CMETALBRUSHEDNORMAL( float aScale )
{
    m_scale = 1.0f / aScale;
}


SFVEC3F CMETALBRUSHEDNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
    const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;

    const SFVEC3F hitPosRelative = hitPos - glm::floor( hitPos );

    const float noiseX = (m_perlin.noise( hitPos.x * (60.0f),
                                          hitPos.y * 1.0f,
                                          hitPos.z * 1.0f ) - 0.5f);

    const float noiseY = (m_perlin.noise( hitPos.x * 1.0f,
                                          hitPos.y * (60.0f),
                                          hitPos.z * 1.0f ) - 0.5f);

    const float noise2 = (m_perlin.noise( hitPos.x * 1.0f,
                                          hitPos.y * 1.0f,
                                          hitPos.z * 1.0f ) - 0.5f);

    const float noise3X = (m_perlin.noise( hitPos.x * (80.0f + noise2 * 0.5f),
                                           hitPos.y * 0.5f,
                                           hitPos.z * 0.5f ) - 0.5f );

    const float noise3Y = (m_perlin.noise( hitPos.x * 0.5f,
                                           hitPos.y * (80.0f + noise2 * 0.5f),
                                           hitPos.z * 0.5f ) - 0.5f );

    // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgtZmxvb3IoeCkpK3Npbih4KSleMyIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi02LjcxNDAwMDAxOTAzMDA3NyIsIjcuMjQ0NjQzNjkyOTY5NzM5IiwiLTMuMTU1NTUyNjAxNDUyNTg4IiwiNS40MzQzODE5OTA1NDczMDY1Il0sInNpemUiOls2NDQsMzk0XX1d
    // ((x - floor(x))+sin(x))^3

    float sawX = (hitPosRelative.x + glm::sin( 10.0f * hitPos.x + 5.0f * noise2 + Fast_RandFloat() ) );
          sawX = sawX * sawX * sawX;

    float sawY = (hitPosRelative.y + glm::sin( 10.0f * hitPos.y + 5.0f * noise2 + Fast_RandFloat() ) );
          sawY = sawY * sawY * sawY;

    float xOut = sawX * noise3X * 0.17f + noiseX * 0.25f + noise3X * 0.57f;
    float yOut = sawY * noise3Y * 0.17f + noiseY * 0.25f + noise3Y * 0.57f;

    const float outLowFreqNoise = noise2 * 0.05f;

    return SFVEC3F( xOut + outLowFreqNoise,
                    yOut + outLowFreqNoise,
                    0.0f + outLowFreqNoise );
}