1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* Implementation of Andrew's monotone chain 2D convex hull algorithm.
* Asymptotic complexity: O(n log n).
* See http://www.algorithmist.com/index.php/Monotone_Chain_Convex_Hull
* (Licence GNU Free Documentation License 1.2)
*
* Pseudo-code:
*
* Input: a list P of points in the plane.
*
* Sort the points of P by x-coordinate (in case of a tie, sort by y-coordinate).
*
* Initialize U and L as empty lists.
* The lists will hold the vertices of upper and lower hulls respectively.
*
* for i = 1, 2, ..., n:
* while L contains at least two points and the sequence of last two points
* of L and the point P[i] does not make a counter-clockwise turn:
* remove the last point from L
* append P[i] to L
*
* for i = n, n-1, ..., 1:
* while U contains at least two points and the sequence of last two points
* of U and the point P[i] does not make a counter-clockwise turn:
* remove the last point from U
* append P[i] to U
*
* Remove the last point of each list (it's the same as the first point of the other list).
* Concatenate L and U to obtain the convex hull of P.
* Points in the result will be listed in counter-clockwise order.
*/
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <algorithm>
#include <wx/wx.h>
#include <trigo.h>
typedef long long coord2_t; // must be big enough to hold 2*max(|coordinate|)^2
// this function is used to sort points.
// Andrew's monotone chain 2D convex hull algorithm needs a sorted set of points
static bool compare_point( const wxPoint& ref, const wxPoint& p )
{
return ref.x < p.x || (ref.x == p.x && ref.y < p.y);
}
// 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product.
// Returns a positive value, if OAB makes a counter-clockwise turn,
// negative for clockwise turn, and zero if the points are collinear.
static coord2_t cross_product( const wxPoint& O, const wxPoint& A, const wxPoint& B )
{
return (coord2_t) (A.x - O.x) * (coord2_t) (B.y - O.y)
- (coord2_t) (A.y - O.y) * (coord2_t) (B.x - O.x);
}
// Fills aResult with a list of points on the convex hull in counter-clockwise order.
void BuildConvexHull( std::vector<wxPoint>& aResult, const std::vector<wxPoint>& aPoly )
{
std::vector<wxPoint> poly = aPoly;
int point_count = poly.size();
if( point_count < 2 ) // Should not happen, but who know
return;
// Sort points lexicographically
// Andrew's monotone chain 2D convex hull algorithm needs that
std::sort( poly.begin(), poly.end(), compare_point );
int k = 0;
// Store room (2 * n points) for result:
// The actual convex hull use less points. the room will be adjusted later
aResult.resize( 2 * point_count );
// Build lower hull
for( int ii = 0; ii < point_count; ++ii )
{
while( k >= 2 && cross_product( aResult[k - 2], aResult[k - 1], poly[ii] ) <= 0 )
k--;
aResult[k++] = poly[ii];
}
// Build upper hull
for( int ii = point_count - 2, t = k + 1; ii >= 0; ii-- )
{
while( k >= t && cross_product( aResult[k - 2], aResult[k - 1], poly[ii] ) <= 0 )
k--;
aResult[k++] = poly[ii];
}
// The last point in the list is the same as the first one.
// This is not needed, and sometimes create issues ( 0 length polygon segment:
// remove it:
if( k > 1 && aResult[0] == aResult[k - 1] )
k -= 1;
aResult.resize( k );
}
void BuildConvexHull( std::vector<wxPoint>& aResult,
const SHAPE_POLY_SET& aPolygons )
{
BuildConvexHull( aResult, aPolygons, wxPoint( 0, 0 ), 0.0 );
}
void BuildConvexHull( std::vector<wxPoint>& aResult,
const SHAPE_POLY_SET& aPolygons,
wxPoint aPosition, double aRotation )
{
// Build the convex hull of the SHAPE_POLY_SET
std::vector<wxPoint> buf;
for( int cnt = 0; cnt < aPolygons.OutlineCount(); cnt++ )
{
const SHAPE_LINE_CHAIN& poly = aPolygons.COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
buf.push_back( wxPoint( poly.CPoint( ii ).x, poly.CPoint( ii ).y ) );
}
}
BuildConvexHull(aResult, buf );
// Move and rotate the points according to aPosition and aRotation
for( unsigned ii = 0; ii < aResult.size(); ii++ )
{
RotatePoint( &aResult[ii], aRotation );
aResult[ii] += aPosition;
}
}
|