File: coroutine.h

package info (click to toggle)
kicad 5.0.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 234,592 kB
  • sloc: cpp: 505,330; ansic: 57,038; python: 4,886; sh: 879; awk: 294; makefile: 253; xml: 103; perl: 5
file content (388 lines) | stat: -rw-r--r-- 11,680 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2013 CERN
 * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
 * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#ifndef __COROUTINE_H
#define __COROUTINE_H

#include <cstdlib>

#include <type_traits>

#include <system/libcontext.h>
#include <memory>

/**
 *  Class COROUNTINE.
 *  Implements a coroutine. Wikipedia has a good explanation:
 *
 *  "Coroutines are computer program components that generalize subroutines to
 *  allow multiple entry points for suspending and resuming execution at certain locations.
 *  Coroutines are well-suited for implementing more familiar program components such as cooperative
 *  tasks, exceptions, event loop, iterators, infinite lists and pipes."
 *
 *  In other words, a coroutine can be considered a lightweight thread - which can be
 *  preempted only when it deliberately yields the control to the caller. This way,
 *  we avoid concurrency problems such as locking / race conditions.
 *
 *  Uses libcontext library to do the actual context switching.
 *
 *  This particular version takes a DELEGATE as an entry point, so it can invoke
 *  methods within a given object as separate coroutines.
 *
 *  See coroutine_example.cpp for sample code.
 */

template <typename ReturnType, typename ArgType>
class COROUTINE
{
private:
    class CALL_CONTEXT;

    struct INVOCATION_ARGS
    {
        enum
        {
            FROM_ROOT,      // a stub was called/a corutine was resumed from the main-stack context
            FROM_ROUTINE,   // a stub was called/a coroutine was resumed fron a coroutine context
            CONTINUE_AFTER_ROOT // a function sent a request to invoke a function on the main
                                // stack context
        } type; // invocation type
        COROUTINE*    destination;  // stores the coroutine pointer for the stub OR the coroutine
                                    // ptr for the coroutine to be resumed if a
                                    // root(main-stack)-call-was initiated.
        CALL_CONTEXT* context;      // pointer to the call context of the current callgraph this
                                    // call context holds a reference to the main stack context
    };

    using CONTEXT_T = libcontext::fcontext_t;
    using CALLEE_STORAGE = CONTEXT_T;

    class CALL_CONTEXT
    {
    public:
        void SetMainStack( CONTEXT_T* aStack )
        {
            m_mainStackContext = aStack;
        }

        void RunMainStack( COROUTINE* aCor, std::function<void()> aFunc )
        {
            m_mainStackFunction = std::move( aFunc );
            INVOCATION_ARGS args{ INVOCATION_ARGS::CONTINUE_AFTER_ROOT, aCor, this };

            libcontext::jump_fcontext( &aCor->m_callee, *m_mainStackContext,
                reinterpret_cast<intptr_t>( &args ) );
        }

        void Continue( INVOCATION_ARGS* args )
        {
            while( args->type == INVOCATION_ARGS::CONTINUE_AFTER_ROOT )
            {
                m_mainStackFunction();
                args->type = INVOCATION_ARGS::FROM_ROOT;
                args = args->destination->doResume( args );
            }
        }

    private:
        CONTEXT_T*              m_mainStackContext;
        std::function<void()>   m_mainStackFunction;
    };

public:
    COROUTINE() :
        COROUTINE( nullptr )
    {
    }

    /**
     * Constructor
     * Creates a coroutine from a member method of an object
     */
    template <class T>
    COROUTINE( T* object, ReturnType(T::*ptr)( ArgType ) ) :
        COROUTINE( std::bind( ptr, object, std::placeholders::_1 ) )
    {
    }

    /**
     * Constructor
     * Creates a coroutine from a delegate object
     */
    COROUTINE( std::function<ReturnType(ArgType)> aEntry ) :
        m_func( std::move( aEntry ) ),
        m_running( false ),
        m_args( 0 ),
        m_callContext( nullptr ),
        m_callee( nullptr ),
        m_retVal( 0 )
    {
    }

    ~COROUTINE()
    {
    }

public:
    /**
     * Function KiYield()
     *
     * Stops execution of the coroutine and returns control to the caller.
     * After a yield, Call() or Resume() methods invoked by the caller will
     * immediately return true, indicating that we are not done yet, just asleep.
     */
    void KiYield()
    {
        jumpOut();
    }

    /**
     * Function KiYield()
     *
     * KiYield with a value - passes a value of given type to the caller.
     * Useful for implementing generator objects.
     */
    void KiYield( ReturnType& aRetVal )
    {
        m_retVal = aRetVal;
        jumpOut();
    }

    /**
     * Function SetEntry()
     *
     * Defines the entry point for the coroutine, if not set in the constructor.
     */
    void SetEntry( std::function<ReturnType(ArgType)> aEntry )
    {
        m_func = std::move( aEntry );
    }

    /**
     * Function RunMainStack()
     *
     * Run a functor inside the application main stack context
     * Call this function for example if the operation will spawn a webkit browser instance which
     * will walk the stack to the upper border of the address space on mac osx systems because
     * its javascript needs garbage collection (for example if you paste text into an edit box).
     */
    void RunMainStack( std::function<void()> func )
    {
        assert( m_callContext );
        m_callContext->RunMainStack( this, std::move( func ) );
    }

   /**
    * Function Call()
    *
    * Starts execution of a coroutine, passing args as its arguments. Call this method
    * from the application main stack only.
    * @return true, if the coroutine has yielded and false if it has finished its
    * execution (returned).
    */
    bool Call( ArgType aArg )
    {
        CALL_CONTEXT ctx;
        INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROOT, this, &ctx };
        ctx.Continue( doCall( &args, aArg ) );

        return Running();
    }

   /**
    * Function Call()
    *
    * Starts execution of a coroutine, passing args as its arguments. Call this method
    * for a nested coroutine invocation.
    * @return true, if the coroutine has yielded and false if it has finished its
    * execution (returned).
    */
    bool Call( const COROUTINE& aCor, ArgType aArg )
    {
        INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, this, aCor.m_callContext };
        doCall( &args, aArg );
        // we will not be asked to continue

        return Running();
    }

    /**
    * Function Resume()
    *
    * Resumes execution of a previously yielded coroutine. Call this method only
    * from the main application stack.
    * @return true, if the coroutine has yielded again and false if it has finished its
    * execution (returned).
    */
    bool Resume()
    {
        CALL_CONTEXT ctx;
        INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROOT, this, &ctx };
        ctx.Continue( doResume( &args ) );

        return Running();
    }

    /**
    * Function Resume()
    *
    * Resumes execution of a previously yielded coroutine. Call this method
    * for a nested coroutine invocation.
    * @return true, if the coroutine has yielded again and false if it has finished its
    * execution (returned).
    */
    bool Resume( const COROUTINE& aCor )
    {
        INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, this, aCor.m_callContext };
        doResume( &args );
        // we will not be asked to continue

        return Running();
    }

    /**
     * Function ReturnValue()
     *
     * Returns the yielded value (the argument KiYield() was called with)
     */
    const ReturnType& ReturnValue() const
    {
        return m_retVal;
    }

    /**
     * Function Running()
     *
     * @return true, if the coroutine is active
     */
    bool Running() const
    {
        return m_running;
    }

private:
    INVOCATION_ARGS* doCall( INVOCATION_ARGS* aInvArgs, ArgType aArgs )
    {
        assert( m_func );
        assert( !m_callee );

        m_args = &aArgs;

        assert( m_stack == nullptr );

        // fixme: Clean up stack stuff. Add a guard
        size_t stackSize = c_defaultStackSize;
        m_stack.reset( new char[stackSize] );

        // align to 16 bytes
        void* sp = (void*)((((ptrdiff_t) m_stack.get()) + stackSize - 0xf) & (~0x0f));

        // correct the stack size
        stackSize -= size_t( ( (ptrdiff_t) m_stack.get() + stackSize ) - (ptrdiff_t) sp );

        m_callee = libcontext::make_fcontext( sp, stackSize, callerStub );
        m_running = true;

        // off we go!
        return jumpIn( aInvArgs );
    }

    INVOCATION_ARGS* doResume( INVOCATION_ARGS* args )
    {
        return jumpIn( args );
    }

    /* real entry point of the coroutine */
    static void callerStub( intptr_t aData )
    {
        INVOCATION_ARGS& args = *reinterpret_cast<INVOCATION_ARGS*>( aData );
        // get pointer to self
        COROUTINE* cor     = args.destination;
        cor->m_callContext = args.context;

        if( args.type == INVOCATION_ARGS::FROM_ROOT )
            cor->m_callContext->SetMainStack( &cor->m_caller );

        // call the coroutine method
        cor->m_retVal = cor->m_func( *(cor->m_args) );
        cor->m_running = false;

        // go back to wherever we came from.
        cor->jumpOut();
    }

    INVOCATION_ARGS* jumpIn( INVOCATION_ARGS* args )
    {
        args = reinterpret_cast<INVOCATION_ARGS*>(
            libcontext::jump_fcontext( &m_caller, m_callee,
                                           reinterpret_cast<intptr_t>( args ) )
            );

        return args;
    }

    void jumpOut()
    {
        INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, nullptr, nullptr };
        INVOCATION_ARGS* ret;
        ret = reinterpret_cast<INVOCATION_ARGS*>(
            libcontext::jump_fcontext( &m_callee, m_caller,
                                           reinterpret_cast<intptr_t>( &args ) )
            );

        m_callContext = ret->context;

        if( ret->type == INVOCATION_ARGS::FROM_ROOT )
        {
            m_callContext->SetMainStack( &m_caller );
        }
    }

    static constexpr int c_defaultStackSize = 2000000;    // fixme: make configurable

    ///< coroutine stack
    std::unique_ptr<char[]> m_stack;

    std::function<ReturnType( ArgType )> m_func;

    bool m_running;

    ///< pointer to coroutine entry arguments. Stripped of references
    ///< to avoid compiler errors.
    typename std::remove_reference<ArgType>::type* m_args;

    ///< saved caller context
    CONTEXT_T m_caller;

    ///< main stack information
    CALL_CONTEXT* m_callContext;

    ///< saved coroutine context
    CALLEE_STORAGE m_callee;

    ReturnType m_retVal;
};

#endif