File: connectivity_algo.cpp

package info (click to toggle)
kicad 5.0.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 234,592 kB
  • sloc: cpp: 505,330; ansic: 57,038; python: 4,886; sh: 879; awk: 294; makefile: 253; xml: 103; perl: 5
file content (1048 lines) | stat: -rw-r--r-- 26,715 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
/*
 * This program source code file is part of KICAD, a free EDA CAD application.
 *
 * Copyright (C) 2016-2018 CERN
 * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#include <connectivity_algo.h>
#include <widgets/progress_reporter.h>
#include <geometry/geometry_utils.h>

#include <thread>
#include <mutex>
#include <future>
#include <algorithm>

#ifdef PROFILE
#include <profile.h>
#endif


using namespace std::placeholders;

bool operator<( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b )
{
    if( a->Pos().x == b->Pos().x )
        return a->Pos().y < b->Pos().y;
    else
        return a->Pos().x < b->Pos().x;
}


bool CN_ANCHOR::IsDirty() const
{
    return m_item->Dirty();
}


CN_CLUSTER::CN_CLUSTER()
{
    m_items.reserve( 64 );
    m_originPad = nullptr;
    m_originNet = -1;
    m_conflicting = false;
}


CN_CLUSTER::~CN_CLUSTER()
{
}


wxString CN_CLUSTER::OriginNetName() const
{
    if( !m_originPad || !m_originPad->Valid() )
        return "<none>";
    else
        return m_originPad->Parent()->GetNetname();
}


bool CN_CLUSTER::Contains( const CN_ITEM* aItem )
{
    return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end();
}


bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem )
{
    for( auto item : m_items )
    {
        if( item->Valid() && item->Parent() == aItem )
            return true;
    }

    return false;
}


void CN_ITEM::Dump()
{
    printf("    valid: %d, connected: \n", !!Valid());

    for( auto i : m_connected )
    {
        TRACK* t = static_cast<TRACK*>( i->Parent() );
        printf( "    - %p %d\n", t, t->Type() );
    }
}


void CN_CLUSTER::Dump()
{
    for( auto item : m_items )
    {
        wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
                item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
        printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
                        item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
        item->Dump();
    }
}


void CN_CLUSTER::Add( CN_ITEM* item )
{
    m_items.push_back( item );

    if( m_originNet < 0 )
    {
        m_originNet = item->Net();
    }

    if( item->Parent()->Type() == PCB_PAD_T )
    {
        if( !m_originPad )
        {
            m_originPad = item;
            m_originNet = item->Net();
        }

        if( m_originPad && item->Net() != m_originNet )
        {
            m_conflicting = true;
        }
    }
}


CN_CONNECTIVITY_ALGO::CN_CONNECTIVITY_ALGO()
{
}


CN_CONNECTIVITY_ALGO::~CN_CONNECTIVITY_ALGO()
{
    Clear();
}


bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem )
{
    markItemNetAsDirty( aItem );

    switch( aItem->Type() )
    {
    case PCB_MODULE_T:
        for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() )
        {
            m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( pad ) ].MarkItemsAsInvalid();
            m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( pad ) );
        }

        m_itemList.SetDirty( true );
        break;

    case PCB_PAD_T:
        m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
        m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
        m_itemList.SetDirty( true );
        break;

    case PCB_TRACE_T:
        m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
        m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
        m_itemList.SetDirty( true );
        break;

    case PCB_VIA_T:
        m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
        m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
        m_itemList.SetDirty( true );
        break;

    case PCB_ZONE_AREA_T:
    {
        m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
        m_itemMap.erase ( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
        m_itemList.SetDirty( true );
        break;
    }

    case PCB_SEGZONE_T:
    default:
        return false;
    }

    // Once we delete an item, it may connect between lists, so mark both as potentially invalid
    m_itemList.SetHasInvalid( true );

    return true;
}


void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem )
{
    if( aItem->IsConnected() )
    {
        auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
        MarkNetAsDirty( citem->GetNetCode() );
    }
    else
    {
        if( aItem->Type() == PCB_MODULE_T )
        {
            auto mod = static_cast <const MODULE*>( aItem );

            for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() )
                MarkNetAsDirty( pad->GetNetCode() );
        }
    }
}


bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem )
{
    if( !IsCopperLayer( aItem->GetLayer() ) )
        return false;

    markItemNetAsDirty ( aItem );

    switch( aItem->Type() )
    {
    case PCB_NETINFO_T:
        {
            MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNet() );
            break;
        }
    case PCB_MODULE_T:
        for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() )
        {
            if( m_itemMap.find( pad ) != m_itemMap.end() )
                return false;

            add( m_itemList, pad );
        }

        break;

    case PCB_PAD_T:
        if( m_itemMap.find ( static_cast<D_PAD*>( aItem ) ) != m_itemMap.end() )
            return false;

        add( m_itemList, static_cast<D_PAD*>( aItem ) );

        break;

    case PCB_TRACE_T:
    {
        if( m_itemMap.find( static_cast<TRACK*>( aItem ) ) != m_itemMap.end() )
            return false;

        add( m_itemList, static_cast<TRACK*>( aItem ) );

        break;
    }

    case PCB_VIA_T:
        if( m_itemMap.find( static_cast<VIA*>( aItem ) ) != m_itemMap.end() )
            return false;

        add( m_itemList, static_cast<VIA*>( aItem ) );

        break;

    case PCB_ZONE_AREA_T:
    {
        auto zone = static_cast<ZONE_CONTAINER*>( aItem );

        if( m_itemMap.find( static_cast<ZONE_CONTAINER*>( aItem ) ) != m_itemMap.end() )
            return false;

        m_itemMap[zone] = ITEM_MAP_ENTRY();

        for( auto zitem : m_itemList.Add( zone ) )
            m_itemMap[zone].Link(zitem);

        break;
    }

    //N.B. SEGZONE items are deprecated and not to used for connectivity
    case PCB_SEGZONE_T:
    default:
        return false;
    }

    return true;
}


void CN_CONNECTIVITY_ALGO::searchConnections()
{
#ifdef CONNECTIVITY_DEBUG
    printf("Search start\n");
#endif

#ifdef PROFILE
    PROF_COUNTER garbage_collection( "garbage-collection" );
#endif
    std::vector<CN_ITEM*> garbage;
    garbage.reserve( 1024 );

    m_itemList.RemoveInvalidItems( garbage );

    for( auto item : garbage )
        delete item;

#ifdef PROFILE
    garbage_collection.Show();
    PROF_COUNTER search_basic( "search-basic" );
#endif

    std::vector<CN_ITEM*> dirtyItems;
    std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ),
            [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } );

    if( m_progressReporter )
    {
        m_progressReporter->SetMaxProgress( dirtyItems.size() );
        m_progressReporter->KeepRefreshing();
    }

    if( m_itemList.IsDirty() )
    {
        size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
                ( dirtyItems.size() + 7 ) / 8 );

        std::atomic<size_t> nextItem( 0 );
        std::vector<std::future<size_t>> returns( parallelThreadCount );

        auto conn_lambda = [&nextItem, &dirtyItems]
                            ( CN_LIST* aItemList, PROGRESS_REPORTER* aReporter) -> size_t
        {
            for( size_t i = nextItem++; i < dirtyItems.size(); i = nextItem++ )
            {
                CN_VISITOR visitor( dirtyItems[i] );
                aItemList->FindNearby( dirtyItems[i], visitor );

                if( aReporter )
                    aReporter->AdvanceProgress();
            }

            return 1;
        };

        if( parallelThreadCount <= 1 )
            conn_lambda( &m_itemList, m_progressReporter );
        else
        {
            for( size_t ii = 0; ii < parallelThreadCount; ++ii )
                returns[ii] = std::async( std::launch::async, conn_lambda,
                        &m_itemList, m_progressReporter );

            for( size_t ii = 0; ii < parallelThreadCount; ++ii )
            {
                // Here we balance returns with a 100ms timeout to allow UI updating
                std::future_status status;
                do
                {
                    if( m_progressReporter )
                        m_progressReporter->KeepRefreshing();

                    status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
                } while( status != std::future_status::ready );
            }
        }

        if( m_progressReporter )
            m_progressReporter->KeepRefreshing();
    }

#ifdef PROFILE
        search_basic.Show();
#endif

    m_itemList.ClearDirtyFlags();

#ifdef CONNECTIVITY_DEBUG
    printf("Search end\n");
#endif

}


void CN_ITEM::RemoveInvalidRefs()
{
    for( auto it = m_connected.begin(); it != m_connected.end(); )
    {
        if( !(*it)->Valid() )
            it = m_connected.erase( it );
        else
            ++it;
    }
}


void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage )
{
    if( !m_hasInvalid )
        return;

    auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item )
    {
        if( !item->Valid() )
        {
            aGarbage.push_back ( item );
            return true;
        }

        return false;
    } );

    m_items.resize( lastItem - m_items.begin() );

    // fixme: mem leaks
    for( auto item : m_items )
        item->RemoveInvalidRefs();

    for( auto item : aGarbage )
        m_index.Remove( item );

    m_hasInvalid = false;
}


bool CN_CONNECTIVITY_ALGO::isDirty() const
{
    return m_itemList.IsDirty();
}


const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode )
{
    constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT };
    constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_MODULE_T, EOT };

    if( aMode == CSM_PROPAGATE )
        return SearchClusters( aMode, no_zones, -1 );
    else
        return SearchClusters( aMode, types, -1 );
}


const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode,
        const KICAD_T aTypes[], int aSingleNet )
{
    bool withinAnyNet = ( aMode != CSM_PROPAGATE );

    std::deque<CN_ITEM*> Q;
    CN_ITEM* head = nullptr;
    CLUSTERS clusters;

    if( isDirty() )
        searchConnections();

    auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem )
    {
        if( withinAnyNet && aItem->Net() <= 0 )
            return;

        if( !aItem->Valid() )
            return;

        if( aSingleNet >=0 && aItem->Net() != aSingleNet )
            return;

        bool found = false;

        for( int i = 0; aTypes[i] != EOT; i++ )
        {
            if( aItem->Parent()->Type() == aTypes[i] )
            {
                found = true;
                break;
            }
        }

        if( !found )
            return;

        aItem->ListClear();
        aItem->SetVisited( false );

        if( !head )
            head = aItem;
        else
            head->ListInsert( aItem );
    };

    std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList );

    while( head )
    {
        CN_CLUSTER_PTR cluster ( new CN_CLUSTER() );

        Q.clear();
        CN_ITEM* root = head;
        root->SetVisited ( true );

        head = root->ListRemove();

        Q.push_back( root );

        while( Q.size() )
        {
            CN_ITEM* current = Q.front();

            Q.pop_front();
            cluster->Add( current );

            for( auto n : current->ConnectedItems() )
            {
                if( withinAnyNet && n->Net() != root->Net() )
                    continue;

                if( !n->Visited() && n->Valid() )
                {
                    n->SetVisited( true );
                    Q.push_back( n );
                    head = n->ListRemove();
                }
            }
        }

        clusters.push_back( cluster );
    }


    std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) {
        return a->OriginNet() < b->OriginNet();
    } );

#ifdef CONNECTIVITY_DEBUG
    printf("Active clusters: %d\n", clusters.size() );

    for( auto cl : clusters )
    {
        printf( "Net %d\n", cl->OriginNet() );
        cl->Dump();
    }
#endif

    return clusters;
}


void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard )
{
    for( int i = 0; i<aBoard->GetAreaCount(); i++ )
    {
        auto zone = aBoard->GetArea( i );
        Add( zone );
    }

    for( auto tv : aBoard->Tracks() )
        Add( tv );

    for( auto mod : aBoard->Modules() )
    {
        for( auto pad : mod->Pads() )
            Add( pad );
    }

    /*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n",
            m_zoneList.Size(), m_padList.Size(),
            m_viaList.Size(), m_trackList.Size() );*/
}


void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems )
{
    for( auto item : aItems )
    {
        switch( item->Type() )
        {
            case PCB_TRACE_T:
            case PCB_VIA_T:
            case PCB_PAD_T:
                Add( item );
                break;

            case PCB_MODULE_T:
            {
                for( auto pad : static_cast<MODULE*>( item )->Pads() )
                {
                    Add( pad );
                }

                break;
            }

            //N.B. SEGZONE items are deprecated and not to used for connectivity
            case PCB_SEGZONE_T:
            default:
                break;
        }
    }
}


void CN_CONNECTIVITY_ALGO::propagateConnections()
{
    for( const auto& cluster : m_connClusters )
    {
        if( cluster->IsConflicting() )
        {
            wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() );
        }
        else if( cluster->IsOrphaned() )
        {
            wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(),
                    (const char*) cluster->OriginNetName().c_str() );
        }
        else if( cluster->HasValidNet() )
        {
            // normal cluster: just propagate from the pads
            int n_changed = 0;

            for( auto item : *cluster )
            {
                if( item->CanChangeNet() )
                {
                    if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() )
                    {
                        MarkNetAsDirty( item->Parent()->GetNetCode() );
                        MarkNetAsDirty( cluster->OriginNet() );

                        item->Parent()->SetNetCode( cluster->OriginNet() );
                        n_changed++;
                    }
                }
            }

            if( n_changed )
                wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(),
                        cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() );
            else
                wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() );
        }
        else
        {
            wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() );
        }
    }
}


void CN_CONNECTIVITY_ALGO::PropagateNets()
{
    m_connClusters = SearchClusters( CSM_PROPAGATE );
    propagateConnections();
}


void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector<int>& aIslands )
{
    if( aZone->GetFilledPolysList().IsEmpty() )
        return;

    aIslands.clear();

    Remove( aZone );
    Add( aZone );

    m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );

    for( const auto& cluster : m_connClusters )
    {
        if( cluster->Contains( aZone ) && cluster->IsOrphaned() )
        {
            for( auto z : *cluster )
            {
                if( z->Parent() == aZone )
                {
                    aIslands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() );
                }
            }
        }
    }

    wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() );
}

void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
{
    for ( auto& z : aZones )
        Remove( z.m_zone );

    for ( auto& z : aZones )
    {
        if( !z.m_zone->GetFilledPolysList().IsEmpty() )
            Add( z.m_zone );
    }

    m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );

    for ( auto& zone : aZones )
    {
        if( zone.m_zone->GetFilledPolysList().IsEmpty() )
            continue;

        for( const auto& cluster : m_connClusters )
        {
            if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() )
            {
                for( auto z : *cluster )
                {
                    if( z->Parent() == zone.m_zone )
                    {
                        zone.m_islands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() );
                    }
                }
            }
        }
    }
}


const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters()
{
    m_ratsnestClusters = SearchClusters( CSM_RATSNEST );
    return m_ratsnestClusters;
}


void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet )
{
    if( aNet < 0 )
        return;

    if( (int) m_dirtyNets.size() <= aNet )
    {
        int lastNet = m_dirtyNets.size() - 1;

        if( lastNet < 0 )
            lastNet = 0;

        m_dirtyNets.resize( aNet + 1 );

        for( int i = lastNet; i < aNet + 1; i++ )
            m_dirtyNets[i] = true;
    }

    m_dirtyNets[aNet] = true;
}


void CN_VISITOR::checkZoneItemConnection( CN_ZONE* aZone, CN_ITEM* aItem )
{
    auto zoneItem = static_cast<CN_ZONE*> ( aZone );

    if( zoneItem->Net() != aItem->Net() && !aItem->CanChangeNet() )
        return;

    if( zoneItem->ContainsPoint( aItem->GetAnchor( 0 ) ) ||
            ( aItem->Parent()->Type() == PCB_TRACE_T &&
              zoneItem->ContainsPoint( aItem->GetAnchor( 1 ) ) ) )
    {
        zoneItem->Connect( aItem );
        aItem->Connect( zoneItem );
    }
}

void CN_VISITOR::checkZoneZoneConnection( CN_ZONE* aZoneA, CN_ZONE* aZoneB )
{
    const auto refParent = static_cast<const ZONE_CONTAINER*>( aZoneA->Parent() );
    const auto testedParent = static_cast<const ZONE_CONTAINER*>( aZoneB->Parent() );

    if( testedParent->Type () != PCB_ZONE_AREA_T )
        return;

    if( aZoneB == aZoneA  || refParent == testedParent )
        return;

    if( aZoneB->Net() != aZoneA->Net() )
        return; // we only test zones belonging to the same net

    const auto& outline = refParent->GetFilledPolysList().COutline( aZoneA->SubpolyIndex() );

    for( int i = 0; i < outline.PointCount(); i++ )
    {
        if( aZoneB->ContainsPoint( outline.CPoint( i ) ) )
        {
            aZoneA->Connect( aZoneB );
            aZoneB->Connect( aZoneA );
            return;
        }
    }

    const auto& outline2 = testedParent->GetFilledPolysList().COutline( aZoneB->SubpolyIndex() );

    for( int i = 0; i < outline2.PointCount(); i++ )
    {
        if( aZoneA->ContainsPoint( outline2.CPoint( i ) ) )
        {
            aZoneA->Connect( aZoneB );
            aZoneB->Connect( aZoneA );
            return;
        }
    }
}


bool CN_VISITOR::operator()( CN_ITEM* aCandidate )
{
    const auto parentA = aCandidate->Parent();
    const auto parentB = m_item->Parent();

    if( !aCandidate->Valid() || !m_item->Valid() )
        return true;

    if( parentA == parentB )
        return true;

    if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() )
        return true;

    // If both m_item and aCandidate are marked dirty, they will both be searched
    // Since we are reciprocal in our connection, we arbitrarily pick one of the connections
    // to conduct the expensive search
    if( aCandidate->Dirty() && aCandidate < m_item )
        return true;

    // We should handle zone-zone connection separately
    if ( parentA->Type() == PCB_ZONE_AREA_T && parentB->Type() == PCB_ZONE_AREA_T )
    {
        checkZoneZoneConnection( static_cast<CN_ZONE*>( m_item ),
                static_cast<CN_ZONE*>( aCandidate ) );
        return true;
    }

    if( parentA->Type() == PCB_ZONE_AREA_T )
    {
        checkZoneItemConnection( static_cast<CN_ZONE*>( aCandidate ), m_item );
        return true;
    }

    if( parentB->Type() == PCB_ZONE_AREA_T )
    {
        checkZoneItemConnection( static_cast<CN_ZONE*>( m_item ), aCandidate );
        return true;
    }

    // Items do not necessarily have reciprocity as we only check for anchors
    //  therefore, we check HitTest both directions A->B & B->A
    // TODO: Check for collision geometry on extended features
    wxPoint ptA1( aCandidate->GetAnchor( 0 ).x, aCandidate->GetAnchor( 0 ).y );
    wxPoint ptA2( aCandidate->GetAnchor( 1 ).x, aCandidate->GetAnchor( 1 ).y );
    wxPoint ptB1( m_item->GetAnchor( 0 ).x, m_item->GetAnchor( 0 ).y );
    wxPoint ptB2( m_item->GetAnchor( 1 ).x, m_item->GetAnchor( 1 ).y );
    if( parentA->HitTest( ptB1 ) || parentB->HitTest( ptA1 ) ||
            ( parentA->Type() == PCB_TRACE_T && parentB->HitTest( ptA2 ) ) ||
            ( parentB->Type() == PCB_TRACE_T && parentA->HitTest( ptB2 ) ) )
    {
        m_item->Connect( aCandidate );
        aCandidate->Connect( m_item );
    }

    return true;
};


int CN_ITEM::AnchorCount() const
{
    if( !m_valid )
        return 0;

    return m_parent->Type() == PCB_TRACE_T ? 2 : 1;
}


const VECTOR2I CN_ITEM::GetAnchor( int n ) const
{
    if( !m_valid )
        return VECTOR2I();

    switch( m_parent->Type() )
    {
        case PCB_PAD_T:
            return static_cast<const D_PAD*>( m_parent )->ShapePos();
            break;

        case PCB_TRACE_T:
        {
            auto tr = static_cast<const TRACK*>( m_parent );
            return ( n == 0 ? tr->GetStart() : tr->GetEnd() );

            break;
        }

        case PCB_VIA_T:
            return static_cast<const VIA*>( m_parent )->GetStart();

        default:
            assert( false );
            return VECTOR2I();
    }
}


int CN_ZONE::AnchorCount() const
{
    if( !Valid() )
        return 0;

    const auto zone = static_cast<const ZONE_CONTAINER*>( Parent() );
    const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );

    return outline.PointCount() ? 1 : 0;
}


const VECTOR2I CN_ZONE::GetAnchor( int n ) const
{
    if( !Valid() )
        return VECTOR2I();

    const auto zone = static_cast<const ZONE_CONTAINER*> ( Parent() );
    const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );

    return outline.CPoint( 0 );
}


int CN_ITEM::Net() const
{
    if( !m_parent || !m_valid )
        return -1;

    return m_parent->GetNetCode();
}


BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const
{
    assert( m_item->Valid() );
    return m_item->Parent();
}


bool CN_ANCHOR::Valid() const
{
    if( !m_item )
        return false;

    return m_item->Valid();
}


void CN_CONNECTIVITY_ALGO::Clear()
{
    m_ratsnestClusters.clear();
    m_connClusters.clear();
    m_itemMap.clear();
    m_itemList.Clear();

}


void CN_CONNECTIVITY_ALGO::ForEachItem( const std::function<void( CN_ITEM& )>& aFunc )
{
    for( auto item : m_itemList )
        aFunc( *item );
}


void CN_CONNECTIVITY_ALGO::ForEachAnchor( const std::function<void( CN_ANCHOR& )>& aFunc )
{
    ForEachItem( [aFunc] ( CN_ITEM& item ) {
        for( const auto& anchor : item.Anchors() )
            aFunc( *anchor );
        }
    );
}


bool CN_ANCHOR::IsDangling() const
{
    if( !m_cluster )
        return true;

    // Calculate the item count connected to this anchor.
    // m_cluster groups all items connected, but they are not necessary connected
    // at this coordinate point (they are only candidates)
    BOARD_CONNECTED_ITEM* item_ref = Parent();
    LSET layers = item_ref->GetLayerSet() & LSET::AllCuMask();

    // the number of items connected to item_ref at ths anchor point
    int connected_items_count = 0;

    // the minimal number of items connected to item_ref
    // at this anchor point to decide the anchor is *not* dangling
    int minimal_count = 1;

    // a via can be removed if connected to only one other item.
    // the minimal_count is therefore 2
    if( item_ref->Type() == PCB_VIA_T )
        minimal_count = 2;

    for( CN_ITEM* item : *m_cluster )
    {
        if( !item->Valid() )
            continue;

        BOARD_CONNECTED_ITEM* brd_item = item->Parent();

        if( brd_item == item_ref )
            continue;

        // count only items on the same layer at this coordinate (especially for zones)
        if( !( brd_item->GetLayerSet() & layers ).any() )
            continue;

        if( brd_item->Type() == PCB_ZONE_AREA_T )
        {
            ZONE_CONTAINER* zone = static_cast<ZONE_CONTAINER*>( brd_item );

            if( zone->HitTestInsideZone( wxPoint( Pos() ) ) )
                connected_items_count++;
        }
        else if( brd_item->HitTest( wxPoint( Pos() ) ) )
            connected_items_count++;
    }

    return connected_items_count < minimal_count;
}

void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
    m_progressReporter = aReporter;
}