File: bezier_curves.h

package info (click to toggle)
kicad 9.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 770,320 kB
  • sloc: cpp: 961,692; ansic: 121,001; xml: 66,428; python: 18,387; sh: 1,010; awk: 301; asm: 292; makefile: 227; javascript: 167; perl: 10
file content (138 lines) | stat: -rw-r--r-- 4,288 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright The KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#ifndef BEZIER_CURVES_H
#define BEZIER_CURVES_H

#include <vector>
#include <math/vector2d.h>

template <typename T> class ELLIPSE;

/**
 * Bezier curves to polygon converter.
 *
 * Only quadratic and cubic Bezier curves are handled
 */
class BEZIER_POLY
{
public:
    BEZIER_POLY( const VECTOR2I& aStart, const VECTOR2I& aCtrl1,
                 const VECTOR2I& aCtrl2, const VECTOR2I& aEnd );

    BEZIER_POLY( const std::vector<VECTOR2I>& aControlPoints );

    BEZIER_POLY( const std::vector<VECTOR2D>& aControlPoints )
        : m_ctrlPts( aControlPoints )
    {
        m_minSegLen = 0.0;
    }

    /**
     * Convert a Bezier curve to a polygon.
     *
     * @param aOutput will be used as an output vector storing polygon points.
     * @param aMaxError maximum error in IU between the curve and the polygon.
     */
    void GetPoly( std::vector<VECTOR2I>& aOutput, int aMaxError = 10 );
    void GetPoly( std::vector<VECTOR2D>& aOutput, double aMaxError = 10.0 );

private:

    void getQuadPoly( std::vector<VECTOR2D>& aOutput, double aMaxError );
    void getCubicPoly( std::vector<VECTOR2D>& aOutput, double aMaxError );

    int findInflectionPoints( double& aT1, double& aT2 );
    int numberOfInflectionPoints();

    double thirdControlPointDeviation();

    void subdivide( double aT, BEZIER_POLY& aLeft, BEZIER_POLY& aRight );
    void recursiveSegmentation( std::vector<VECTOR2D>& aOutput, double aMaxError );

    void cubicParabolicApprox( std::vector<VECTOR2D>& aOutput, double aMaxError );

    bool isNaN() const;

    bool isFlat( double aMaxError ) const;

    VECTOR2D eval( double t );

    double m_minSegLen;

    ///< Control points
    std::vector<VECTOR2D> m_ctrlPts;
};


// TODO: Refactor BEZIER_POLY to use BEZIER

/**
 * Generic cubic Bezier representation
 */
template <typename NumericType>
class BEZIER
{
public:
    BEZIER() = default;

    constexpr BEZIER( const VECTOR2<NumericType>& aStart, const VECTOR2<NumericType>& aC1,
                      const VECTOR2<NumericType>& aC2, const VECTOR2<NumericType>& aEnd ) :
            Start( aStart ), C1( aC1 ), C2( aC2 ), End( aEnd )
    {
    }

    /**
     * Evaluate the Bezier curve at a given t value
     *
     * aT doesn't have to be in the range [0, 1], but if it's not, the
     * point will not be on the curve.
     *
     * @param aT the t value to evaluate the curve at (0 = start, 1 = end)
     * @return the point on the curve at t (0 <= t <= 1)
     */
    constexpr VECTOR2<NumericType> PointAt( double aT ) const
    {
        const double t2 = aT * aT;
        const double t3 = t2 * aT;
        const double t_m1 = 1.0 - aT;
        const double t_m1_2 = t_m1 * t_m1;
        const double t_m1_3 = t_m1_2 * t_m1;

        return ( t_m1_3 * Start ) + ( 3.0 * aT * t_m1_2 * C1 ) + ( 3.0 * t2 * t_m1 * C2 )
               + ( t3 * End );
    }

    VECTOR2<NumericType> Start;
    VECTOR2<NumericType> C1;
    VECTOR2<NumericType> C2;
    VECTOR2<NumericType> End;
};

/**
 * Transforms an ellipse or elliptical arc into a set of quadratic Bezier curves that approximate it
 */
template<typename T>
void TransformEllipseToBeziers( const ELLIPSE<T>& aEllipse, std::vector<BEZIER<T>>& aBeziers );

#endif  // BEZIER_CURVES_H