1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
/*
* microstrip.cpp - microstrip class implementation
*
* Copyright (C) 2001 Gopal Narayanan <gopal@astro.umass.edu>
* Copyright (C) 2002 Claudio Girardi <claudio.girardi@ieee.org>
* Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
* Modified for Kicad: 2018 Jean-Pierre Charras <jp.charras at wanadoo.fr>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
/* microstrip.c - Puts up window for microstrip and
* performs the associated calculations
* Based on the original microstrip.c by Gopal Narayanan
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "microstrip.h"
#include "transline.h"
#include "units.h"
MICROSTRIP::MICROSTRIP() : TRANSLINE(),
h( 0.0 ), // height of substrate
ht( 0.0 ), // height to the top of box
t( 0.0 ), // thickness of top metal
rough( 0.0 ), // Roughness of top metal
mur( 0.0 ), // magnetic permeability of substrate
w( 0.0 ), // width of line
l( 0.0 ), // length of line
Z0_0( 0.0 ), // static characteristic impedance
Z0( 0.0 ), // characteristic impedance
er_eff_0( 0.0 ), // Static effective dielectric constant
mur_eff( 0.0 ), // Effective mag. permeability
w_eff( 0.0 ), // Effective width of line
atten_dielectric( 0.0 ), // Loss in dielectric (dB)
atten_cond( 0.0 ), // Loss in conductors (dB)
Z0_h_1( 0.0 ) // homogeneous stripline impedance
{
m_Name = "MicroStrip";
Init();
}
/*
* Z0_homogeneous() - compute the impedance for a stripline in a
* homogeneous medium, without cover effects
*/
double MICROSTRIP::Z0_homogeneous( double u )
{
double freq, Z0_value;
freq = 6.0 + ( 2.0 * M_PI - 6.0 ) * exp( -pow( 30.666 / u, 0.7528 ) );
Z0_value = ( ZF0 / ( 2.0 * M_PI ) ) * log( freq / u + sqrt( 1.0 + 4.0 / ( u * u ) ) );
return Z0_value;
}
/*
* delta_Z0_cover() - compute the cover effect on impedance for a
* stripline in a homogeneous medium
*/
double MICROSTRIP::delta_Z0_cover( double u, double h2h )
{
double P, Q;
double h2hp1;
h2hp1 = 1.0 + h2h;
P = 270.0 * ( 1.0 - tanh( 1.192 + 0.706 * sqrt( h2hp1 ) - 1.389 / h2hp1 ) );
Q = 1.0109 - atanh( ( 0.012 * u + 0.177 * u * u - 0.027 * u * u * u ) / ( h2hp1 * h2hp1 ) );
return P * Q;
}
/*
* filling_factor() - compute the filling factor for a microstrip
* without cover and zero conductor thickness
*/
double MICROSTRIP::filling_factor( double u, double e_r )
{
double a, b, q_inf;
double u2, u3, u4;
u2 = u * u;
u3 = u2 * u;
u4 = u3 * u;
a = 1.0 + log( ( u4 + u2 / 2704 ) / ( u4 + 0.432 ) ) / 49.0 + log( 1.0 + u3 / 5929.741 ) / 18.7;
b = 0.564 * pow( ( e_r - 0.9 ) / ( e_r + 3.0 ), 0.053 );
q_inf = pow( 1.0 + 10.0 / u, -a * b );
return q_inf;
}
/*
* delta_q_cover() - compute the cover effect on filling factor
*/
double MICROSTRIP::delta_q_cover( double h2h )
{
double q_c;
q_c = tanh( 1.043 + 0.121 * h2h - 1.164 / h2h );
return q_c;
}
/*
* delta_q_thickness() - compute the thickness effect on filling factor
*/
double MICROSTRIP::delta_q_thickness( double u, double t_h )
{
double q_t;
q_t = ( 2.0 * log( 2.0 ) / M_PI ) * ( t_h / sqrt( u ) );
return q_t;
}
/*
* e_r_effective() - compute effective dielectric constant from
* material e_r and filling factor
*/
double MICROSTRIP::e_r_effective( double e_r, double q )
{
double e_r_eff;
e_r_eff = 0.5 * ( e_r + 1.0 ) + 0.5 * q * ( e_r - 1.0 );
return e_r_eff;
}
/*
* delta_u_thickness - compute the thickness effect on normalized width
*/
double MICROSTRIP::delta_u_thickness( double u, double t_h, double e_r )
{
double delta_u;
if( t_h > 0.0 )
{
/* correction for thickness for a homogeneous microstrip */
delta_u = ( t_h / M_PI )
* log( 1.0 + ( 4.0 * M_E ) * pow( tanh( sqrt( 6.517 * u ) ), 2.0 ) / t_h );
/* correction for strip on a substrate with relative permettivity e_r */
delta_u = 0.5 * delta_u * ( 1.0 + 1.0 / cosh( sqrt( e_r - 1.0 ) ) );
}
else
{
delta_u = 0.0;
}
return delta_u;
}
/*
* microstrip_Z0() - compute microstrip static impedance
*/
void MICROSTRIP::microstrip_Z0()
{
double e_r, h2, h2h, u, t_h;
double Z0_h_r;
double delta_u_1, delta_u_r, q_inf, q_c, q_t, e_r_eff, e_r_eff_t, q;
e_r = m_parameters[EPSILONR_PRM];
h2 = m_parameters[H_T_PRM];
h2h = h2 / m_parameters[H_PRM];
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
t_h = m_parameters[T_PRM] / m_parameters[H_PRM];
/* compute normalized width correction for e_r = 1.0 */
delta_u_1 = delta_u_thickness( u, t_h, 1.0 );
/* compute homogeneous stripline impedance */
Z0_h_1 = Z0_homogeneous( u + delta_u_1 );
/* compute normalized width correction */
delta_u_r = delta_u_thickness( u, t_h, e_r );
u += delta_u_r;
/* compute homogeneous stripline impedance */
Z0_h_r = Z0_homogeneous( u );
/* filling factor, with width corrected for thickness */
q_inf = filling_factor( u, e_r );
/* cover effect */
q_c = delta_q_cover( h2h );
/* thickness effect */
q_t = delta_q_thickness( u, t_h );
/* resultant filling factor */
q = ( q_inf - q_t ) * q_c;
/* e_r corrected for thickness and non homogeneous material */
e_r_eff_t = e_r_effective( e_r, q );
/* effective dielectric constant */
e_r_eff = e_r_eff_t * pow( Z0_h_1 / Z0_h_r, 2.0 );
/* characteristic impedance, corrected for thickness, cover */
/* and non homogeneous material */
m_parameters[Z0_PRM] = Z0_h_r / sqrt( e_r_eff_t );
w_eff = u * m_parameters[H_PRM];
er_eff_0 = e_r_eff;
Z0_0 = m_parameters[Z0_PRM];
}
/*
* e_r_dispersion() - computes the dispersion correction factor for
* the effective permeability
*/
double MICROSTRIP::e_r_dispersion( double u, double e_r, double f_n )
{
double P_1, P_2, P_3, P_4, P;
P_1 = 0.27488 + u * ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) )
- 0.065683 * exp( -8.7513 * u );
P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * e_r ) );
P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( e_r / 15.916, 8.0 ) ) );
P = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n, 1.5763 );
return P;
}
/*
* Z0_dispersion() - computes the dispersion correction factor for the
* characteristic impedance
*/
double MICROSTRIP::Z0_dispersion(
double u, double e_r, double e_r_eff_0, double e_r_eff_f, double f_n )
{
double R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_11, R_12, R_13, R_14, R_15, R_16,
R_17, D, tmpf;
R_1 = 0.03891 * pow( e_r, 1.4 );
R_2 = 0.267 * pow( u, 7.0 );
R_3 = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
R_4 = 0.016 + pow( 0.0514 * e_r, 4.524 );
R_5 = pow( f_n / 28.843, 12.0 );
R_6 = 22.2 * pow( u, 1.92 );
R_7 = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
R_8 = 1.0
+ 1.275
* ( 1.0
- exp( -0.004625 * R_3 * pow( e_r, 1.674 )
* pow( f_n / 18.365, 2.745 ) ) );
tmpf = pow( e_r - 1.0, 6.0 );
R_9 = 5.086 * R_4 * ( R_5 / ( 0.3838 + 0.386 * R_4 ) )
* ( exp( -R_6 ) / ( 1.0 + 1.2992 * R_5 ) ) * ( tmpf / ( 1.0 + 10.0 * tmpf ) );
R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
tmpf = pow( f_n / 19.47, 6.0 );
R_11 = tmpf / ( 1.0 + 0.0962 * tmpf );
R_12 = 1.0 / ( 1.0 + 0.00245 * u * u );
R_13 = 0.9408 * pow( e_r_eff_f, R_8 ) - 0.9603;
R_14 = ( 0.9408 - R_9 ) * pow( e_r_eff_0, R_8 ) - 0.9603;
R_15 = 0.707 * R_10 * pow( f_n / 12.3, 1.097 );
R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) );
R_17 = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );
D = pow( R_13 / R_14, R_17 );
return D;
}
/*
* dispersion() - compute frequency dependent parameters of
* microstrip
*/
void MICROSTRIP::dispersion()
{
double e_r, e_r_eff_0;
double u, f_n, P, e_r_eff_f, D, Z0_f;
e_r = m_parameters[EPSILONR_PRM];
e_r_eff_0 = er_eff_0;
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
/* normalized frequency [GHz * mm] */
f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
P = e_r_dispersion( u, e_r, f_n );
/* effective dielectric constant corrected for dispersion */
e_r_eff_f = e_r - ( e_r - e_r_eff_0 ) / ( 1.0 + P );
D = Z0_dispersion( u, e_r, e_r_eff_0, e_r_eff_f, f_n );
Z0_f = Z0_0 * D;
// 1e10 factor is to convert from s/m to ps/cm
unit_prop_delay = calcUnitPropagationDelay( e_r_eff_f );
m_parameters[EPSILON_EFF_PRM] = e_r_eff_f;
m_parameters[Z0_PRM] = Z0_f;
}
/*
* conductor_losses() - compute microstrip conductor losses per unit
* length
*/
double MICROSTRIP::conductor_losses()
{
double e_r_eff_0, delta;
double K, R_s, Q_c, alpha_c;
e_r_eff_0 = er_eff_0;
delta = m_parameters[SKIN_DEPTH_PRM];
if( m_parameters[FREQUENCY_PRM] > 0.0 )
{
/* current distribution factor */
K = exp( -1.2 * pow( Z0_h_1 / ZF0, 0.7 ) );
/* skin resistance */
R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );
/* correction for surface roughness */
R_s *= 1.0
+ ( ( 2.0 / M_PI )
* atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );
/* strip inductive quality factor */
Q_c = ( M_PI * Z0_h_1 * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
/ ( R_s * C0 * K );
alpha_c = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM] * sqrt( e_r_eff_0 )
/ ( C0 * Q_c );
}
else
{
alpha_c = 0.0;
}
return alpha_c;
}
/*
* dielectric_losses() - compute microstrip dielectric losses per unit
* length
*/
double MICROSTRIP::dielectric_losses()
{
double e_r, e_r_eff_0;
double alpha_d;
e_r = m_parameters[EPSILONR_PRM];
e_r_eff_0 = er_eff_0;
alpha_d = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
* ( e_r / sqrt( e_r_eff_0 ) ) * ( ( e_r_eff_0 - 1.0 ) / ( e_r - 1.0 ) )
* m_parameters[TAND_PRM];
return alpha_d;
}
/*
* attenuation() - compute attenuation of microstrip
*/
void MICROSTRIP::attenuation()
{
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
atten_cond = conductor_losses() * m_parameters[PHYS_LEN_PRM];
atten_dielectric = dielectric_losses() * m_parameters[PHYS_LEN_PRM];
}
/*
* mur_eff_ms() - returns effective magnetic permeability
*/
void MICROSTRIP::mur_eff_ms()
{
double* mur = &m_parameters[MUR_PRM];
double* h = &m_parameters[H_PRM];
double* w = &m_parameters[PHYS_WIDTH_PRM];
mur_eff = ( 2.0 * *mur )
/ ( ( 1.0 + *mur ) + ( ( 1.0 - *mur ) * pow( ( 1.0 + ( 10.0 * *h / *w ) ), -0.5 ) ) );
}
// synth_width - calculate width given Z0 and e_r
double MICROSTRIP::synth_width()
{
double e_r, a, b;
double w_h, width;
e_r = m_parameters[EPSILONR_PRM];
a = ( ( m_parameters[Z0_PRM] / ZF0 / 2 / M_PI ) * sqrt( ( e_r + 1 ) / 2. ) )
+ ( ( e_r - 1 ) / ( e_r + 1 ) * ( 0.23 + ( 0.11 / e_r ) ) );
b = ZF0 / 2 * M_PI / ( m_parameters[Z0_PRM] * sqrt( e_r ) );
if( a > 1.52 )
{
w_h = 8 * exp( a ) / ( exp( 2. * a ) - 2 );
}
else
{
w_h = ( 2. / M_PI )
* ( b - 1. - log( ( 2 * b ) - 1. )
+ ( ( e_r - 1 ) / ( 2 * e_r ) ) * ( log( b - 1. ) + 0.39 - 0.61 / e_r ) );
}
if( m_parameters[H_PRM] > 0.0 )
width = w_h * m_parameters[H_PRM];
else
width = 0;
return width;
}
/*
* line_angle() - calculate microstrip length in radians
*/
void MICROSTRIP::line_angle()
{
double e_r_eff;
double v, lambda_g;
e_r_eff = m_parameters[EPSILON_EFF_PRM];
/* velocity */
v = C0 / sqrt( e_r_eff * mur_eff );
/* wavelength */
lambda_g = v / m_parameters[FREQUENCY_PRM];
/* electrical angles */
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g; /* in radians */
}
void MICROSTRIP::calcAnalyze()
{
/* effective permeability */
mur_eff_ms();
/* static impedance */
microstrip_Z0();
/* calculate freq dependence of er and Z0 */
dispersion();
/* calculate electrical lengths */
line_angle();
/* calculate losses */
attenuation();
}
void MICROSTRIP::show_results()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, unit_prop_delay, "ps/cm" );
setResult( 2, atten_cond, "dB" );
setResult( 3, atten_dielectric, "dB" );
setResult( 4, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
void MICROSTRIP::showSynthesize()
{
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
void MICROSTRIP::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}
/*
* synthesis function
*/
void MICROSTRIP::calcSynthesize()
{
double z0_dest = m_parameters[Z0_PRM];
double angl_dest = m_parameters[ANG_L_PRM];
/* calculate width and use for initial value in Newton's method */
m_parameters[PHYS_WIDTH_PRM] = synth_width();
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
m_parameters[Z0_PRM] = z0_dest;
m_parameters[ANG_L_PRM] = angl_dest;
double const er_eff = m_parameters[EPSILON_EFF_PRM];
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
* m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
calcAnalyze();
m_parameters[Z0_PRM] = z0_dest;
m_parameters[ANG_L_PRM] = angl_dest;
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
* m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
}
|