File: microstrip.cpp

package info (click to toggle)
kicad 9.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 770,320 kB
  • sloc: cpp: 961,692; ansic: 121,001; xml: 66,428; python: 18,387; sh: 1,010; awk: 301; asm: 292; makefile: 227; javascript: 167; perl: 10
file content (541 lines) | stat: -rw-r--r-- 16,448 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
 * microstrip.cpp - microstrip class implementation
 *
 * Copyright (C) 2001 Gopal Narayanan <gopal@astro.umass.edu>
 * Copyright (C) 2002 Claudio Girardi <claudio.girardi@ieee.org>
 * Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
 * Modified for Kicad: 2018 Jean-Pierre Charras <jp.charras at wanadoo.fr>
 * Copyright The KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this package; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */


/* microstrip.c - Puts up window for microstrip and
 * performs the associated calculations
 * Based on the original microstrip.c by Gopal Narayanan
 */

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>

#include "microstrip.h"
#include "transline.h"

#include "units.h"

MICROSTRIP::MICROSTRIP() : TRANSLINE(),
    h( 0.0 ),                // height of substrate
    ht( 0.0 ),               // height to the top of box
    t( 0.0 ),                // thickness of top metal
    rough( 0.0 ),            // Roughness of top metal
    mur( 0.0 ),              // magnetic permeability of substrate
    w( 0.0 ),                // width of line
    l( 0.0 ),                // length of line
    Z0_0( 0.0 ),             // static characteristic impedance
    Z0( 0.0 ),               // characteristic impedance
    er_eff_0( 0.0 ),         // Static effective dielectric constant
    mur_eff( 0.0 ),          // Effective mag. permeability
    w_eff( 0.0 ),            // Effective width of line
    atten_dielectric( 0.0 ), // Loss in dielectric (dB)
    atten_cond( 0.0 ),       // Loss in conductors (dB)
    Z0_h_1( 0.0 )            // homogeneous stripline impedance
{
    m_Name = "MicroStrip";
    Init();
}


/*
 * Z0_homogeneous() - compute the impedance for a stripline in a
 * homogeneous medium, without cover effects
 */
double MICROSTRIP::Z0_homogeneous( double u )
{
    double freq, Z0_value;

    freq     = 6.0 + ( 2.0 * M_PI - 6.0 ) * exp( -pow( 30.666 / u, 0.7528 ) );
    Z0_value = ( ZF0 / ( 2.0 * M_PI ) ) * log( freq / u + sqrt( 1.0 + 4.0 / ( u * u ) ) );
    return Z0_value;
}


/*
 * delta_Z0_cover() - compute the cover effect on impedance for a
 * stripline in a homogeneous medium
 */
double MICROSTRIP::delta_Z0_cover( double u, double h2h )
{
    double P, Q;
    double h2hp1;

    h2hp1 = 1.0 + h2h;
    P     = 270.0 * ( 1.0 - tanh( 1.192 + 0.706 * sqrt( h2hp1 ) - 1.389 / h2hp1 ) );
    Q     = 1.0109 - atanh( ( 0.012 * u + 0.177 * u * u - 0.027 * u * u * u ) / ( h2hp1 * h2hp1 ) );
    return P * Q;
}


/*
 * filling_factor() - compute the filling factor for a microstrip
 * without cover and zero conductor thickness
 */
double MICROSTRIP::filling_factor( double u, double e_r )
{
    double a, b, q_inf;
    double u2, u3, u4;

    u2 = u * u;
    u3 = u2 * u;
    u4 = u3 * u;
    a = 1.0 + log( ( u4 + u2 / 2704 ) / ( u4 + 0.432 ) ) / 49.0 + log( 1.0 + u3 / 5929.741 ) / 18.7;
    b = 0.564 * pow( ( e_r - 0.9 ) / ( e_r + 3.0 ), 0.053 );
    q_inf = pow( 1.0 + 10.0 / u, -a * b );
    return q_inf;
}


/*
 * delta_q_cover() - compute the cover effect on filling factor
 */
double MICROSTRIP::delta_q_cover( double h2h )
{
    double q_c;

    q_c = tanh( 1.043 + 0.121 * h2h - 1.164 / h2h );
    return q_c;
}


/*
 * delta_q_thickness() - compute the thickness effect on filling factor
 */
double MICROSTRIP::delta_q_thickness( double u, double t_h )
{
    double q_t;

    q_t = ( 2.0 * log( 2.0 ) / M_PI ) * ( t_h / sqrt( u ) );
    return q_t;
}


/*
 * e_r_effective() - compute effective dielectric constant from
 * material e_r and filling factor
 */
double MICROSTRIP::e_r_effective( double e_r, double q )
{
    double e_r_eff;

    e_r_eff = 0.5 * ( e_r + 1.0 ) + 0.5 * q * ( e_r - 1.0 );
    return e_r_eff;
}


/*
 * delta_u_thickness - compute the thickness effect on normalized width
 */
double MICROSTRIP::delta_u_thickness( double u, double t_h, double e_r )
{
    double delta_u;

    if( t_h > 0.0 )
    {
        /* correction for thickness for a homogeneous microstrip */
        delta_u = ( t_h / M_PI )
                  * log( 1.0 + ( 4.0 * M_E ) * pow( tanh( sqrt( 6.517 * u ) ), 2.0 ) / t_h );
        /* correction for strip on a substrate with relative permettivity e_r */
        delta_u = 0.5 * delta_u * ( 1.0 + 1.0 / cosh( sqrt( e_r - 1.0 ) ) );
    }
    else
    {
        delta_u = 0.0;
    }
    return delta_u;
}


/*
 * microstrip_Z0() - compute microstrip static impedance
 */
void MICROSTRIP::microstrip_Z0()
{
    double e_r, h2, h2h, u, t_h;
    double Z0_h_r;
    double delta_u_1, delta_u_r, q_inf, q_c, q_t, e_r_eff, e_r_eff_t, q;

    e_r = m_parameters[EPSILONR_PRM];
    h2  = m_parameters[H_T_PRM];
    h2h = h2 / m_parameters[H_PRM];
    u   = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
    t_h = m_parameters[T_PRM] / m_parameters[H_PRM];

    /* compute normalized width correction for e_r = 1.0 */
    delta_u_1 = delta_u_thickness( u, t_h, 1.0 );
    /* compute homogeneous stripline impedance */
    Z0_h_1 = Z0_homogeneous( u + delta_u_1 );
    /* compute normalized width correction */
    delta_u_r = delta_u_thickness( u, t_h, e_r );
    u += delta_u_r;
    /* compute homogeneous stripline impedance */
    Z0_h_r = Z0_homogeneous( u );

    /* filling factor, with width corrected for thickness */
    q_inf = filling_factor( u, e_r );
    /* cover effect */
    q_c = delta_q_cover( h2h );
    /* thickness effect */
    q_t = delta_q_thickness( u, t_h );
    /* resultant filling factor */
    q = ( q_inf - q_t ) * q_c;

    /* e_r corrected for thickness and non homogeneous material */
    e_r_eff_t = e_r_effective( e_r, q );

    /* effective dielectric constant */
    e_r_eff = e_r_eff_t * pow( Z0_h_1 / Z0_h_r, 2.0 );

    /* characteristic impedance, corrected for thickness, cover */
    /*   and non homogeneous material */
    m_parameters[Z0_PRM] = Z0_h_r / sqrt( e_r_eff_t );

    w_eff    = u * m_parameters[H_PRM];
    er_eff_0 = e_r_eff;
    Z0_0     = m_parameters[Z0_PRM];
}


/*
 * e_r_dispersion() - computes the dispersion correction factor for
 * the effective permeability
 */
double MICROSTRIP::e_r_dispersion( double u, double e_r, double f_n )
{
    double P_1, P_2, P_3, P_4, P;

    P_1 = 0.27488 + u * ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) )
          - 0.065683 * exp( -8.7513 * u );
    P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * e_r ) );
    P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
    P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( e_r / 15.916, 8.0 ) ) );

    P = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n, 1.5763 );

    return P;
}


/*
 * Z0_dispersion() - computes the dispersion correction factor for the
 * characteristic impedance
 */
double MICROSTRIP::Z0_dispersion(
        double u, double e_r, double e_r_eff_0, double e_r_eff_f, double f_n )
{
    double R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_11, R_12, R_13, R_14, R_15, R_16,
           R_17, D, tmpf;

    R_1 = 0.03891 * pow( e_r, 1.4 );
    R_2 = 0.267 * pow( u, 7.0 );
    R_3 = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
    R_4 = 0.016 + pow( 0.0514 * e_r, 4.524 );
    R_5 = pow( f_n / 28.843, 12.0 );
    R_6 = 22.2 * pow( u, 1.92 );
    R_7 = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
    R_8 = 1.0
          + 1.275
                    * ( 1.0
                            - exp( -0.004625 * R_3 * pow( e_r, 1.674 )
                                    * pow( f_n / 18.365, 2.745 ) ) );
    tmpf = pow( e_r - 1.0, 6.0 );
    R_9  = 5.086 * R_4 * ( R_5 / ( 0.3838 + 0.386 * R_4 ) )
          * ( exp( -R_6 ) / ( 1.0 + 1.2992 * R_5 ) ) * ( tmpf / ( 1.0 + 10.0 * tmpf ) );
    R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
    tmpf = pow( f_n / 19.47, 6.0 );
    R_11 = tmpf / ( 1.0 + 0.0962 * tmpf );
    R_12 = 1.0 / ( 1.0 + 0.00245 * u * u );
    R_13 = 0.9408 * pow( e_r_eff_f, R_8 ) - 0.9603;
    R_14 = ( 0.9408 - R_9 ) * pow( e_r_eff_0, R_8 ) - 0.9603;
    R_15 = 0.707 * R_10 * pow( f_n / 12.3, 1.097 );
    R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) );
    R_17 = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );

    D = pow( R_13 / R_14, R_17 );

    return D;
}


/*
 * dispersion() - compute frequency dependent parameters of
 * microstrip
 */
void MICROSTRIP::dispersion()
{
    double e_r, e_r_eff_0;
    double u, f_n, P, e_r_eff_f, D, Z0_f;

    e_r       = m_parameters[EPSILONR_PRM];
    e_r_eff_0 = er_eff_0;
    u         = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];

    /* normalized frequency [GHz * mm] */
    f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;

    P = e_r_dispersion( u, e_r, f_n );
    /* effective dielectric constant corrected for dispersion */
    e_r_eff_f = e_r - ( e_r - e_r_eff_0 ) / ( 1.0 + P );

    D    = Z0_dispersion( u, e_r, e_r_eff_0, e_r_eff_f, f_n );
    Z0_f = Z0_0 * D;

    // 1e10 factor is to convert from s/m to ps/cm
    unit_prop_delay = calcUnitPropagationDelay( e_r_eff_f );

    m_parameters[EPSILON_EFF_PRM] = e_r_eff_f;
    m_parameters[Z0_PRM] = Z0_f;
}


/*
 * conductor_losses() - compute microstrip conductor losses per unit
 * length
 */
double MICROSTRIP::conductor_losses()
{
    double e_r_eff_0, delta;
    double K, R_s, Q_c, alpha_c;

    e_r_eff_0 = er_eff_0;
    delta     = m_parameters[SKIN_DEPTH_PRM];

    if( m_parameters[FREQUENCY_PRM] > 0.0 )
    {
        /* current distribution factor */
        K = exp( -1.2 * pow( Z0_h_1 / ZF0, 0.7 ) );
        /* skin resistance */
        R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );

        /* correction for surface roughness */
        R_s *= 1.0
               + ( ( 2.0 / M_PI )
                       * atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );
        /* strip inductive quality factor */
        Q_c = ( M_PI * Z0_h_1 * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
              / ( R_s * C0 * K );
        alpha_c = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM] * sqrt( e_r_eff_0 )
                  / ( C0 * Q_c );
    }
    else
    {
        alpha_c = 0.0;
    }

    return alpha_c;
}


/*
 * dielectric_losses() - compute microstrip dielectric losses per unit
 * length
 */
double MICROSTRIP::dielectric_losses()
{
    double e_r, e_r_eff_0;
    double alpha_d;

    e_r       = m_parameters[EPSILONR_PRM];
    e_r_eff_0 = er_eff_0;

    alpha_d = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
              * ( e_r / sqrt( e_r_eff_0 ) ) * ( ( e_r_eff_0 - 1.0 ) / ( e_r - 1.0 ) )
              * m_parameters[TAND_PRM];

    return alpha_d;
}


/*
 * attenuation() - compute attenuation of microstrip
 */
void MICROSTRIP::attenuation()
{
    m_parameters[SKIN_DEPTH_PRM] = skin_depth();

    atten_cond       = conductor_losses() * m_parameters[PHYS_LEN_PRM];
    atten_dielectric = dielectric_losses() * m_parameters[PHYS_LEN_PRM];
}


/*
 * mur_eff_ms() - returns effective magnetic permeability
 */
void MICROSTRIP::mur_eff_ms()
{
    double* mur = &m_parameters[MUR_PRM];
    double* h   = &m_parameters[H_PRM];
    double* w   = &m_parameters[PHYS_WIDTH_PRM];
    mur_eff     = ( 2.0 * *mur )
              / ( ( 1.0 + *mur ) + ( ( 1.0 - *mur ) * pow( ( 1.0 + ( 10.0 * *h / *w ) ), -0.5 ) ) );
}


// synth_width - calculate width given Z0 and e_r
double MICROSTRIP::synth_width()
{
    double e_r, a, b;
    double w_h, width;

    e_r = m_parameters[EPSILONR_PRM];

    a = ( ( m_parameters[Z0_PRM] / ZF0 / 2 / M_PI ) * sqrt( ( e_r + 1 ) / 2. ) )
        + ( ( e_r - 1 ) / ( e_r + 1 ) * ( 0.23 + ( 0.11 / e_r ) ) );
    b = ZF0 / 2 * M_PI / ( m_parameters[Z0_PRM] * sqrt( e_r ) );

    if( a > 1.52 )
    {
        w_h = 8 * exp( a ) / ( exp( 2. * a ) - 2 );
    }
    else
    {
        w_h = ( 2. / M_PI )
              * ( b - 1. - log( ( 2 * b ) - 1. )
                      + ( ( e_r - 1 ) / ( 2 * e_r ) ) * ( log( b - 1. ) + 0.39 - 0.61 / e_r ) );
    }

    if( m_parameters[H_PRM] > 0.0 )
        width = w_h * m_parameters[H_PRM];
    else
        width = 0;

    return width;
}


/*
 * line_angle() - calculate microstrip length in radians
 */
void MICROSTRIP::line_angle()
{
    double e_r_eff;
    double v, lambda_g;

    e_r_eff = m_parameters[EPSILON_EFF_PRM];

    /* velocity */
    v = C0 / sqrt( e_r_eff * mur_eff );
    /* wavelength */
    lambda_g = v / m_parameters[FREQUENCY_PRM];
    /* electrical angles */
    m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g; /* in radians */
}


void MICROSTRIP::calcAnalyze()
{
    /* effective permeability */
    mur_eff_ms();
    /* static impedance */
    microstrip_Z0();
    /* calculate freq dependence of er and Z0 */
    dispersion();
    /* calculate electrical lengths */
    line_angle();
    /* calculate losses */
    attenuation();
}


void MICROSTRIP::show_results()
{
    setProperty( Z0_PRM, m_parameters[Z0_PRM] );
    setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );

    setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
    setResult( 1, unit_prop_delay, "ps/cm" );
    setResult( 2, atten_cond, "dB" );
    setResult( 3, atten_dielectric, "dB" );

    setResult( 4, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}


void MICROSTRIP::showSynthesize()
{
    setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
    setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );

    // Check for errors
    if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
        setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
        setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );

    // Check for warnings
    if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
        setErrorLevel( Z0_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
        setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}

void MICROSTRIP::showAnalyze()
{
    setProperty( Z0_PRM, m_parameters[Z0_PRM] );
    setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );

    // Check for errors
    if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
        setErrorLevel( Z0_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
        setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );

    // Check for warnings
    if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
        setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
        setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}

/*
 * synthesis function
 */
void MICROSTRIP::calcSynthesize()
{
    double z0_dest   = m_parameters[Z0_PRM];
    double angl_dest = m_parameters[ANG_L_PRM];
    /* calculate width and use for initial value in Newton's method */
    m_parameters[PHYS_WIDTH_PRM] = synth_width();
    minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );

    m_parameters[Z0_PRM]       = z0_dest;
    m_parameters[ANG_L_PRM]    = angl_dest;
    double const er_eff = m_parameters[EPSILON_EFF_PRM];
    m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
                                 * m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
    calcAnalyze();

    m_parameters[Z0_PRM]       = z0_dest;
    m_parameters[ANG_L_PRM]    = angl_dest;
    m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
                                 * m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
}