File: zone_filler.cpp

package info (click to toggle)
kicad 9.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 770,320 kB
  • sloc: cpp: 961,692; ansic: 121,001; xml: 66,428; python: 18,387; sh: 1,010; awk: 301; asm: 292; makefile: 227; javascript: 167; perl: 10
file content (2528 lines) | stat: -rw-r--r-- 94,230 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2014-2017 CERN
 * Copyright The KiCad Developers, see AUTHORS.txt for contributors.
 * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
 *
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 3 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_target.h>
#include <pcb_track.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_tablecell.h>
#include <pcb_table.h>
#include <pcb_dimension.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <geometry/vertex_set.h>
#include <kidialog.h>
#include <thread_pool.h>
#include <math/util.h>      // for KiROUND
#include "zone_filler.h"

// Helper classes for connect_nearby_polys
class RESULTS
{
public:
    RESULTS( int aOutline1, int aOutline2, int aVertex1, int aVertex2 ) :
            m_outline1( aOutline1 ), m_outline2( aOutline2 ),
            m_vertex1( aVertex1 ), m_vertex2( aVertex2 )
    {
    }

    bool operator<( const RESULTS& aOther ) const
    {
        if( m_outline1 != aOther.m_outline1 )
            return m_outline1 < aOther.m_outline1;
        if( m_outline2 != aOther.m_outline2 )
            return m_outline2 < aOther.m_outline2;
        if( m_vertex1 != aOther.m_vertex1 )
            return m_vertex1 < aOther.m_vertex1;
        return m_vertex2 < aOther.m_vertex2;
    }

    int m_outline1;
    int m_outline2;
    int m_vertex1;
    int m_vertex2;
};

class VERTEX_CONNECTOR : protected VERTEX_SET
{
public:
    VERTEX_CONNECTOR( const BOX2I& aBBox, const SHAPE_POLY_SET& aPolys, int aDist ) : VERTEX_SET( 0 )
    {
        SetBoundingBox( aBBox );
        VERTEX* tail = nullptr;

        for( int i = 0; i < aPolys.OutlineCount(); i++ )
            tail = createList( aPolys.Outline( i ), tail, (void*)( intptr_t )( i ) );

        if( tail )
            tail->updateList();
        m_dist = aDist;
    }

    VERTEX* getPoint( VERTEX* aPt ) const
    {
        // z-order range for the current point ± limit bounding box
        const uint32_t     maxZ = zOrder( aPt->x + m_dist, aPt->y + m_dist );
        const uint32_t     minZ = zOrder( aPt->x - m_dist, aPt->y - m_dist );
        const SEG::ecoord limit2 = SEG::Square( m_dist );

        // first look for points in increasing z-order
        SEG::ecoord min_dist = std::numeric_limits<SEG::ecoord>::max();
        VERTEX* retval = nullptr;

        auto check_pt = [&]( VERTEX* p )
        {
            VECTOR2D diff( p->x - aPt->x, p->y - aPt->y );
            SEG::ecoord dist2 = diff.SquaredEuclideanNorm();

            if( dist2 > 0 && dist2 < limit2 && dist2 < min_dist && p->isEar( true ) )
            {
                min_dist = dist2;
                retval = p;
            }
        };

        VERTEX* p = aPt->nextZ;

        while( p && p->z <= maxZ )
        {
            check_pt( p );
            p = p->nextZ;
        }

        p = aPt->prevZ;

        while( p && p->z >= minZ )
        {
            check_pt( p );
            p = p->prevZ;
        }

        return retval;
    }

    void FindResults()
    {
        if( m_vertices.empty() )
            return;

        VERTEX* p = m_vertices.front().next;
        std::set<VERTEX*> visited;

        while( p != &m_vertices.front() )
        {
            // Skip points that are concave
            if( !p->isEar() )
            {
                p = p->next;
                continue;
            }

            VERTEX* q = nullptr;

            if( ( visited.empty() || !visited.contains( p ) ) && ( q = getPoint( p ) ) )
            {
                visited.insert( p );

                if( !visited.contains( q ) &&
                    m_results.emplace( (intptr_t) p->GetUserData(), (intptr_t) q->GetUserData(),
                                        p->i, q->i ).second )
                {
                    // We don't want to connect multiple points in the same vicinity, so skip
                    // 2 points before and after each point and match.
                    visited.insert( p->prev );
                    visited.insert( p->prev->prev );
                    visited.insert( p->next );
                    visited.insert( p->next->next );

                    visited.insert( q->prev );
                    visited.insert( q->prev->prev );
                    visited.insert( q->next );
                    visited.insert( q->next->next );

                    visited.insert( q );
                }
            }

            p = p->next;
        }
    }

    std::set<RESULTS> GetResults() const
    {
        return m_results;
    }

private:
    std::set<RESULTS> m_results;
    int m_dist;
};


ZONE_FILLER::ZONE_FILLER(  BOARD* aBoard, COMMIT* aCommit ) :
        m_board( aBoard ),
        m_brdOutlinesValid( false ),
        m_commit( aCommit ),
        m_progressReporter( nullptr ),
        m_maxError( ARC_HIGH_DEF ),
        m_worstClearance( 0 )
{
    // To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
    m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;
}


ZONE_FILLER::~ZONE_FILLER()
{
}


void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
    m_progressReporter = aReporter;
    wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call "
                                 "SetProgressReporter" ) );
}


/**
 * Fills the given list of zones.
 *
 * NB: Invalidates connectivity - it is up to the caller to obtain a lock on the connectivity
 * data before calling Fill to prevent access to stale data by other coroutines (for example,
 * ratsnest redraw).  This will generally be required if a UI-based progress reporter has been
 * installed.
 *
 * Caller is also responsible for re-building connectivity afterwards.
 */
bool ZONE_FILLER::Fill( const std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent )
{
    std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );

    std::vector<std::pair<ZONE*, PCB_LAYER_ID>>               toFill;
    std::map<std::pair<ZONE*, PCB_LAYER_ID>, HASH_128>        oldFillHashes;
    std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>> isolatedIslandsMap;

    std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();

    // Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable.
    connectivity->ClearRatsnest();
    connectivity->Build( m_board, m_progressReporter );

    m_worstClearance = m_board->GetMaxClearanceValue();

    if( m_progressReporter )
    {
        m_progressReporter->Report( aCheck ? _( "Checking zone fills..." )
                                           : _( "Building zone fills..." ) );
        m_progressReporter->SetMaxProgress( aZones.size() );
        m_progressReporter->KeepRefreshing();
    }

    // The board outlines is used to clip solid areas inside the board (when outlines are valid)
    m_boardOutline.RemoveAllContours();
    m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );

    // Update and cache zone bounding boxes and pad effective shapes so that we don't have to
    // make them thread-safe.
    //
    for( ZONE* zone : m_board->Zones() )
        zone->CacheBoundingBox();

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        for( PAD* pad : footprint->Pads() )
        {
            if( pad->IsDirty() )
            {
                pad->BuildEffectiveShapes();
                pad->BuildEffectivePolygon( ERROR_OUTSIDE );
            }
        }

        for( ZONE* zone : footprint->Zones() )
            zone->CacheBoundingBox();

        // Rules may depend on insideCourtyard() or other expressions
        footprint->BuildCourtyardCaches();
        footprint->BuildNetTieCache();
    }

    LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask();

    auto findHighestPriorityZone =
            [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, int netcode,
                 const std::function<bool( const ZONE* )>& testFn ) -> ZONE*
            {
                unsigned highestPriority = 0;
                ZONE*    highestPriorityZone = nullptr;

                for( ZONE* zone : m_board->Zones() )
                {
                    // Rule areas are not filled
                    if( zone->GetIsRuleArea() )
                        continue;

                    if( zone->GetAssignedPriority() < highestPriority )
                        continue;

                    if( !zone->IsOnLayer( itemLayer ) )
                        continue;

                    // Degenerate zones will cause trouble; skip them
                    if( zone->GetNumCorners() <= 2 )
                        continue;

                    if( !zone->GetBoundingBox().Intersects( bbox ) )
                        continue;

                    if( !testFn( zone ) )
                        continue;

                    // Prefer highest priority and matching netcode
                    if( zone->GetAssignedPriority() > highestPriority
                            || zone->GetNetCode() == netcode )
                    {
                        highestPriority = zone->GetAssignedPriority();
                        highestPriorityZone = zone;
                    }
                }

                return highestPriorityZone;
            };

    auto isInPourKeepoutArea =
            [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, const VECTOR2I& testPoint ) -> bool
            {
                for( ZONE* zone : m_board->Zones() )
                {
                    if( !zone->GetIsRuleArea() )
                        continue;

                    if( !zone->HasKeepoutParametersSet() )
                        continue;

                    if( !zone->GetDoNotAllowCopperPour() )
                        continue;

                    if( !zone->IsOnLayer( itemLayer ) )
                        continue;

                    // Degenerate zones will cause trouble; skip them
                    if( zone->GetNumCorners() <= 2 )
                        continue;

                    if( !zone->GetBoundingBox().Intersects( bbox ) )
                        continue;

                    if( zone->Outline()->Contains( testPoint ) )
                        return true;
                }

                return false;
            };

    // Determine state of conditional via flashing
    // This is now done completely deterministically prior to filling due to the pathological
    // case presented in https://gitlab.com/kicad/code/kicad/-/issues/12964.
    for( PCB_TRACK* track : m_board->Tracks() )
    {
        if( track->Type() == PCB_VIA_T )
        {
            PCB_VIA* via = static_cast<PCB_VIA*>( track );

            via->ClearZoneLayerOverrides();

            if( !via->GetRemoveUnconnected() )
                continue;

            BOX2I    bbox = via->GetBoundingBox();
            VECTOR2I center = via->GetPosition();
            int      holeRadius = via->GetDrillValue() / 2 + 1;
            int      netcode = via->GetNetCode();
            LSET     layers = via->GetLayerSet() & boardCuMask;

            // Checking if the via hole touches the zone outline
            auto viaTestFn =
                    [&]( const ZONE* aZone ) -> bool
                    {
                        return aZone->Outline()->Contains( center, -1, holeRadius );
                    };

            for( PCB_LAYER_ID layer : layers.Seq() )
            {
                if( !via->ConditionallyFlashed( layer ) )
                    continue;

                if( isInPourKeepoutArea( bbox, layer, center ) )
                {
                    via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
                }
                else
                {
                    ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn );

                    if( zone && zone->GetNetCode() == via->GetNetCode() )
                        via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
                    else
                        via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
                }
            }
        }
    }

    // Determine state of conditional pad flashing
    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        for( PAD* pad : footprint->Pads() )
        {
            pad->ClearZoneLayerOverrides();

            if( !pad->GetRemoveUnconnected() )
                continue;

            BOX2I    bbox = pad->GetBoundingBox();
            VECTOR2I center = pad->GetPosition();
            int      netcode = pad->GetNetCode();
            LSET     layers = pad->GetLayerSet() & boardCuMask;

            auto padTestFn =
                    [&]( const ZONE* aZone ) -> bool
                    {
                        return aZone->Outline()->Contains( center );
                    };

            for( PCB_LAYER_ID layer : layers.Seq() )
            {
                if( !pad->ConditionallyFlashed( layer ) )
                    continue;

                if( isInPourKeepoutArea( bbox, layer, center ) )
                {
                    pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
                }
                else
                {
                    ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn );

                    if( zone && zone->GetNetCode() == pad->GetNetCode() )
                        pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
                    else
                        pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
                }
            }
        }
    }

    for( ZONE* zone : aZones )
    {
        // Rule areas are not filled
        if( zone->GetIsRuleArea() )
            continue;

        // Degenerate zones will cause trouble; skip them
        if( zone->GetNumCorners() <= 2 )
            continue;

        if( m_commit )
            m_commit->Modify( zone );

        // calculate the hash value for filled areas. it will be used later to know if the
        // current filled areas are up to date
        for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
        {
            zone->BuildHashValue( layer );
            oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );

            // Add the zone to the list of zones to test or refill
            toFill.emplace_back( std::make_pair( zone, layer ) );

            isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS();
        }

        // Remove existing fill first to prevent drawing invalid polygons on some platforms
        zone->UnFill();
    }

    auto check_fill_dependency =
            [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool
            {
                // Check to see if we have to knock-out the filled areas of a higher-priority
                // zone.  If so we have to wait until said zone is filled before we can fill.

                // If the other zone is already filled on the requested layer then we're
                // good-to-go
                if( aOtherZone->GetFillFlag( aLayer ) )
                    return false;

                // Even if keepouts exclude copper pours, the exclusion is by outline rather than
                // filled area, so we're good-to-go here too
                if( aOtherZone->GetIsRuleArea() )
                    return false;

                // If the other zone is never going to be filled then don't wait for it
                if( aOtherZone->GetNumCorners() <= 2 )
                    return false;

                // If the zones share no common layers
                if( !aOtherZone->GetLayerSet().test( aLayer ) )
                    return false;

                if( aZone->HigherPriority( aOtherZone ) )
                    return false;

                // Same-net zones always use outlines to produce determinate results
                if( aOtherZone->SameNet( aZone ) )
                    return false;

                // A higher priority zone is found: if we intersect and it's not filled yet
                // then we have to wait.
                BOX2I inflatedBBox = aZone->GetBoundingBox();
                inflatedBBox.Inflate( m_worstClearance );

                if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) )
                    return false;

                return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance );
            };

    auto fill_lambda =
            [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
            {
                PCB_LAYER_ID layer = aFillItem.second;
                ZONE*        zone = aFillItem.first;
                bool         canFill = true;

                // Check for any fill dependencies.  If our zone needs to be clipped by
                // another zone then we can't fill until that zone is filled.
                for( ZONE* otherZone : aZones )
                {
                    if( otherZone == zone )
                        continue;

                    if( check_fill_dependency( zone, layer, otherZone ) )
                    {
                        canFill = false;
                        break;
                    }
                }

                if( m_progressReporter && m_progressReporter->IsCancelled() )
                    return 0;

                if( !canFill )
                    return 0;

                // Now we're ready to fill.
                {
                    std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );

                    if( !zoneLock.owns_lock() )
                        return 0;

                    SHAPE_POLY_SET fillPolys;

                    if( !fillSingleZone( zone, layer, fillPolys ) )
                        return 0;

                    zone->SetFilledPolysList( layer, fillPolys );
                }

                if( m_progressReporter )
                    m_progressReporter->AdvanceProgress();

                return 1;
            };

    auto tesselate_lambda =
            [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
            {
                if( m_progressReporter && m_progressReporter->IsCancelled() )
                    return 0;

                PCB_LAYER_ID layer = aFillItem.second;
                ZONE*        zone = aFillItem.first;

                {
                    std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );

                    if( !zoneLock.owns_lock() )
                        return 0;

                    zone->CacheTriangulation( layer );
                    zone->SetFillFlag( layer, true );
                }

                return 1;
            };

    // Calculate the copper fills (NB: this is multi-threaded)
    //
    std::vector<std::pair<std::future<int>, int>> returns;
    returns.reserve( toFill.size() );
    size_t finished = 0;
    bool cancelled = false;

    thread_pool& tp = GetKiCadThreadPool();

    for( const std::pair<ZONE*, PCB_LAYER_ID>& fillItem : toFill )
        returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) );

    while( !cancelled && finished != 2 * toFill.size() )
    {
        for( size_t ii = 0; ii < returns.size(); ++ii )
        {
            auto& ret = returns[ii];

            if( ret.second > 1 )
                continue;

            std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );

            if( status == std::future_status::ready )
            {
                if( ret.first.get() )   // lambda completed
                {
                    ++finished;
                    ret.second++;       // go to next step
                }

                if( !cancelled )
                {
                    // Queue the next step (will re-queue the existing step if it didn't complete)
                    if( ret.second == 0 )
                        returns[ii].first = tp.submit( fill_lambda, toFill[ii] );
                    else if( ret.second == 1 )
                        returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] );
                }
            }
        }

        std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) );


        if( m_progressReporter )
        {
            m_progressReporter->KeepRefreshing();

            if( m_progressReporter->IsCancelled() )
                cancelled = true;
        }
    }

    // Make sure that all futures have finished.
    // This can happen when the user cancels the above operation
    for( auto& ret : returns )
    {
        if( ret.first.valid() )
        {
            std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );

            while( status != std::future_status::ready )
            {
                if( m_progressReporter )
                    m_progressReporter->KeepRefreshing();

                status = ret.first.wait_for( std::chrono::milliseconds( 100 ) );
            }
        }
    }

    // Now update the connectivity to check for isolated copper islands
    // (NB: FindIsolatedCopperIslands() is multi-threaded)
    //
    if( m_progressReporter )
    {
        if( m_progressReporter->IsCancelled() )
            return false;

        m_progressReporter->AdvancePhase();
        m_progressReporter->Report( _( "Removing isolated copper islands..." ) );
        m_progressReporter->KeepRefreshing();
    }

    connectivity->SetProgressReporter( m_progressReporter );
    connectivity->FillIsolatedIslandsMap( isolatedIslandsMap );
    connectivity->SetProgressReporter( nullptr );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    for( ZONE* zone : aZones )
    {
        // Keepout zones are not filled
        if( zone->GetIsRuleArea() )
            continue;

        zone->SetIsFilled( true );
    }

    // Now remove isolated copper islands according to the isolated islands strategy assigned
    // by the user (always, never, below-certain-size).
    //
    for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap )
    {
        // If *all* the polygons are islands, do not remove any of them
        bool allIslands = true;

        for( const auto& [ layer, layerIslands ] : zoneIslands )
        {
            if( layerIslands.m_IsolatedOutlines.size()
                    != static_cast<size_t>( zone->GetFilledPolysList( layer )->OutlineCount() ) )
            {
                allIslands = false;
                break;
            }
        }

        if( allIslands )
            continue;

        for( const auto& [ layer, layerIslands ] : zoneIslands )
        {
            if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
                continue;

            if( layerIslands.m_IsolatedOutlines.empty() )
                continue;

            std::vector<int> islands = layerIslands.m_IsolatedOutlines;

            // The list of polygons to delete must be explored from last to first in list,
            // to allow deleting a polygon from list without breaking the remaining of the list
            std::sort( islands.begin(), islands.end(), std::greater<int>() );

            std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer );
            long long int                   minArea = zone->GetMinIslandArea();
            ISLAND_REMOVAL_MODE             mode = zone->GetIslandRemovalMode();

            for( int idx : islands )
            {
                SHAPE_LINE_CHAIN& outline = poly->Outline( idx );

                if( mode == ISLAND_REMOVAL_MODE::ALWAYS )
                    poly->DeletePolygonAndTriangulationData( idx, false );
                else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea )
                    poly->DeletePolygonAndTriangulationData( idx, false );
                else
                    zone->SetIsIsland( layer, idx );
            }

            poly->UpdateTriangulationDataHash();
            zone->CalculateFilledArea();

            if( m_progressReporter && m_progressReporter->IsCancelled() )
                return false;
        }
    }

    // Now remove islands which are either outside the board edge or fail to meet the minimum
    // area requirements
    using island_check_return = std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, int>>;

    std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, double>> polys_to_check;

    // rough estimate to save re-allocation time
    polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() );

    for( ZONE* zone : aZones )
    {
        // Don't check for connections on layers that only exist in the zone but
        // were disabled in the board
        BOARD* board = zone->GetBoard();
        LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask() & board->GetEnabledLayers();

        // Min-thickness is the web thickness.  On the other hand, a blob min-thickness by
        // min-thickness is not useful.  Since there's no obvious definition of web vs. blob, we
        // arbitrarily choose "at least 3X the area".
        double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 3;

        for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() )
        {
            if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
                continue;

            polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea );
        }
    }

    auto island_lambda =
            [&]( int aStart, int aEnd ) -> island_check_return
            {
                island_check_return retval;

                for( int ii = aStart; ii < aEnd && !cancelled; ++ii )
                {
                    auto [poly, minArea] = polys_to_check[ii];

                    for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- )
                    {
                        SHAPE_POLY_SET island;
                        SHAPE_POLY_SET intersection;
                        const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front();
                        double island_area = test_poly.Area();

                        if( island_area < minArea )
                            continue;


                        island.AddOutline( test_poly );
                        intersection.BooleanIntersection( m_boardOutline, island );

                        // Nominally, all of these areas should be either inside or outside the
                        // board outline.  So this test should be able to just compare areas (if
                        // they are equal, you are inside).  But in practice, we sometimes have
                        // slight overlap at the edges, so testing against half-size area acts as
                        // a fail-safe.
                        if( intersection.Area() < island_area / 2.0 )
                            retval.emplace_back( poly, jj );
                    }
                }

                return retval;
            };

    auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda );
    cancelled = false;

    // Allow island removal threads to finish
    for( size_t ii = 0; ii < island_returns.size(); ++ii )
    {
        std::future<island_check_return>& ret = island_returns[ii];

        if( ret.valid() )
        {
            std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) );

            while( status != std::future_status::ready )
            {
                if( m_progressReporter )
                {
                    m_progressReporter->KeepRefreshing();

                    if( m_progressReporter->IsCancelled() )
                        cancelled = true;
                }

                status = ret.wait_for( std::chrono::milliseconds( 100 ) );
            }
        }
    }

    if( cancelled )
        return false;

    for( size_t ii = 0; ii < island_returns.size(); ++ii )
    {
        std::future<island_check_return>& ret = island_returns[ii];

        if( ret.valid() )
        {
            for( auto& action_item : ret.get() )
                action_item.first->DeletePolygonAndTriangulationData( action_item.second, true );
        }
    }

    for( ZONE* zone : aZones )
        zone->CalculateFilledArea();


    if( aCheck )
    {
        bool outOfDate = false;

        for( ZONE* zone : aZones )
        {
            // Keepout zones are not filled
            if( zone->GetIsRuleArea() )
                continue;

            for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
            {
                zone->BuildHashValue( layer );

                if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) )
                    outOfDate = true;
            }
        }

        if( outOfDate )
        {
            KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ),
                          _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
            dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
            dlg.DoNotShowCheckbox( __FILE__, __LINE__ );

            if( dlg.ShowModal() == wxID_CANCEL )
                return false;
        }
        else
        {
            // No need to commit something that hasn't changed (and committing will set
            // the modified flag).
            return false;
        }
    }

    if( m_progressReporter )
    {
        if( m_progressReporter->IsCancelled() )
            return false;

        m_progressReporter->AdvancePhase();
        m_progressReporter->KeepRefreshing();
    }

    return true;
}


/**
 * Add a knockout for a pad.  The knockout is 'aGap' larger than the pad (which might be
 * either the thermal clearance or the electrical clearance).
 */
void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles )
{
    if( aPad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
    {
        SHAPE_POLY_SET poly;
        aPad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );

        // the pad shape in zone can be its convex hull or the shape itself
        if( aPad->GetCustomShapeInZoneOpt() == PADSTACK::CUSTOM_SHAPE_ZONE_MODE::CONVEXHULL )
        {
            std::vector<VECTOR2I> convex_hull;
            BuildConvexHull( convex_hull, poly );

            aHoles.NewOutline();

            for( const VECTOR2I& pt : convex_hull )
                aHoles.Append( pt );
        }
        else
            aHoles.Append( poly );
    }
    else
    {
        aPad->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
    }
}


/**
 * Add a knockout for a pad's hole.
 */
void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
    aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );
}


/**
 * Add a knockout for a graphic item.  The knockout is 'aGap' larger than the item (which
 * might be either the electrical clearance or the board edge clearance).
 */
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap,
                               bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles )
{
    switch( aItem->Type() )
    {
    case PCB_FIELD_T:
    case PCB_TEXT_T:
    {
        PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );

        if( text->IsVisible() )
        {
            if( text->IsKnockout() )
            {
                // Knockout text should only leave holes where the text is, not where the copper fill
                // around it would be.
                PCB_TEXT textCopy = *text;
                textCopy.SetIsKnockout( false );
                textCopy.TransformShapeToPolygon( aHoles, aLayer, 0, m_maxError, ERROR_OUTSIDE );
            }
            else
            {
                text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
            }
        }

        break;
    }

    case PCB_TEXTBOX_T:
    case PCB_TABLE_T:
    case PCB_SHAPE_T:
    case PCB_TARGET_T:
        aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE,
                                        aIgnoreLineWidth );
        break;

    case PCB_DIM_ALIGNED_T:
    case PCB_DIM_LEADER_T:
    case PCB_DIM_CENTER_T:
    case PCB_DIM_RADIAL_T:
    case PCB_DIM_ORTHOGONAL_T:
    {
        PCB_DIMENSION_BASE* dim = static_cast<PCB_DIMENSION_BASE*>( aItem );

        dim->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, false );
        dim->PCB_TEXT::TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
        break;
    }

    default:
        break;
    }
}


/**
 * Removes thermal reliefs from the shape for any pads connected to the zone.  Does NOT add
 * in spokes, which must be done later.
 */
void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                          SHAPE_POLY_SET& aFill,
                                          std::vector<PAD*>& aThermalConnectionPads,
                                          std::vector<PAD*>& aNoConnectionPads )
{
    BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
    ZONE_CONNECTION        connection;
    DRC_CONSTRAINT         constraint;
    int                    padClearance;
    std::shared_ptr<SHAPE> padShape;
    int                    holeClearance;
    SHAPE_POLY_SET         holes;

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        for( PAD* pad : footprint->Pads() )
        {
            BOX2I padBBox = pad->GetBoundingBox();
            padBBox.Inflate( m_worstClearance );

            if( !padBBox.Intersects( aZone->GetBoundingBox() ) )
                continue;

            bool noConnection = pad->GetNetCode() != aZone->GetNetCode();

            if( !aZone->IsTeardropArea() )
            {
                if( aZone->GetNetCode() == 0
                    || pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
                {
                    noConnection = true;
                }
            }

            if( noConnection )
            {
                // collect these for knockout in buildCopperItemClearances()
                aNoConnectionPads.push_back( pad );
                continue;
            }

            if( aZone->IsTeardropArea() )
            {
                connection = ZONE_CONNECTION::FULL;
            }
            else
            {
                constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer );
                connection = constraint.m_ZoneConnection;
            }

            if( connection == ZONE_CONNECTION::THERMAL && !pad->CanFlashLayer( aLayer ) )
                connection = ZONE_CONNECTION::NONE;

            switch( connection )
            {
            case ZONE_CONNECTION::THERMAL:
                padShape = pad->GetEffectiveShape( aLayer, FLASHING::ALWAYS_FLASHED );

                if( aFill.Collide( padShape.get(), 0 ) )
                {
                    constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad,
                                                             aZone, aLayer );
                    padClearance = constraint.GetValue().Min();

                    aThermalConnectionPads.push_back( pad );
                    addKnockout( pad, aLayer, padClearance, holes );
                }

                break;

            case ZONE_CONNECTION::NONE:
                constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad,
                                                         aZone, aLayer );

                if( constraint.GetValue().Min() > aZone->GetLocalClearance().value() )
                    padClearance = constraint.GetValue().Min();
                else
                    padClearance = aZone->GetLocalClearance().value();

                if( pad->FlashLayer( aLayer ) )
                {
                    addKnockout( pad, aLayer, padClearance, holes );
                }
                else if( pad->GetDrillSize().x > 0 )
                {
                    constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
                                                             pad, aZone, aLayer );

                    if( constraint.GetValue().Min() > padClearance )
                        holeClearance = constraint.GetValue().Min();
                    else
                        holeClearance = padClearance;

                    pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE );
                }

                break;

            default:
                // No knockout
                continue;
            }
        }
    }

    aFill.BooleanSubtract( holes );
}


/**
 * Removes clearance from the shape for copper items which share the zone's layer but are
 * not connected to it.
 */
void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                             const std::vector<PAD*>& aNoConnectionPads,
                                             SHAPE_POLY_SET& aHoles )
{
    BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
    long                   ticker = 0;

    auto checkForCancel =
            [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
            {
                return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
            };

    // A small extra clearance to be sure actual track clearances are not smaller than
    // requested clearance due to many approximations in calculations, like arc to segment
    // approx, rounding issues, etc.
    BOX2I zone_boundingbox = aZone->GetBoundingBox();
    int   extra_margin = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_ExtraClearance );

    // Items outside the zone bounding box are skipped, so it needs to be inflated by the
    // largest clearance value found in the netclasses and rules
    zone_boundingbox.Inflate( m_worstClearance + extra_margin );

    auto evalRulesForItems =
            [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b,
                    PCB_LAYER_ID aEvalLayer ) -> int
            {
                DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );

                if( c.IsNull() )
                    return -1;
                else
                    return c.GetValue().Min();
            };

    // Add non-connected pad clearances
    //
    auto knockoutPadClearance =
            [&]( PAD* aPad )
            {
                int  init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
                int  gap = init_gap;
                bool hasHole = aPad->GetDrillSize().x > 0;
                bool flashLayer = aPad->FlashLayer( aLayer );
                bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;

                if( flashLayer || platedHole )
                {
                    gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
                                                            aZone, aPad, aLayer ) );
                }

                if( flashLayer && gap >= 0 )
                    addKnockout( aPad, aLayer, gap + extra_margin, aHoles );

                if( hasHole )
                {
                    // NPTH do not need copper clearance gaps to their holes
                    if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
                        gap = init_gap;

                    gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
                                                            aZone, aPad, aLayer ) );

                    gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
                                                            aZone, aPad, aLayer ) );

                    if( gap >= 0 )
                        addHoleKnockout( aPad, gap + extra_margin, aHoles );
                }
            };

    for( PAD* pad : aNoConnectionPads )
    {
        if( checkForCancel( m_progressReporter ) )
            return;

        knockoutPadClearance( pad );
    }

    // Add non-connected track clearances
    //
    auto knockoutTrackClearance =
            [&]( PCB_TRACK* aTrack )
            {
                if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode();

                    if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
                        sameNet = false;

                    int  gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
                                                  aZone, aTrack, aLayer );

                    if( aTrack->Type() == PCB_VIA_T )
                    {
                        PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );

                        if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
                            sameNet = false;
                    }

                    if( !sameNet )
                    {
                        gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
                                                                aZone, aTrack, aLayer ) );
                    }

                    if( aTrack->Type() == PCB_VIA_T )
                    {
                        PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );

                        if( via->FlashLayer( aLayer ) && gap > 0 )
                        {
                            via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
                                                          m_maxError, ERROR_OUTSIDE );
                        }

                        gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
                                                                aZone, via, aLayer ) );

                        if( !sameNet )
                        {
                            gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
                                                                    aZone, via, aLayer ) );
                        }

                        if( gap >= 0 )
                        {
                            int radius = via->GetDrillValue() / 2;

                            TransformCircleToPolygon( aHoles, via->GetPosition(),
                                                      radius + gap + extra_margin,
                                                      m_maxError, ERROR_OUTSIDE );
                        }
                    }
                    else
                    {
                        if( gap >= 0 )
                        {
                            aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
                                                             m_maxError, ERROR_OUTSIDE );
                        }
                    }
                }
            };

    for( PCB_TRACK* track : m_board->Tracks() )
    {
        if( !track->IsOnLayer( aLayer ) )
            continue;

        if( checkForCancel( m_progressReporter ) )
            return;

        knockoutTrackClearance( track );
    }

    // Add graphic item clearances.
    //
    auto knockoutGraphicClearance =
            [&]( BOARD_ITEM* aItem )
            {
                int shapeNet = -1;

                if( aItem->Type() == PCB_SHAPE_T )
                    shapeNet = static_cast<PCB_SHAPE*>( aItem )->GetNetCode();

                bool sameNet = shapeNet == aZone->GetNetCode();

                if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
                    sameNet = false;

                // A item on the Edge_Cuts or Margin is always seen as on any layer:
                if( aItem->IsOnLayer( aLayer )
                        || aItem->IsOnLayer( Edge_Cuts )
                        || aItem->IsOnLayer( Margin ) )
                {
                    if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
                    {
                        bool ignoreLineWidths = false;
                        int  gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
                                                      aZone, aItem, aLayer );

                        if( aItem->IsOnLayer( aLayer ) && !sameNet )
                        {
                            gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
                                                                    aZone, aItem, aLayer ) );
                        }
                        else if( aItem->IsOnLayer( Edge_Cuts ) )
                        {
                            gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
                                                                    aZone, aItem, aLayer ) );
                            ignoreLineWidths = true;
                        }
                        else if( aItem->IsOnLayer( Margin ) )
                        {
                            gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
                                                                    aZone, aItem, aLayer ) );
                        }

                        if( gap >= 0 )
                        {
                            gap += extra_margin;
                            addKnockout( aItem, aLayer, gap, ignoreLineWidths, aHoles );
                        }
                    }
                }
            };

    auto knockoutCourtyardClearance =
            [&]( FOOTPRINT* aFootprint )
            {
                if( aFootprint->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone,
                                                 aFootprint, aLayer );

                    if( gap == 0 )
                    {
                        aHoles.Append( aFootprint->GetCourtyard( aLayer ) );
                    }
                    else if( gap > 0 )
                    {
                        SHAPE_POLY_SET hole = aFootprint->GetCourtyard( aLayer );
                        hole.Inflate( gap, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
                        aHoles.Append( hole );
                    }
                }
            };

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        knockoutCourtyardClearance( footprint );
        knockoutGraphicClearance( &footprint->Reference() );
        knockoutGraphicClearance( &footprint->Value() );

        std::set<PAD*> allowedNetTiePads;

        // Don't knock out holes for graphic items which implement a net-tie to the zone's net
        // on the layer being filled.
        if( footprint->IsNetTie() )
        {
            for( PAD* pad : footprint->Pads() )
            {
                bool sameNet = pad->GetNetCode() == aZone->GetNetCode();

                if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
                    sameNet = false;

                if( sameNet )
                {
                    if( pad->IsOnLayer( aLayer ) )
                        allowedNetTiePads.insert( pad );

                    for( PAD* other : footprint->GetNetTiePads( pad ) )
                    {
                        if( other->IsOnLayer( aLayer ) )
                            allowedNetTiePads.insert( other );
                    }
                }
            }
        }

        for( BOARD_ITEM* item : footprint->GraphicalItems() )
        {
            if( checkForCancel( m_progressReporter ) )
                return;

            BOX2I itemBBox = item->GetBoundingBox();

            if( !zone_boundingbox.Intersects( itemBBox ) )
                continue;

            bool skipItem = false;

            if( item->IsOnLayer( aLayer ) )
            {
                std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape();

                for( PAD* pad : allowedNetTiePads )
                {
                    if( pad->GetBoundingBox().Intersects( itemBBox )
                            && pad->GetEffectiveShape( aLayer )->Collide( itemShape.get() ) )
                    {
                        skipItem = true;
                        break;
                    }
                }
            }

            if( !skipItem )
                knockoutGraphicClearance( item );
        }
    }

    for( BOARD_ITEM* item : m_board->Drawings() )
    {
        if( checkForCancel( m_progressReporter ) )
            return;

        knockoutGraphicClearance( item );
    }

    // Add non-connected zone clearances
    //
    auto knockoutZoneClearance =
            [&]( ZONE* aKnockout )
            {
                // If the zones share no common layers
                if( !aKnockout->GetLayerSet().test( aLayer ) )
                    return;

                if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    if( aKnockout->GetIsRuleArea() )
                    {
                        // Keepouts use outline with no clearance
                        aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError,
                                                                      ERROR_OUTSIDE, nullptr );
                    }
                    else
                    {
                        int gap = std::max( 0, evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
                                                                  aZone, aKnockout, aLayer ) );

                        gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
                                                                aZone, aKnockout, aLayer ) );

                        SHAPE_POLY_SET poly;
                        aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin,
                                                            m_maxError, ERROR_OUTSIDE );
                        aHoles.Append( poly );
                    }
                }
            };

    for( ZONE* otherZone : m_board->Zones() )
    {
        if( checkForCancel( m_progressReporter ) )
            return;

        // Negative clearance permits zones to short
        if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 )
            continue;

        if( otherZone->GetIsRuleArea() )
        {
            if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
                knockoutZoneClearance( otherZone );
        }
        else if( otherZone->HigherPriority( aZone ) )
        {
            if( !otherZone->SameNet( aZone ) )
                knockoutZoneClearance( otherZone );
        }
    }

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        for( ZONE* otherZone : footprint->Zones() )
        {
            if( checkForCancel( m_progressReporter ) )
                return;

            if( otherZone->GetIsRuleArea() )
            {
                if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
                    knockoutZoneClearance( otherZone );
            }
            else if( otherZone->HigherPriority( aZone ) )
            {
                if( !otherZone->SameNet( aZone ) )
                    knockoutZoneClearance( otherZone );
            }
        }
    }

    aHoles.Simplify();
}


/**
 * Removes the outlines of higher-proirity zones with the same net.  These zones should be
 * in charge of the fill parameters within their own outlines.
 */
void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                               SHAPE_POLY_SET& aRawFill )
{
    BOX2I zoneBBox = aZone->GetBoundingBox();

    auto knockoutZoneOutline =
            [&]( ZONE* aKnockout )
            {
                // If the zones share no common layers
                if( !aKnockout->GetLayerSet().test( aLayer ) )
                    return;

                if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) )
                {
                    // Processing of arc shapes in zones is not yet supported because Clipper
                    // can't do boolean operations on them.  The poly outline must be converted to
                    // segments first.
                    SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation();
                    outline.ClearArcs();

                    aRawFill.BooleanSubtract( outline );
                }
            };

    for( ZONE* otherZone : m_board->Zones() )
    {
        // Don't use the `HigherPriority()` check here because we _only_ want to knock out zones
        // with explicitly higher priorities, not those with equal priorities
        if( otherZone->SameNet( aZone )
                && otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() )
        {
            // Do not remove teardrop area: it is not useful and not good
            if( !otherZone->IsTeardropArea() )
                knockoutZoneOutline( otherZone );
        }
    }

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        for( ZONE* otherZone : footprint->Zones() )
        {
            if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) )
            {
                // Do not remove teardrop area: it is not useful and not good
                if( !otherZone->IsTeardropArea() )
                    knockoutZoneOutline( otherZone );
            }
        }
    }
}


void ZONE_FILLER::connect_nearby_polys( SHAPE_POLY_SET& aPolys, double aDistance )
{
    if( aPolys.OutlineCount() < 1 )
        return;

    VERTEX_CONNECTOR vs( aPolys.BBoxFromCaches(), aPolys, aDistance );

    vs.FindResults();

    // This cannot be a reference because we need to do the comparison below while
    // changing the values
    std::map<int, std::vector<std::pair<int, VECTOR2I>>> insertion_points;

    for( const RESULTS& result : vs.GetResults() )
    {
        SHAPE_LINE_CHAIN& line1 = aPolys.Outline( result.m_outline1 );
        SHAPE_LINE_CHAIN& line2 = aPolys.Outline( result.m_outline2 );

        VECTOR2I pt1 = line1.CPoint( result.m_vertex1 );
        VECTOR2I pt2 = line2.CPoint( result.m_vertex2 );

        // We want to insert the existing point first so that we can place the new point
        // between the two points at the same location.
        insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt1 } );
        insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt2 } );
    }

    for( auto& [outline, vertices] : insertion_points )
    {
        SHAPE_LINE_CHAIN& line = aPolys.Outline( outline );

        // Stable sort here because we want to make sure that we are inserting pt1 first and
        // pt2 second but still sorting the rest of the indices from highest to lowest.
        // This allows us to insert into the existing polygon without modifying the future
        // insertion points.
        std::stable_sort( vertices.begin(), vertices.end(),
                  []( const std::pair<int, VECTOR2I>& a, const std::pair<int, VECTOR2I>& b )
                  {
                      return a.first > b.first;
                  } );

        for( const auto& [vertex, pt] : vertices )
            line.Insert( vertex + 1, pt );  // +1 here because we want to insert after the existing point
    }
}


#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
    { if( m_debugZoneFiller && aDebugLayer == b ) \
        { \
            m_board->SetLayerName( b, c ); \
            SHAPE_POLY_SET d = a; \
            d.Fracture(); \
            aFillPolys = d; \
            return false; \
        } \
    }


/*
 * Note that aSmoothedOutline is larger than the zone where it intersects with other, same-net
 * zones.  This is to prevent the re-inflation post min-width trimming from createing divots
 * between adjacent zones.  The final aMaxExtents trimming will remove these areas from the final
 * fill.
 */
bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer,
                                  const SHAPE_POLY_SET& aSmoothedOutline,
                                  const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys )
{
    m_maxError = m_board->GetDesignSettings().m_MaxError;

    // Features which are min_width should survive pruning; features that are *less* than
    // min_width should not.  Therefore we subtract epsilon from the min_width when
    // deflating/inflating.
    int half_min_width = aZone->GetMinThickness() / 2;
    int epsilon = pcbIUScale.mmToIU( 0.001 );

    // Solid polygons are deflated and inflated during calculations.  Deflating doesn't cause
    // issues, but inflate is tricky as it can create excessively long and narrow spikes for
    // acute angles.
    // ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
    // CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
    // circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
    // It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
    // as a "less-safe" option.
    // ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
    // CHAMFER_ALL_CORNERS improves the segment count.
    CORNER_STRATEGY fastCornerStrategy = CORNER_STRATEGY::CHAMFER_ALL_CORNERS;
    CORNER_STRATEGY cornerStrategy = CORNER_STRATEGY::ROUND_ALL_CORNERS;

    std::vector<PAD*>            thermalConnectionPads;
    std::vector<PAD*>            noConnectionPads;
    std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
    SHAPE_POLY_SET               clearanceHoles;

    aFillPolys = aSmoothedOutline;
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    /* -------------------------------------------------------------------------------------
     * Knockout thermal reliefs.
     */

    knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    /* -------------------------------------------------------------------------------------
     * Knockout electrical clearances.
     */

    buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles );
    DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    /* -------------------------------------------------------------------------------------
     * Add thermal relief spokes.
     */

    buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    // Create a temporary zone that we can hit-test spoke-ends against.  It's only temporary
    // because the "real" subtract-clearance-holes has to be done after the spokes are added.
    static const bool USE_BBOX_CACHES = true;
    SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation();
    testAreas.BooleanSubtract( clearanceHoles );
    DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );

    // Prune features that don't meet minimum-width criteria
    if( half_min_width - epsilon > epsilon )
    {
        testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
        DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );

        testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
        DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) );
    }

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    // Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
    // things up a bit.
    testAreas.BuildBBoxCaches();
    int interval = 0;

    SHAPE_POLY_SET debugSpokes;

    for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
    {
        const VECTOR2I& testPt = spoke.CPoint( 3 );

        // Hit-test against zone body
        if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
        {
            if( m_debugZoneFiller )
                debugSpokes.AddOutline( spoke );

            aFillPolys.AddOutline( spoke );
            continue;
        }

        if( interval++ > 400 )
        {
            if( m_progressReporter && m_progressReporter->IsCancelled() )
                return false;

            interval = 0;
        }

        // Hit-test against other spokes
        for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
        {
            // Hit test in both directions to avoid interactions with round-off errors.
            // (See https://gitlab.com/kicad/code/kicad/-/issues/13316.)
            if( &other != &spoke
                && other.PointInside( testPt, 1, USE_BBOX_CACHES )
                && spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) )
            {
                if( m_debugZoneFiller )
                    debugSpokes.AddOutline( spoke );

                aFillPolys.AddOutline( spoke );
                break;
            }
        }
    }

    DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    aFillPolys.BooleanSubtract( clearanceHoles );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );

    /* -------------------------------------------------------------------------------------
     * Prune features that don't meet minimum-width criteria
     */

    if( half_min_width - epsilon > epsilon )
        aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );

    // Min-thickness is the web thickness.  On the other hand, a blob min-thickness by
    // min-thickness is not useful.  Since there's no obvious definition of web vs. blob, we
    // arbitrarily choose "at least 2X min-thickness on one axis".  (Since we're doing this
    // during the deflated state, that means we test for "at least min-thickness".)
    for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- )
    {
        std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii );
        BOX2I                          islandExtents;

        for( const VECTOR2I& pt : island.front().CPoints() )
        {
            islandExtents.Merge( pt );

            if( islandExtents.GetSizeMax() > aZone->GetMinThickness() )
                break;
        }

        if( islandExtents.GetSizeMax() < aZone->GetMinThickness() )
            aFillPolys.DeletePolygon( ii );
    }

    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    /* -------------------------------------------------------------------------------------
     * Process the hatch pattern (note that we do this while deflated)
     */

    if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
    {
        if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) )
            return false;
    }
    else
    {
        /* ---------------------------------------------------------------------------------
         * Connect nearby polygons with zero-width lines in order to ensure correct
         * re-inflation.
         */
        aFillPolys.Fracture();
        connect_nearby_polys( aFillPolys, aZone->GetMinThickness() );

        DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In10_Cu, wxT( "connected-nearby-polys" ) );
    }

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    /* -------------------------------------------------------------------------------------
     * Finish minimum-width pruning by re-inflating
     */

    if( half_min_width - epsilon > epsilon )
        aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true );

    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );

    /* -------------------------------------------------------------------------------------
     * Ensure additive changes (thermal stubs and inflating acute corners) do not add copper
     * outside the zone boundary, inside the clearance holes, or between otherwise isolated
     * islands
     */

    for( PAD* pad : thermalConnectionPads )
        addHoleKnockout( pad, 0, clearanceHoles );

    aFillPolys.BooleanIntersection( aMaxExtents );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) );
    aFillPolys.BooleanSubtract( clearanceHoles );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );

    /* -------------------------------------------------------------------------------------
     * Lastly give any same-net but higher-priority zones control over their own area.
     */

    subtractHigherPriorityZones( aZone, aLayer, aFillPolys );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );

    aFillPolys.Fracture();
    return true;
}


bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                     const SHAPE_POLY_SET& aSmoothedOutline,
                                     SHAPE_POLY_SET& aFillPolys )
{
    BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
    BOX2I                  zone_boundingbox = aZone->GetBoundingBox();
    SHAPE_POLY_SET         clearanceHoles;
    long                   ticker = 0;

    auto checkForCancel =
            [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
            {
                return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
            };

    auto knockoutGraphicClearance =
            [&]( BOARD_ITEM* aItem )
            {
                if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer )
                        && aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    DRC_CONSTRAINT cc = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT,
                                                                    aZone, aItem, aLayer );

                    addKnockout( aItem, aLayer, cc.GetValue().Min(), false, clearanceHoles );
                }
            };

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        if( checkForCancel( m_progressReporter ) )
            return false;

        knockoutGraphicClearance( &footprint->Reference() );
        knockoutGraphicClearance( &footprint->Value() );

        for( BOARD_ITEM* item : footprint->GraphicalItems() )
            knockoutGraphicClearance( item );
    }

    for( BOARD_ITEM* item : m_board->Drawings() )
    {
        if( checkForCancel( m_progressReporter ) )
            return false;

        knockoutGraphicClearance( item );
    }

    aFillPolys = aSmoothedOutline;
    aFillPolys.BooleanSubtract( clearanceHoles );

    auto subtractKeepout =
            [&]( ZONE* candidate )
            {
                if( !candidate->GetIsRuleArea() )
                    return;

                if( !candidate->HasKeepoutParametersSet() )
                    return;

                if( candidate->GetDoNotAllowCopperPour() && candidate->IsOnLayer( aLayer ) )
                {
                    if( candidate->GetBoundingBox().Intersects( zone_boundingbox ) )
                    {
                        if( candidate->Outline()->ArcCount() == 0 )
                        {
                            aFillPolys.BooleanSubtract( *candidate->Outline() );
                        }
                        else
                        {
                            SHAPE_POLY_SET keepoutOutline( *candidate->Outline() );
                            keepoutOutline.ClearArcs();
                            aFillPolys.BooleanSubtract( keepoutOutline );
                        }
                    }
                }
            };

    for( ZONE* keepout : m_board->Zones() )
    {
        if( checkForCancel( m_progressReporter ) )
            return false;

        subtractKeepout( keepout );
    }

    for( FOOTPRINT* footprint : m_board->Footprints() )
    {
        if( checkForCancel( m_progressReporter ) )
            return false;

        for( ZONE* keepout : footprint->Zones() )
            subtractKeepout( keepout );
    }

    // Features which are min_width should survive pruning; features that are *less* than
    // min_width should not.  Therefore we subtract epsilon from the min_width when
    // deflating/inflating.
    int half_min_width = aZone->GetMinThickness() / 2;
    int epsilon = pcbIUScale.mmToIU( 0.001 );

    aFillPolys.Deflate( half_min_width - epsilon, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, m_maxError );

    // Remove the non filled areas due to the hatch pattern
    if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
    {
        if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) )
            return false;
    }

    // Re-inflate after pruning of areas that don't meet minimum-width criteria
    if( half_min_width - epsilon > epsilon )
        aFillPolys.Inflate( half_min_width - epsilon, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );

    aFillPolys.Fracture();
    return true;
}


/*
 * Build the filled solid areas data from real outlines (stored in m_Poly)
 * The solid areas can be more than one on copper layers, and do not have holes
 * ( holes are linked by overlapping segments to the main outline)
 */
bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys )
{
    SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr;
    SHAPE_POLY_SET  maxExtents;
    SHAPE_POLY_SET  smoothedPoly;
    PCB_LAYER_ID    debugLayer = UNDEFINED_LAYER;

    if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
    {
        debugLayer = aLayer;
        aLayer = F_Cu;
    }

    if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) )
        return false;

    if( m_progressReporter && m_progressReporter->IsCancelled() )
        return false;

    if( aZone->IsOnCopperLayer() )
    {
        if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) )
            aZone->SetNeedRefill( false );
    }
    else
    {
        if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) )
            aZone->SetNeedRefill( false );
    }

    return true;
}


/**
 * Function buildThermalSpokes
 */
void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                      const std::vector<PAD*>& aSpokedPadsList,
                                      std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
{
    BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
    BOX2I                  zoneBB = aZone->GetBoundingBox();
    DRC_CONSTRAINT         constraint;
    int                    zone_half_width = aZone->GetMinThickness() / 2;

    zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance().value() ) );

    // Is a point on the boundary of the polygon inside or outside?
    // The boundary may be off by MaxError
    int epsilon = bds.m_MaxError;

    for( PAD* pad : aSpokedPadsList )
    {
        // We currently only connect to pads, not pad holes
        if( !pad->IsOnLayer( aLayer ) )
            continue;

        constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer );
        int thermalReliefGap = constraint.GetValue().Min();

        constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer );
        int spoke_w = constraint.GetValue().Opt();

        // Spoke width should ideally be smaller than the pad minor axis.
        // Otherwise the thermal shape is not really a thermal relief,
        // and the algo to count the actual number of spokes can fail
        int spoke_max_allowed_w = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );

        spoke_w = std::clamp( spoke_w, constraint.Value().Min(), constraint.Value().Max() );

        // ensure the spoke width is smaller than the pad minor size
        spoke_w = std::min( spoke_w, spoke_max_allowed_w );

        // Cannot create stubs having a width < zone min thickness
        if( spoke_w < aZone->GetMinThickness() )
            continue;

        int spoke_half_w = spoke_w / 2;

        // Quick test here to possibly save us some work
        BOX2I itemBB = pad->GetBoundingBox();
        itemBB.Inflate( thermalReliefGap + epsilon );

        if( !( itemBB.Intersects( zoneBB ) ) )
            continue;

        bool customSpokes = false;

        if( pad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
        {
            for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
            {
                if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
                {
                    customSpokes = true;
                    break;
                }
            }
        }

        // Thermal spokes consist of square-ended segments from the pad center to points just
        // outside the thermal relief.  The outside end has an extra center point (which must be
        // at idx 3) which is used for testing whether or not the spoke connects to copper in the
        // parent zone.

        auto buildSpokesFromOrigin =
                [&]( const BOX2I& box, EDA_ANGLE angle )
                {
                    VECTOR2I center = box.GetCenter();
                    VECTOR2I half_size( box.GetWidth() / 2, box.GetHeight() / 2 );

                    // Function to find intersection of line with box edge
                    auto intersectLineBox =
                            [&](const VECTOR2D& direction) -> VECTOR2I
                            {
                                double dx = direction.x;
                                double dy = direction.y;

                                // Short-circuit the axis cases because they will be degenerate in the
                                // intersection test
                                if( direction.x == 0 )
                                    return VECTOR2I( 0, dy * half_size.y );
                                else if( direction.y == 0 )
                                    return VECTOR2I( dx * half_size.x, 0 );

                                // We are going to intersect with one side or the other.  Whichever
                                // we hit first is the fraction of the spoke length we keep
                                double tx = std::min( half_size.x / std::abs( dx ),
                                                      half_size.y / std::abs( dy ) );
                                return VECTOR2I( dx * tx, dy * tx );
                            };

                    // Precalculate angles for four cardinal directions
                    const EDA_ANGLE angles[4] = {
                        EDA_ANGLE(  0.0, DEGREES_T ) + angle,  // Right
                        EDA_ANGLE( 90.0, DEGREES_T ) + angle,  // Up
                        EDA_ANGLE( 180.0, DEGREES_T ) + angle, // Left
                        EDA_ANGLE( 270.0, DEGREES_T ) + angle  // Down
                    };

                    // Generate four spokes in cardinal directions
                    for( const EDA_ANGLE& spokeAngle : angles )
                    {
                        VECTOR2D direction( spokeAngle.Cos(), spokeAngle.Sin() );
                        VECTOR2D perpendicular = direction.Perpendicular();

                        VECTOR2I intersection = intersectLineBox( direction );
                        VECTOR2I spoke_side = perpendicular.Resize( spoke_half_w );

                        SHAPE_LINE_CHAIN spoke;
                        spoke.Append( center + spoke_side );
                        spoke.Append( center - spoke_side );
                        spoke.Append( center + intersection - spoke_side );
                        spoke.Append( center + intersection ); // test pt
                        spoke.Append( center + intersection + spoke_side );
                        spoke.SetClosed( true );
                        aSpokesList.push_back( std::move( spoke ) );
                    }
                };

        if( customSpokes )
        {
            SHAPE_POLY_SET   thermalPoly;
            SHAPE_LINE_CHAIN thermalOutline;

            pad->TransformShapeToPolygon( thermalPoly, aLayer, thermalReliefGap + epsilon,
                                          m_maxError, ERROR_OUTSIDE );

            if( thermalPoly.OutlineCount() )
                thermalOutline = thermalPoly.Outline( 0 );

            SHAPE_LINE_CHAIN padOutline = pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Outline( 0 );

            auto trimToOutline = [&]( SEG& aSegment )
            {
                SHAPE_LINE_CHAIN::INTERSECTIONS intersections;

                if( padOutline.Intersect( aSegment, intersections ) )
                {
                    intersections.clear();

                    // Trim the segment to the thermal outline
                    if( thermalOutline.Intersect( aSegment, intersections ) )
                    {
                        aSegment.B = intersections.front().p;
                        return true;
                    }
                }
                return false;
            };

            for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
            {
                if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
                {
                    SEG seg( primitive->GetStart(), primitive->GetEnd() );
                    SHAPE_LINE_CHAIN::INTERSECTIONS intersections;

                    RotatePoint( seg.A, pad->GetOrientation() );
                    RotatePoint( seg.B, pad->GetOrientation() );
                    seg.A += pad->ShapePos( aLayer );
                    seg.B += pad->ShapePos( aLayer );

                    // Make sure seg.A is the origin
                    if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.A ) )
                    {
                        // Do not create this spoke if neither point is in the pad.
                        if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.B ) )
                            continue;

                        seg.Reverse();
                    }

                    // Trim segment to pad and thermal outline polygon.
                    // If there is no intersection with the pad, don't create the spoke.
                    if( trimToOutline( seg ) )
                    {
                        VECTOR2I direction = ( seg.B - seg.A ).Resize( spoke_half_w );
                        VECTOR2I offset = direction.Perpendicular().Resize( spoke_half_w );
                        // Extend the spoke edges by half the spoke width to capture convex pad shapes
                        // with a maximum of 45 degrees.
                        SEG segL( seg.A - direction - offset, seg.B + direction - offset );
                        SEG segR( seg.A - direction + offset, seg.B + direction + offset );

                        // Only create this spoke if both edges intersect the pad and thermal outline
                        if( trimToOutline( segL ) && trimToOutline( segR ) )
                        {
                            // Extend the spoke by the minimum thickness for the zone to ensure full
                            // connection width
                            direction = direction.Resize( aZone->GetMinThickness() );

                            SHAPE_LINE_CHAIN spoke;

                            spoke.Append( seg.A + offset );
                            spoke.Append( seg.A - offset );

                            spoke.Append( segL.B + direction );
                            spoke.Append( seg.B + direction ); // test pt at index 3.
                            spoke.Append( segR.B + direction );

                            spoke.SetClosed( true );
                            aSpokesList.push_back( std::move( spoke ) );
                        }
                    }
                }
            }
        }
        else
        {
            // Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
            // from dirtying the real pad's cached shapes.
            PAD dummy_pad( *pad );
            dummy_pad.SetOrientation( ANGLE_0 );

            // Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
            // offset and is at position 0,0
            dummy_pad.SetPosition( VECTOR2I( 0, 0 ) );
            dummy_pad.SetOffset( aLayer, VECTOR2I( 0, 0 ) );

            BOX2I    spokesBox = dummy_pad.GetBoundingBox( aLayer );
            VECTOR2I padSize = pad->GetSize( aLayer );

            // Add the half width of the zone mininum width to the inflate amount to account for
            // the fact that the deflation procedure will shrink the results by half the half the
            // zone min width
            spokesBox.Inflate( thermalReliefGap + epsilon + zone_half_width );

            // This is a touchy case because the bounding box for circles overshoots the mark
            // when rotated at 45 degrees.  So we just build spokes at 0 degrees and rotate
            // them later.
            if( pad->GetShape( aLayer ) == PAD_SHAPE::CIRCLE
                    || ( pad->GetShape( aLayer ) == PAD_SHAPE::OVAL && padSize.x == padSize.y ) )
            {
                buildSpokesFromOrigin( spokesBox, ANGLE_0 );

                if( pad->GetThermalSpokeAngle() != ANGLE_0 )
                {
                    //Rotate the last four elements of aspokeslist
                    for( auto it = aSpokesList.rbegin(); it != aSpokesList.rbegin() + 4; ++it )
                        it->Rotate( pad->GetThermalSpokeAngle() );
                }
            }
            else
            {
                buildSpokesFromOrigin( spokesBox, pad->GetThermalSpokeAngle() );
            }

            auto spokeIter = aSpokesList.rbegin();

            for( int ii = 0; ii < 4; ++ii, ++spokeIter )
            {
                spokeIter->Rotate( pad->GetOrientation() );
                spokeIter->Move( pad->ShapePos( aLayer ) );
            }

            // Remove group membership from dummy item before deleting
            dummy_pad.SetParentGroup( nullptr );
        }
    }

    for( size_t ii = 0; ii < aSpokesList.size(); ++ii )
        aSpokesList[ii].GenerateBBoxCache();
}


bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
                                          PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys )
{
    // Build grid:

    // obviously line thickness must be > zone min thickness.
    // It can happens if a board file was edited by hand by a python script
    // Use 1 micron margin to be *sure* there is no issue in Gerber files
    // (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
    // This margin also avoid problems due to rounding coordinates in next calculations
    // that can create incorrect polygons
    int thickness = std::max( aZone->GetHatchThickness(),
                              aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) );

    int linethickness = thickness - aZone->GetMinThickness();
    int gridsize = thickness + aZone->GetHatchGap();
    int maxError = m_board->GetDesignSettings().m_MaxError;

    SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation();
    // Use a area that contains the rotated bbox by orientation, and after rotate the result
    // by -orientation.
    if( !aZone->GetHatchOrientation().IsZero() )
        filledPolys.Rotate( - aZone->GetHatchOrientation() );

    BOX2I bbox = filledPolys.BBox( 0 );

    // Build hole shape
    // the hole size is aZone->GetHatchGap(), but because the outline thickness
    // is aZone->GetMinThickness(), the hole shape size must be larger
    SHAPE_LINE_CHAIN hole_base;
    int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness();
    VECTOR2I corner( 0, 0 );;
    hole_base.Append( corner );
    corner.x += hole_size;
    hole_base.Append( corner );
    corner.y += hole_size;
    hole_base.Append( corner );
    corner.x = 0;
    hole_base.Append( corner );
    hole_base.SetClosed( true );

    // Calculate minimal area of a grid hole.
    // All holes smaller than a threshold will be removed
    double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();

    // Now convert this hole to a smoothed shape:
    if( aZone->GetHatchSmoothingLevel() > 0 )
    {
        // the actual size of chamfer, or rounded corner radius is the half size
        // of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
        // aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
        // radius of corner (radius = half size of the hole)
        int smooth_value = KiROUND( aZone->GetHatchGap()
                                    * aZone->GetHatchSmoothingValue() / 2 );

        // Minimal optimization:
        // make smoothing only for reasonable smooth values, to avoid a lot of useless segments
        // and if the smooth value is small, use chamfer even if fillet is requested
        #define SMOOTH_MIN_VAL_MM 0.02
        #define SMOOTH_SMALL_VAL_MM 0.04

        if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) )
        {
            SHAPE_POLY_SET smooth_hole;
            smooth_hole.AddOutline( hole_base );
            int smooth_level = aZone->GetHatchSmoothingLevel();

            if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
                smooth_level = 1;

            // Use a larger smooth_value to compensate the outline tickness
            // (chamfer is not visible is smooth value < outline thickess)
            smooth_value += aZone->GetMinThickness() / 2;

            // smooth_value cannot be bigger than the half size oh the hole:
            smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );

            // the error to approximate a circle by segments when smoothing corners by a arc
            maxError = std::max( maxError * 2, smooth_value / 20 );

            switch( smooth_level )
            {
            case 1:
                // Chamfer() uses the distance from a corner to create a end point
                // for the chamfer.
                hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
                break;

            default:
                if( aZone->GetHatchSmoothingLevel() > 2 )
                    maxError /= 2;    // Force better smoothing

                hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 );
                break;

            case 0:
                break;
            };
        }
    }

    // Build holes
    SHAPE_POLY_SET holes;

    for( int xx = 0; ; xx++ )
    {
        int xpos = xx * gridsize;

        if( xpos > bbox.GetWidth() )
            break;

        for( int yy = 0; ; yy++ )
        {
            int ypos = yy * gridsize;

            if( ypos > bbox.GetHeight() )
                break;

            // Generate hole
            SHAPE_LINE_CHAIN hole( hole_base );
            hole.Move( VECTOR2I( xpos, ypos ) );
            holes.AddOutline( hole );
        }
    }

    holes.Move( bbox.GetPosition() );

    if( !aZone->GetHatchOrientation().IsZero() )
        holes.Rotate( aZone->GetHatchOrientation() );

    DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );

    int outline_margin = aZone->GetMinThickness() * 1.1;

    // Using GetHatchThickness() can look more consistent than GetMinThickness().
    if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin )
        outline_margin = aZone->GetHatchThickness();

    // The fill has already been deflated to ensure GetMinThickness() so we just have to
    // account for anything beyond that.
    SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation();
    deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(),
                                 CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
    holes.BooleanIntersection( deflatedFilledPolys );
    DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );

    SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation();
    deflatedOutline.Deflate( outline_margin, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
    holes.BooleanIntersection( deflatedOutline );
    DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );

    if( aZone->GetNetCode() != 0 )
    {
        // Vias and pads connected to the zone must not be allowed to become isolated inside
        // one of the holes.  Effectively this means their copper outline needs to be expanded
        // to be at least as wide as the gap so that it is guaranteed to touch at least one
        // edge.
        BOX2I          zone_boundingbox = aZone->GetBoundingBox();
        SHAPE_POLY_SET aprons;
        int            min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;

        for( PCB_TRACK* track : m_board->Tracks() )
        {
            if( track->Type() == PCB_VIA_T )
            {
                PCB_VIA* via = static_cast<PCB_VIA*>( track );

                if( via->GetNetCode() == aZone->GetNetCode()
                    && via->IsOnLayer( aLayer )
                    && via->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    int r = std::max( min_apron_radius,
                                      via->GetDrillValue() / 2 + outline_margin );

                    TransformCircleToPolygon( aprons, via->GetPosition(), r, maxError,
                                              ERROR_OUTSIDE );
                }
            }
        }

        for( FOOTPRINT* footprint : m_board->Footprints() )
        {
            for( PAD* pad : footprint->Pads() )
            {
                if( pad->GetNetCode() == aZone->GetNetCode()
                    && pad->IsOnLayer( aLayer )
                    && pad->GetBoundingBox().Intersects( zone_boundingbox ) )
                {
                    // What we want is to bulk up the pad shape so that the narrowest bit of
                    // copper between the hole and the apron edge is at least outline_margin
                    // wide (and that the apron itself meets min_apron_radius.  But that would
                    // take a lot of code and math, and the following approximation is close
                    // enough.
                    int pad_width = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
                    int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
                    int min_annular_ring_width = ( pad_width - slot_width ) / 2;
                    int clearance = std::max( min_apron_radius - pad_width / 2,
                                              outline_margin - min_annular_ring_width );

                    clearance = std::max( 0, clearance - linethickness / 2 );
                    pad->TransformShapeToPolygon( aprons, aLayer, clearance, maxError,
                                                  ERROR_OUTSIDE );
                }
            }
        }

        holes.BooleanSubtract( aprons );
    }
    DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) );

    // Now filter truncated holes to avoid small holes in pattern
    // It happens for holes near the zone outline
    for( int ii = 0; ii < holes.OutlineCount(); )
    {
        double area = holes.Outline( ii ).Area();

        if( area < minimal_hole_area ) // The current hole is too small: remove it
            holes.DeletePolygon( ii );
        else
            ++ii;
    }

    // create grid. Useto
    // generate strictly simple polygons needed by Gerber files and Fracture()
    aFillPolys.BooleanSubtract( aFillPolys, holes );
    DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );

    return true;
}