File: c_microstrip.cpp

package info (click to toggle)
kicad 9.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 770,320 kB
  • sloc: cpp: 961,692; ansic: 121,001; xml: 66,428; python: 18,387; sh: 1,010; awk: 301; asm: 292; makefile: 227; javascript: 167; perl: 10
file content (972 lines) | stat: -rw-r--r-- 35,000 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
/*
 * c_microstrip.cpp - coupled microstrip class implementation
 *
 * Copyright (C) 2002 Claudio Girardi <claudio.girardi@ieee.org>
 * Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this package; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

/* c_microstrip.c - Puts up window for coupled microstrips and
 * performs the associated calculations
 * Based on the original microstrip.c by Gopal Narayanan
 */

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>

#include "c_microstrip.h"
#include "microstrip.h"
#include "transline.h"
#include "units.h"

C_MICROSTRIP::C_MICROSTRIP() : TRANSLINE(),
        h( 0.0 ),                  // height of substrate
        ht( 0.0 ),                 // height to the top of box
        t( 0.0 ),                  // thickness of top metal
        rough( 0.0 ),              // Roughness of top metal
        w( 0.0 ),                  // width of lines
        w_t_e( 0.0 ),              // even-mode thickness-corrected line width
        w_t_o( 0.0 ),              // odd-mode thickness-corrected line width
        l( 0.0 ),                  // length of lines
        s( 0.0 ),                  // spacing of lines
        Z0_e_0( 0.0 ),             // static even-mode impedance
        Z0_o_0( 0.0 ),             // static odd-mode impedance
        Zdiff( 0.0),               // differential impedance
        Z0e( 0.0 ),                // even-mode impedance
        Z0o( 0.0 ),                // odd-mode impedance
        c_e( 0.0 ),                // even-mode capacitance
        c_o( 0.0 ),                // odd-mode capacitance
        ang_l_e( 0.0 ),            // even-mode electrical length in angle
        ang_l_o( 0.0 ),            // odd-mode electrical length in angle
        er_eff_e( 0.0 ),           // even-mode effective dielectric constant
        er_eff_o( 0.0 ),           // odd-mode effective dielectric constant
        er_eff_e_0( 0.0 ),         // static even-mode effective dielectric constant
        er_eff_o_0( 0.0 ),         // static odd-mode effective dielectric constant
        w_eff( 0.0 ),              // Effective width of line
        atten_dielectric_e( 0.0 ), // even-mode dielectric losses (dB)
        atten_cond_e( 0.0 ),       // even-mode conductors losses (dB)
        atten_dielectric_o( 0.0 ), // odd-mode dielectric losses (dB)
        atten_cond_o( 0.0 ),       // odd-mode conductors losses (dB)
        aux_ms( nullptr )
{
    m_Name = "Coupled_MicroStrip";
    Init();
}


C_MICROSTRIP::~C_MICROSTRIP()
{
    delete aux_ms;
}


/*
 * delta_u_thickness_single() computes the thickness effect on
 * normalized width for a single microstrip line
 *
 * References: H. A. Atwater, "Simplified Design Equations for
 * Microstrip Line Parameters", Microwave Journal, pp. 109-115,
 * November 1989.
 */
double C_MICROSTRIP::delta_u_thickness_single( double u, double t_h )
{
    double delta_u;

    if( t_h > 0.0 )
    {
        delta_u =
            (1.25 * t_h /
             M_PI) *
            ( 1.0 +
             log( ( 2.0 +
                   (4.0 * M_PI * u -
                    2.0) / ( 1.0 + exp( -100.0 * ( u - 1.0 / (2.0 * M_PI) ) ) ) ) / t_h ) );

    }
    else
    {
        delta_u = 0.0;
    }
    return delta_u;
}


/*
 * delta_u_thickness() - compute the thickness effect on normalized
 * width for coupled microstrips
 *
 * References: Rolf Jansen, "High-Speed Computation of Single and
 * Coupled Microstrip Parameters Including Dispersion, High-Order
 * Modes, Loss and Finite Strip Thickness", IEEE Trans. MTT, vol. 26,
 * no. 2, pp. 75-82, Feb. 1978
 */
void C_MICROSTRIP::delta_u_thickness()
{
    double e_r, u, g, t_h;
    double delta_u, delta_t, delta_u_e, delta_u_o;

    e_r = m_parameters[EPSILONR_PRM];
    u   = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalized line width */
    g   = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM];     /* normalized line spacing */
    t_h = m_parameters[T_PRM] / m_parameters[H_PRM];          /* normalized strip thickness */

    if( t_h > 0.0 )
    {
        /* single microstrip correction for finite strip thickness */
        delta_u = delta_u_thickness_single( u, t_h );
        delta_t = t_h / ( g * e_r );
        /* thickness correction for the even- and odd-mode */
        delta_u_e = delta_u * ( 1.0 - 0.5 * exp( -0.69 * delta_u / delta_t ) );
        delta_u_o = delta_u_e + delta_t;
    }
    else
    {
        delta_u_e = delta_u_o = 0.0;
    }

    w_t_e = m_parameters[PHYS_WIDTH_PRM] + delta_u_e * m_parameters[H_PRM];
    w_t_o = m_parameters[PHYS_WIDTH_PRM] + delta_u_o * m_parameters[H_PRM];
}


/*
 * compute various parameters for a single line
 */
void C_MICROSTRIP::compute_single_line()
{
    if( aux_ms == NULL )
        aux_ms = new MICROSTRIP();

    /* prepare parameters for single microstrip computations */
    aux_ms->m_parameters[EPSILONR_PRM]   = m_parameters[EPSILONR_PRM];
    aux_ms->m_parameters[PHYS_WIDTH_PRM] = m_parameters[PHYS_WIDTH_PRM];
    aux_ms->m_parameters[H_PRM]          = m_parameters[H_PRM];
    aux_ms->m_parameters[T_PRM]          = 0.0;

    //aux_ms->m_parameters[H_T_PRM] = m_parameters[H_T_PRM];
    aux_ms->m_parameters[H_T_PRM]       = 1e12; /* arbitrarily high */
    aux_ms->m_parameters[FREQUENCY_PRM] = m_parameters[FREQUENCY_PRM];
    aux_ms->m_parameters[MURC_PRM]      = m_parameters[MURC_PRM];
    aux_ms->microstrip_Z0();
    aux_ms->dispersion();
}


/*
 * filling_factor_even() - compute the filling factor for the coupled
 * microstrips even-mode without cover and zero conductor thickness
 */
double C_MICROSTRIP::filling_factor_even( double u, double g, double e_r )
{
    double v, v3, v4, a_e, b_e, q_inf;

    v   = u * ( 20.0 + g * g ) / ( 10.0 + g * g ) + g * exp( -g );
    v3  = v * v * v;
    v4  = v3 * v;
    a_e = 1.0 + log( ( v4 + v * v / 2704.0 ) / ( v4 + 0.432 ) ) / 49.0
          + log( 1.0 + v3 / 5929.741 ) / 18.7;
    b_e = 0.564 * pow( ( ( e_r - 0.9 ) / ( e_r + 3.0 ) ), 0.053 );

    /* filling factor, with width corrected for thickness */
    q_inf = pow( ( 1.0 + 10.0 / v ), -a_e * b_e );

    return q_inf;
}


/**
 * filling_factor_odd() - compute the filling factor for the coupled
 * microstrips odd-mode without cover and zero conductor thickness
 */
double C_MICROSTRIP::filling_factor_odd( double u, double g, double e_r )
{
    double b_odd = 0.747 * e_r / ( 0.15 + e_r );
    double c_odd = b_odd - ( b_odd - 0.207 ) * exp( -0.414 * u );
    double d_odd = 0.593 + 0.694 * exp( -0.562 * u );

    /* filling factor, with width corrected for thickness */
    double q_inf = exp( -c_odd * pow( g, d_odd ) );

    return q_inf;
}


/*
 * delta_q_cover_even() - compute the cover effect on filling factor
 * for the even-mode
 */
double C_MICROSTRIP::delta_q_cover_even( double h2h )
{
    double q_c;

    if( h2h <= 39 )
        q_c = tanh( 1.626 + 0.107 * h2h - 1.733 / sqrt( h2h ) );
    else
        q_c = 1.0;

    return q_c;
}


/*
 * delta_q_cover_odd() - compute the cover effect on filling factor
 * for the odd-mode
 */
double C_MICROSTRIP::delta_q_cover_odd( double h2h )
{
    double q_c;

    if( h2h <= 7 )
        q_c = tanh( 9.575 / ( 7.0 - h2h ) - 2.965 + 1.68 * h2h - 0.311 * h2h * h2h );
    else
        q_c = 1.0;

    return q_c;
}


/**
 * er_eff_static() - compute the static effective dielectric constants
 *
 * References: Manfred Kirschning and Rolf Jansen, "Accurate
 * Wide-Range Design Equations for the Frequency-Dependent
 * Characteristic of Parallel Coupled Microstrip Lines", IEEE
 * Trans. MTT, vol. 32, no. 1, Jan. 1984
 */
void C_MICROSTRIP::er_eff_static()
{
    double u_t_e, u_t_o, g, h2, h2h;
    double a_o, t_h, q, q_c, q_t, q_inf;
    double er_eff_single;
    double er;

    er = m_parameters[EPSILONR_PRM];

    /* compute zero-thickness single line parameters */
    compute_single_line();
    er_eff_single = aux_ms->er_eff_0;

    h2    = m_parameters[H_T_PRM];
    u_t_e = w_t_e / m_parameters[H_PRM];                    /* normalized even_mode line width */
    u_t_o = w_t_o / m_parameters[H_PRM];                    /* normalized odd_mode line width */
    g     = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
    h2h   = h2 / m_parameters[H_PRM];                       /* normalized cover height */
    t_h   = m_parameters[T_PRM] / m_parameters[H_PRM];      /* normalized strip thickness */

    /* filling factor, computed with thickness corrected width */
    q_inf = filling_factor_even( u_t_e, g, er );
    /* cover effect */
    q_c = delta_q_cover_even( h2h );
    /* thickness effect */
    q_t = aux_ms->delta_q_thickness( u_t_e, t_h );
    /* resultant filling factor */
    q = ( q_inf - q_t ) * q_c;
    /* static even-mode effective dielectric constant */
    er_eff_e_0 = 0.5 * ( er + 1.0 ) + 0.5 * ( er - 1.0 ) * q;

    /* filling factor, with width corrected for thickness */
    q_inf = filling_factor_odd( u_t_o, g, er );
    /* cover effect */
    q_c = delta_q_cover_odd( h2h );
    /* thickness effect */
    q_t = aux_ms->delta_q_thickness( u_t_o, t_h );
    /* resultant filling factor */
    q = ( q_inf - q_t ) * q_c;

    a_o = 0.7287 * ( er_eff_single - 0.5 * ( er + 1.0 ) ) * ( 1.0 - exp( -0.179 * u_t_o ) );

    /* static odd-mode effective dielectric constant */
    er_eff_o_0 = ( 0.5 * ( er + 1.0 ) + a_o - er_eff_single ) * q + er_eff_single;
}


/**
 * delta_Z0_even_cover() - compute the even-mode impedance correction
 * for a homogeneous microstrip due to the cover
 *
 * References: S. March, "Microstrip Packaging: Watch the Last Step",
 * Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.
 */
double C_MICROSTRIP::delta_Z0_even_cover( double g, double u, double h2h )
{
    double f_e, g_e, delta_Z0_even;
    double x, y, A, B, C, D, E, F;

    A   = -4.351 / pow( 1.0 + h2h, 1.842 );
    B   = 6.639 / pow( 1.0 + h2h, 1.861 );
    C   = -2.291 / pow( 1.0 + h2h, 1.90 );
    f_e = 1.0 - atanh( A + ( B + C * u ) * u );

    x   = pow( 10.0, 0.103 * g - 0.159 );
    y   = pow( 10.0, 0.0492 * g - 0.073 );
    D   = 0.747 / sin( 0.5 * M_PI * x );
    E   = 0.725 * sin( 0.5 * M_PI * y );
    F   = pow( 10.0, 0.11 - 0.0947 * g );
    g_e = 270.0 * ( 1.0 - tanh( D + E * sqrt( 1.0 + h2h ) - F / ( 1.0 + h2h ) ) );

    delta_Z0_even = f_e * g_e;

    return delta_Z0_even;
}


/**
 * delta_Z0_odd_cover() - compute the odd-mode impedance correction
 * for a homogeneous microstrip due to the cover
 *
 * References: S. March, "Microstrip Packaging: Watch the Last Step",
 * Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.
 */
double C_MICROSTRIP::delta_Z0_odd_cover( double g, double u, double h2h )
{
    double f_o, g_o, delta_Z0_odd;
    double G, J, K, L;

    J   = tanh( pow( 1.0 + h2h, 1.585 ) / 6.0 );
    f_o = pow( u, J );

    G = 2.178 - 0.796 * g;

    if( g > 0.858 )
        K = log10( 20.492 * pow( g, 0.174 ) );
    else
        K = 1.30;

    if( g > 0.873 )
        L = 2.51 * pow( g, -0.462 );
    else
        L = 2.674;

    g_o = 270.0 * ( 1.0 - tanh( G + K * sqrt( 1.0 + h2h ) - L / ( 1.0 + h2h ) ) );

    delta_Z0_odd = f_o * g_o;

    return delta_Z0_odd;
}


/**
 * Z0_even_odd() - compute the static even- and odd-mode static
 * impedances
 *
 * References: Manfred Kirschning and Rolf Jansen, "Accurate
 * Wide-Range Design Equations for the Frequency-Dependent
 * Characteristic of Parallel Coupled Microstrip Lines", IEEE
 * Trans. MTT, vol. 32, no. 1, Jan. 1984
 */
void C_MICROSTRIP::Z0_even_odd()
{
    double er_eff, h2, u_t_e, u_t_o, g, h2h;
    double Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8, Q_9, Q_10;
    double delta_Z0_e_0, delta_Z0_o_0, Z0_single, er_eff_single;

    h2    = m_parameters[H_T_PRM];
    u_t_e = w_t_e / m_parameters[H_PRM];                    /* normalized even-mode line width */
    u_t_o = w_t_o / m_parameters[H_PRM];                    /* normalized odd-mode line width */
    g     = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
    h2h   = h2 / m_parameters[H_PRM];                       /* normalized cover height */

    Z0_single     = aux_ms->Z0_0;
    er_eff_single = aux_ms->er_eff_0;

    /* even-mode */
    er_eff = er_eff_e_0;
    Q_1    = 0.8695 * pow( u_t_e, 0.194 );
    Q_2    = 1.0 + 0.7519 * g + 0.189 * pow( g, 2.31 );
    Q_3    = 0.1975 + pow( ( 16.6 + pow( ( 8.4 / g ), 6.0 ) ), -0.387 )
             + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 3.4, 10.0 ) ) ) / 241.0;
    Q_4    = 2.0 * Q_1
             / ( Q_2 * ( exp( -g ) * pow( u_t_e, Q_3 ) + ( 2.0 - exp( -g ) ) * pow( u_t_e, -Q_3 ) ) );
    /* static even-mode impedance */
    Z0_e_0 = Z0_single * sqrt( er_eff_single / er_eff )
             / ( 1.0 - sqrt( er_eff_single ) * Q_4 * Z0_single / ZF0 );
    /* correction for cover */
    delta_Z0_e_0 = delta_Z0_even_cover( g, u_t_e, h2h ) / sqrt( er_eff );

    Z0_e_0 = Z0_e_0 - delta_Z0_e_0;

    /* odd-mode */
    er_eff = er_eff_o_0;
    Q_5    = 1.794 + 1.14 * log( 1.0 + 0.638 / ( g + 0.517 * pow( g, 2.43 ) ) );
    Q_6    = 0.2305 + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 5.8, 10.0 ) ) ) / 281.3
             + log( 1.0 + 0.598 * pow( g, 1.154 ) ) / 5.1;
    Q_7    = ( 10.0 + 190.0 * g * g ) / ( 1.0 + 82.3 * g * g * g );
    Q_8    = exp( -6.5 - 0.95 * log( g ) - pow( g / 0.15, 5.0 ) );
    Q_9    = log( Q_7 ) * ( Q_8 + 1.0 / 16.5 );
    Q_10   = ( Q_2 * Q_4 - Q_5 * exp( log( u_t_o ) * Q_6 * pow( u_t_o, -Q_9 ) ) ) / Q_2;

    /* static odd-mode impedance */
    Z0_o_0 = Z0_single * sqrt( er_eff_single / er_eff )
             / ( 1.0 - sqrt( er_eff_single ) * Q_10 * Z0_single / ZF0 );
    /* correction for cover */
    delta_Z0_o_0 = delta_Z0_odd_cover( g, u_t_o, h2h ) / sqrt( er_eff );

    Z0_o_0 = Z0_o_0 - delta_Z0_o_0;
}


/*
 * er_eff_freq() - compute er_eff as a function of frequency
 */
void C_MICROSTRIP::er_eff_freq()
{
    double P_1, P_2, P_3, P_4, P_5, P_6, P_7;
    double P_8, P_9, P_10, P_11, P_12, P_13, P_14, P_15;
    double F_e, F_o;
    double er_eff, u, g, f_n;

    u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
    g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM];     /* normalize line spacing */

    /* normalized frequency [GHz * mm] */
    f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;

    er_eff = er_eff_e_0;
    P_1    = 0.27488 + ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) * u
             - 0.065683 * exp( -8.7513 * u );
    P_2    = 0.33622 * ( 1.0 - exp( -0.03442 * m_parameters[EPSILONR_PRM] ) );
    P_3    = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
    P_4    = 1.0 + 2.751 * ( 1.0 - exp( -pow( m_parameters[EPSILONR_PRM] / 15.916, 8.0 ) ) );
    P_5    = 0.334 * exp( -3.3 * pow( m_parameters[EPSILONR_PRM] / 15.0, 3.0 ) ) + 0.746;
    P_6    = P_5 * exp( -pow( f_n / 18.0, 0.368 ) );
    P_7    = 1.0
             + 4.069 * P_6 * pow( g, 0.479 ) * exp( -1.347 * pow( g, 0.595 ) - 0.17 * pow( g, 2.5 ) );

    F_e = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 * P_7 ) * f_n, 1.5763 );
    /* even-mode effective dielectric constant */
    er_eff_e = m_parameters[EPSILONR_PRM] - ( m_parameters[EPSILONR_PRM] - er_eff ) / ( 1.0 + F_e );
    prop_delay_e = calcUnitPropagationDelay( er_eff_e );

    er_eff = er_eff_o_0;
    P_8    = 0.7168 * ( 1.0 + 1.076 / ( 1.0 + 0.0576 * ( m_parameters[EPSILONR_PRM] - 1.0 ) ) );
    P_9    = P_8
             - 0.7913 * ( 1.0 - exp( -pow( f_n / 20.0, 1.424 ) ) )
                    * atan( 2.481 * pow( m_parameters[EPSILONR_PRM] / 8.0, 0.946 ) );
    P_10   = 0.242 * pow( m_parameters[EPSILONR_PRM] - 1.0, 0.55 );
    P_11   = 0.6366 * ( exp( -0.3401 * f_n ) - 1.0 ) * atan( 1.263 * pow( u / 3.0, 1.629 ) );
    P_12   = P_9 + ( 1.0 - P_9 ) / ( 1.0 + 1.183 * pow( u, 1.376 ) );
    P_13   = 1.695 * P_10 / ( 0.414 + 1.605 * P_10 );
    P_14   = 0.8928 + 0.1072 * ( 1.0 - exp( -0.42 * pow( f_n / 20.0, 3.215 ) ) );
    P_15   = fabs( 1.0 - 0.8928 * ( 1.0 + P_11 ) * P_12 * exp( -P_13 * pow( g, 1.092 ) ) / P_14 );

    F_o = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n * P_15, 1.5763 );
    /* odd-mode effective dielectric constant */
    er_eff_o = m_parameters[EPSILONR_PRM] - ( m_parameters[EPSILONR_PRM] - er_eff ) / ( 1.0 + F_o );
    prop_delay_o = calcUnitPropagationDelay( er_eff_o );
}


/*
 * conductor_losses() - compute microstrips conductor losses per unit
 * length
 */
void C_MICROSTRIP::conductor_losses()
{
    double e_r_eff_e_0, e_r_eff_o_0, Z0_h_e, Z0_h_o, delta;
    double K, R_s, Q_c_e, Q_c_o, alpha_c_e, alpha_c_o;

    e_r_eff_e_0 = er_eff_e_0;
    e_r_eff_o_0 = er_eff_o_0;
    Z0_h_e      = Z0_e_0 * sqrt( e_r_eff_e_0 ); /* homogeneous stripline impedance */
    Z0_h_o      = Z0_o_0 * sqrt( e_r_eff_o_0 ); /* homogeneous stripline impedance */
    delta       = m_parameters[SKIN_DEPTH_PRM];

    if( m_parameters[FREQUENCY_PRM] > 0.0 )
    {
        /* current distribution factor (same for the two modes) */
        K = exp( -1.2 * pow( ( Z0_h_e + Z0_h_o ) / ( 2.0 * ZF0 ), 0.7 ) );
        /* skin resistance */
        R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );
        /* correction for surface roughness */
        R_s *= 1.0
               + ( ( 2.0 / M_PI )
                       * atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );

        /* even-mode strip inductive quality factor */
        Q_c_e = ( M_PI * Z0_h_e * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
                / ( R_s * C0 * K );
        /* even-mode losses per unit length */
        alpha_c_e = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
                    * sqrt( e_r_eff_e_0 ) / ( C0 * Q_c_e );

        /* odd-mode strip inductive quality factor */
        Q_c_o = ( M_PI * Z0_h_o * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
                / ( R_s * C0 * K );
        /* odd-mode losses per unit length */
        alpha_c_o = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
                    * sqrt( e_r_eff_o_0 ) / ( C0 * Q_c_o );
    }
    else
    {
        alpha_c_e = alpha_c_o = 0.0;
    }

    atten_cond_e = alpha_c_e * m_parameters[PHYS_LEN_PRM];
    atten_cond_o = alpha_c_o * m_parameters[PHYS_LEN_PRM];
}


/*
 * dielectric_losses() - compute microstrips dielectric losses per
 * unit length
 */
void C_MICROSTRIP::dielectric_losses()
{
    double e_r, e_r_eff_e_0, e_r_eff_o_0;
    double alpha_d_e, alpha_d_o;

    e_r         = m_parameters[EPSILONR_PRM];
    e_r_eff_e_0 = er_eff_e_0;
    e_r_eff_o_0 = er_eff_o_0;

    alpha_d_e = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
                * ( e_r / sqrt( e_r_eff_e_0 ) ) * ( ( e_r_eff_e_0 - 1.0 ) / ( e_r - 1.0 ) )
                * m_parameters[TAND_PRM];
    alpha_d_o = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
                * ( e_r / sqrt( e_r_eff_o_0 ) ) * ( ( e_r_eff_o_0 - 1.0 ) / ( e_r - 1.0 ) )
                * m_parameters[TAND_PRM];

    atten_dielectric_e = alpha_d_e * m_parameters[PHYS_LEN_PRM];
    atten_dielectric_o = alpha_d_o * m_parameters[PHYS_LEN_PRM];
}


/*
 * c_microstrip_attenuation() - compute attenuation of coupled
 * microstrips
 */
void C_MICROSTRIP::attenuation()
{
    m_parameters[SKIN_DEPTH_PRM] = skin_depth();
    conductor_losses();
    dielectric_losses();
}


/*
 * line_angle() - calculate strips electrical lengths in radians
 */
void C_MICROSTRIP::line_angle()
{
    double e_r_eff_e, e_r_eff_o;
    double v_e, v_o, lambda_g_e, lambda_g_o;

    e_r_eff_e = er_eff_e;
    e_r_eff_o = er_eff_o;

    /* even-mode velocity */
    v_e = C0 / sqrt( e_r_eff_e );
    /* odd-mode velocity */
    v_o = C0 / sqrt( e_r_eff_o );
    /* even-mode wavelength */
    lambda_g_e = v_e / m_parameters[FREQUENCY_PRM];
    /* odd-mode wavelength */
    lambda_g_o = v_o / m_parameters[FREQUENCY_PRM];
    /* electrical angles */
    ang_l_e = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_e; /* in radians */
    ang_l_o = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_o; /* in radians */
}


/**
 * Note that differential impedance is exactly twice the odd mode impedance.
 * Odd mode is not the same as single-ended impedance, so avoid approximations found
 * on websites that use static single ended impedance as the starting point
 */
void C_MICROSTRIP::diff_impedance()
{
    Zdiff = 2 * Z0_o_0;
}


void C_MICROSTRIP::syn_err_fun( double* f1, double* f2, double s_h, double w_h, double e_r,
                                double w_h_se, double w_h_so )
{
    double g, he;

    g  = cosh( 0.5 * M_PI * s_h );
    he = cosh( M_PI * w_h + 0.5 * M_PI * s_h );

    *f1 = ( 2.0 / M_PI ) * acosh( ( 2.0 * he - g + 1.0 ) / ( g + 1.0 ) );
    *f2 = ( 2.0 / M_PI ) * acosh( ( 2.0 * he - g - 1.0 ) / ( g - 1.0 ) );

    if( e_r <= 6.0 )
        *f2 += ( 4.0 / ( M_PI * ( 1.0 + e_r / 2.0 ) ) ) * acosh( 1.0 + 2.0 * w_h / s_h );
    else
        *f2 += ( 1.0 / M_PI ) * acosh( 1.0 + 2.0 * w_h / s_h );

    *f1 -= w_h_se;
    *f2 -= w_h_so;
}


/*
 * synth_width - calculate widths given Z0 and e_r
 * from Akhtarzad S. et al., "The design of coupled microstrip lines",
 * IEEE Trans. MTT-23, June 1975 and
 * Hinton, J.H., "On design of coupled microstrip lines", IEEE Trans.
 * MTT-28, March 1980
 */
void C_MICROSTRIP::synth_width()
{
    double Z0, e_r;
    double w_h_se, w_h_so, w_h, a, ce, co, s_h;
    double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
    double eps = 1e-04;

    f1 = f2 = 0;
    e_r     = m_parameters[EPSILONR_PRM];

    Z0 = m_parameters[Z0_E_PRM] / 2.0;
    /* Wheeler formula for single microstrip synthesis */
    a      = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
    w_h_se = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;

    Z0 = m_parameters[Z0_O_PRM] / 2.0;
    /* Wheeler formula for single microstrip synthesis */
    a      = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
    w_h_so = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;

    ce = cosh( 0.5 * M_PI * w_h_se );
    co = cosh( 0.5 * M_PI * w_h_so );
    /* first guess at m_parameters[PHYS_S_PRM]/h */
    s_h = ( 2.0 / M_PI ) * acosh( ( ce + co - 2.0 ) / ( co - ce ) );
    /* first guess at w/h */
    w_h = acosh( ( ce * co - 1.0 ) / ( co - ce ) ) / M_PI - s_h / 2.0;

    m_parameters[PHYS_S_PRM]     = s_h * m_parameters[H_PRM];
    m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];

    syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );

    /* rather crude Newton-Rhapson; we need this because the estimate of */
    /* w_h is often quite far from the true value (see Akhtarzad S. et al.) */
    do
    {
        /* compute Jacobian */
        syn_err_fun( &ft1, &ft2, s_h + eps, w_h, e_r, w_h_se, w_h_so );
        j11 = ( ft1 - f1 ) / eps;
        j21 = ( ft2 - f2 ) / eps;
        syn_err_fun( &ft1, &ft2, s_h, w_h + eps, e_r, w_h_se, w_h_so );
        j12 = ( ft1 - f1 ) / eps;
        j22 = ( ft2 - f2 ) / eps;

        /* compute next step */
        d_s_h = ( -f1 * j22 + f2 * j12 ) / ( j11 * j22 - j21 * j12 );
        d_w_h = ( -f2 * j11 + f1 * j21 ) / ( j11 * j22 - j21 * j12 );

        //g_print("j11 = %e\tj12 = %e\tj21 = %e\tj22 = %e\n", j11, j12, j21, j22);
        //g_print("det = %e\n", j11*j22 - j21*j22);
        //g_print("d_s_h = %e\td_w_h = %e\n", d_s_h, d_w_h);

        s_h += d_s_h;
        w_h += d_w_h;

        /* check the error */
        syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );

        err = sqrt( f1 * f1 + f2 * f2 );
        /* converged ? */
    } while( err > 1e-04 );


    m_parameters[PHYS_S_PRM]     = s_h * m_parameters[H_PRM];
    m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];
}


/*
 * Z0_dispersion() - calculate frequency dependency of characteristic
 * impedances
 */
void C_MICROSTRIP::Z0_dispersion()
{
    double Q_0;
    double Q_11, Q_12, Q_13, Q_14, Q_15, Q_16, Q_17, Q_18, Q_19, Q_20, Q_21;
    double Q_22, Q_23, Q_24, Q_25, Q_26, Q_27, Q_28, Q_29;
    double r_e, q_e, p_e, d_e, C_e;
    double e_r_eff_o_f, e_r_eff_o_0;
    double e_r_eff_single_f, e_r_eff_single_0, Z0_single_f;
    double f_n, g, u, e_r;
    double R_1, R_2, R_7, R_10, R_11, R_12, R_15, R_16, tmpf;

    e_r = m_parameters[EPSILONR_PRM];

    u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
    g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM];     /* normalize line spacing */

    /* normalized frequency [GHz * mm] */
    f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;

    e_r_eff_single_f = aux_ms->m_parameters[EPSILON_EFF_PRM];
    e_r_eff_single_0 = aux_ms->er_eff_0;
    Z0_single_f      = aux_ms->m_parameters[Z0_PRM];

    e_r_eff_o_f = er_eff_o;
    e_r_eff_o_0 = er_eff_o_0;

    Q_11 = 0.893 * ( 1.0 - 0.3 / ( 1.0 + 0.7 * ( e_r - 1.0 ) ) );
    Q_12 = 2.121 * ( pow( f_n / 20.0, 4.91 ) / ( 1.0 + Q_11 * pow( f_n / 20.0, 4.91 ) ) )
           * exp( -2.87 * g ) * pow( g, 0.902 );
    Q_13 = 1.0 + 0.038 * pow( e_r / 8.0, 5.1 );
    Q_14 = 1.0 + 1.203 * pow( e_r / 15.0, 4.0 ) / ( 1.0 + pow( e_r / 15.0, 4.0 ) );
    Q_15 = 1.887 * exp( -1.5 * pow( g, 0.84 ) ) * pow( g, Q_14 )
           / ( 1.0
                   + 0.41 * pow( f_n / 15.0, 3.0 ) * pow( u, 2.0 / Q_13 )
                             / ( 0.125 + pow( u, 1.626 / Q_13 ) ) );
    Q_16 = ( 1.0 + 9.0 / ( 1.0 + 0.403 * pow( e_r - 1.0, 2 ) ) ) * Q_15;
    Q_17 = 0.394 * ( 1.0 - exp( -1.47 * pow( u / 7.0, 0.672 ) ) )
           * ( 1.0 - exp( -4.25 * pow( f_n / 20.0, 1.87 ) ) );
    Q_18 = 0.61 * ( 1.0 - exp( -2.13 * pow( u / 8.0, 1.593 ) ) ) / ( 1.0 + 6.544 * pow( g, 4.17 ) );
    Q_19 = 0.21 * g * g * g * g
           / ( ( 1.0 + 0.18 * pow( g, 4.9 ) ) * ( 1.0 + 0.1 * u * u )
                   * ( 1.0 + pow( f_n / 24.0, 3.0 ) ) );
    Q_20 = ( 0.09 + 1.0 / ( 1.0 + 0.1 * pow( e_r - 1, 2.7 ) ) ) * Q_19;
    Q_21 = fabs( 1.0
                 - 42.54 * pow( g, 0.133 ) * exp( -0.812 * g ) * pow( u, 2.5 )
                           / ( 1.0 + 0.033 * pow( u, 2.5 ) ) );

    r_e = pow( f_n / 28.843, 12 );
    q_e = 0.016 + pow( 0.0514 * e_r * Q_21, 4.524 );
    p_e = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
    d_e = 5.086 * q_e * ( r_e / ( 0.3838 + 0.386 * q_e ) )
          * ( exp( -22.2 * pow( u, 1.92 ) ) / ( 1.0 + 1.2992 * r_e ) )
          * ( pow( e_r - 1.0, 6.0 ) / ( 1.0 + 10 * pow( e_r - 1.0, 6.0 ) ) );
    C_e = 1.0
          + 1.275
                    * ( 1.0
                            - exp( -0.004625 * p_e * pow( e_r, 1.674 )
                                    * pow( f_n / 18.365, 2.745 ) ) )
          - Q_12 + Q_16 - Q_17 + Q_18 + Q_20;


    R_1  = 0.03891 * pow( e_r, 1.4 );
    R_2  = 0.267 * pow( u, 7.0 );
    R_7  = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
    R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
    tmpf = pow( f_n / 19.47, 6.0 );
    R_11 = tmpf / ( 1.0 + 0.0962 * tmpf );
    R_12 = 1.0 / ( 1.0 + 0.00245 * u * u );
    R_15 = 0.707 * R_10 * pow( f_n / 12.3, 1.097 );
    R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) );
    Q_0  = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );

    /* even-mode frequency-dependent characteristic impedances */
    m_parameters[Z0_E_PRM] = Z0_e_0 * pow( 0.9408 * pow( e_r_eff_single_f, C_e ) - 0.9603, Q_0 )
                             / pow( ( 0.9408 - d_e ) * pow( e_r_eff_single_0, C_e ) - 0.9603, Q_0 );

    Q_29 = 15.16 / ( 1.0 + 0.196 * pow( e_r - 1.0, 2.0 ) );
    tmpf = pow( e_r - 1.0, 3.0 );
    Q_28 = 0.149 * tmpf / ( 94.5 + 0.038 * tmpf );
    tmpf = pow( e_r - 1.0, 1.5 );
    Q_27 = 0.4 * pow( g, 0.84 ) * ( 1.0 + 2.5 * tmpf / ( 5.0 + tmpf ) );
    tmpf = pow( ( e_r - 1.0 ) / 13.0, 12.0 );
    Q_26 = 30.0 - 22.2 * ( tmpf / ( 1.0 + 3.0 * tmpf ) ) - Q_29;
    tmpf = ( e_r - 1.0 ) * ( e_r - 1.0 );
    Q_25 = ( 0.3 * f_n * f_n / ( 10.0 + f_n * f_n ) ) * ( 1.0 + 2.333 * tmpf / ( 5.0 + tmpf ) );
    Q_24 = 2.506 * Q_28 * pow( u, 0.894 ) * pow( ( 1.0 + 1.3 * u ) * f_n / 99.25, 4.29 )
           / ( 3.575 + pow( u, 0.894 ) );
    Q_23 = 1.0
           + 0.005 * f_n * Q_27
                     / ( ( 1.0 + 0.812 * pow( f_n / 15.0, 1.9 ) ) * ( 1.0 + 0.025 * u * u ) );
    Q_22 = 0.925 * pow( f_n / Q_26, 1.536 ) / ( 1.0 + 0.3 * pow( f_n / 30.0, 1.536 ) );

    /* odd-mode frequency-dependent characteristic impedances */
    m_parameters[Z0_O_PRM] =
            Z0_single_f
            + ( Z0_o_0 * pow( e_r_eff_o_f / e_r_eff_o_0, Q_22 ) - Z0_single_f * Q_23 )
                      / ( 1.0 + Q_24 + pow( 0.46 * g, 2.2 ) * Q_25 );
}


void C_MICROSTRIP::calcAnalyze()
{
    /* compute thickness corrections */
    delta_u_thickness();
    /* get effective dielectric constants */
    er_eff_static();
    /* impedances for even- and odd-mode */
    Z0_even_odd();
    /* calculate freq dependence of er_eff_e, er_eff_o */
    er_eff_freq();
    /* calculate frequency  dependence of Z0e, Z0o */
    Z0_dispersion();
    /* calculate losses */
    attenuation();
    /* calculate electrical lengths */
    line_angle();
    /* calculate diff impedance */
    diff_impedance();
}


void C_MICROSTRIP::showAnalyze()
{
    setProperty( Z0_E_PRM, m_parameters[Z0_E_PRM] );
    setProperty( Z0_O_PRM, m_parameters[Z0_O_PRM] );
    setProperty( ANG_L_PRM, sqrt( ang_l_e * ang_l_o ) );

    //Check for errors
    if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
        setErrorLevel( Z0_O_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
        setErrorLevel( Z0_E_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
        setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );

    // Check for warnings
    if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
        setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
        setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
        setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
}

void C_MICROSTRIP::showSynthesize()
{
    setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
    setProperty( PHYS_S_PRM, m_parameters[PHYS_S_PRM] );
    setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );

    //Check for errors
    if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
        setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
        setErrorLevel( PHYS_S_PRM, TRANSLINE_ERROR );

    if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
        setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );

    // Check for warnings
    if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
        setErrorLevel( Z0_O_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
        setErrorLevel( Z0_E_PRM, TRANSLINE_WARNING );

    if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
        setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}

void C_MICROSTRIP::show_results()
{

    setResult( 0, er_eff_e, "" );
    setResult( 1, er_eff_o, "" );
    setResult( 2, prop_delay_e, "ps/cm" );
    setResult( 3, prop_delay_o, "ps/cm" );
    setResult( 4, atten_cond_e, "dB" );
    setResult( 5, atten_cond_o, "dB" );
    setResult( 6, atten_dielectric_e, "dB" );
    setResult( 7, atten_dielectric_o, "dB" );

    setResult( 8, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
    setResult( 9, Zdiff, "Ω" );
}


void C_MICROSTRIP::syn_fun(
        double* f1, double* f2, double s_h, double w_h, double Z0_e, double Z0_o )
{
    m_parameters[PHYS_S_PRM]     = s_h * m_parameters[H_PRM];
    m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];

    /* compute coupled microstrip parameters */
    calcAnalyze();

    *f1 = m_parameters[Z0_E_PRM] - Z0_e;
    *f2 = m_parameters[Z0_O_PRM] - Z0_o;
}


/*
 * synthesis function
 */
void C_MICROSTRIP::calcSynthesize()
{
    double Z0_e, Z0_o, ang_l_dest;
    double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
    double eps = 1e-04;
    double w_h, s_h, le, lo;


    /* required value of Z0_e and Z0_o */
    Z0_e = m_parameters[Z0_E_PRM];
    Z0_o = m_parameters[Z0_O_PRM];


    ang_l_e    = m_parameters[ANG_L_PRM];
    ang_l_o    = m_parameters[ANG_L_PRM];
    ang_l_dest = m_parameters[ANG_L_PRM];


    /* calculate width and use for initial value in Newton's method */
    synth_width();
    w_h = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
    s_h = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM];
    f1 = f2 = 0;

    /* rather crude Newton-Rhapson */
    do
    {
        /* compute Jacobian */
        syn_fun( &ft1, &ft2, s_h + eps, w_h, Z0_e, Z0_o );
        j11 = ( ft1 - f1 ) / eps;
        j21 = ( ft2 - f2 ) / eps;
        syn_fun( &ft1, &ft2, s_h, w_h + eps, Z0_e, Z0_o );
        j12 = ( ft1 - f1 ) / eps;
        j22 = ( ft2 - f2 ) / eps;

        /* compute next step; increments of s_h and w_h */
        d_s_h = ( -f1 * j22 + f2 * j12 ) / ( j11 * j22 - j21 * j12 );
        d_w_h = ( -f2 * j11 + f1 * j21 ) / ( j11 * j22 - j21 * j12 );

        s_h += d_s_h;
        w_h += d_w_h;

        /* compute the error with the new values of s_h and w_h */
        syn_fun( &f1, &f2, s_h, w_h, Z0_e, Z0_o );
        err = sqrt( f1 * f1 + f2 * f2 );

        /* converged ? */
    } while( err > 1e-04 );

    /* denormalize computed width and spacing */
    m_parameters[PHYS_S_PRM]     = s_h * m_parameters[H_PRM];
    m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];


    /* calculate physical length */
    le = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_e ) * ang_l_dest / 2.0 / M_PI;
    lo = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_o ) * ang_l_dest / 2.0 / M_PI;
    m_parameters[PHYS_LEN_PRM] = sqrt( le * lo );

    calcAnalyze();

    m_parameters[ANG_L_PRM] = ang_l_dest;
    m_parameters[Z0_E_PRM]  = Z0_e;
    m_parameters[Z0_O_PRM]  = Z0_o;
}