1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
// SPDX-FileCopyrightText: 2005 Maurizio Paolini <paolini@dmf.unicatt.it>
// SPDX-License-Identifier: GPL-2.0-or-later
#include "inversion_type.h"
#include <math.h>
#include "bogus_imp.h"
#include "circle_imp.h"
#include "line_imp.h"
#include "object_imp.h"
#include "other_imp.h"
#include "point_imp.h"
#include "special_imptypes.h"
#include "../misc/common.h"
static const KLazyLocalizedString str1 = kli18n("Invert with respect to this circle");
static const KLazyLocalizedString str2 = kli18n("Select the circle we want to invert against...");
static const ArgsParser::spec argsspecCircularInversion[] = {
{&invertibleimptypeinstance, kli18n("Compute the inversion of this object"), kli18n("Select the object to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(CircularInversionType)
CircularInversionType::CircularInversionType()
: ArgsParserObjectType("CircularInversion", argsspecCircularInversion, 2)
{
}
CircularInversionType::~CircularInversionType()
{
}
const CircularInversionType *CircularInversionType::instance()
{
static const CircularInversionType s;
return &s;
}
const ObjectImpType *CircularInversionType::resultId() const
{
return &invertibleimptypeinstance;
}
ObjectImp *CircularInversionType::calc(const Args &args, const KigDocument &) const
{
if (args.size() == 2 && args[1]->inherits(LineImp::stype())) {
/* we also accept the special case when the circle becomes a
* straight line (this is not accepted during interactive construction,
* but could happen dinamically when a construction can result either
* with a circle or a line.
* In this case we simply have a reflection
*/
LineData d = static_cast<const AbstractLineImp *>(args[1])->data();
Transformation t = Transformation::lineReflection(d);
return args[0]->transform(t);
}
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *refcircle = static_cast<const CircleImp *>(args[1]);
Coordinate refc = refcircle->center();
double refrsq = refcircle->squareRadius();
if (args[0]->inherits(PointImp::stype())) {
Coordinate relp = static_cast<const PointImp *>(args[0])->coordinate() - refc;
double normsq = relp.x * relp.x + relp.y * relp.y;
if (normsq == 0)
return new InvalidImp;
return new PointImp(refc + (refrsq / normsq) * relp);
}
if (args[0]->inherits(AbstractLineImp::stype())) {
bool isline = args[0]->inherits(LineImp::stype());
bool issegment = args[0]->inherits(SegmentImp::stype());
bool isray = args[0]->inherits(RayImp::stype());
const LineData line = static_cast<const AbstractLineImp *>(args[0])->data();
Coordinate rela = line.a - refc;
Coordinate relb = line.b - refc;
Coordinate ab = relb - rela;
double t = (relb.x * ab.x + relb.y * ab.y) / (ab.x * ab.x + ab.y * ab.y);
Coordinate relh = relb - t * ab;
double normhsq = relh.x * relh.x + relh.y * relh.y;
if (isline) {
if (normhsq < 1e-12 * refrsq)
return new LineImp(line.a, line.b);
Coordinate newcenter = refc + 0.5 * refrsq / normhsq * relh;
double newradius = 0.5 * refrsq / sqrt(normhsq);
return new CircleImp(newcenter, newradius);
}
if (issegment || isray) {
/*
* now for the SegmentImp or RayImp
* compute the inversion of the two endpoints
*/
Coordinate newcenterrel = 0.5 * refrsq / normhsq * relh;
Coordinate relainv = refrsq / rela.squareLength() * rela;
Coordinate relbinv = Coordinate(0., 0.);
if (issegment)
relbinv = refrsq / relb.squareLength() * relb;
if (normhsq < 1e-12 * refrsq) {
if (rela.squareLength() < 1e-12) {
return new RayImp(relbinv + refc, 2 * relbinv + refc);
}
if (issegment && relb.squareLength() < 1e-12) {
return new RayImp(relainv + refc, 2 * relainv + refc);
}
if (relb.x * rela.x + relb.y * rela.y > 0) {
return new SegmentImp(relainv + refc, relbinv + refc);
}
return new InvalidImp();
}
double newradius = 0.5 * refrsq / sqrt(normhsq);
relainv -= newcenterrel;
relbinv -= newcenterrel;
double angle1 = atan2(relainv.y, relainv.x);
double angle2 = atan2(relbinv.y, relbinv.x);
double angle = angle2 - angle1;
if (ab.x * rela.y - ab.y * rela.x > 0) {
angle1 = angle2;
angle = -angle;
}
while (angle1 <= -M_PI)
angle1 += 2 * M_PI;
while (angle1 > M_PI)
angle1 -= 2 * M_PI;
while (angle < 0)
angle += 2 * M_PI;
while (angle >= 2 * M_PI)
angle -= 2 * M_PI;
return new ArcImp(newcenterrel + refc, newradius, angle1, angle);
}
return new InvalidImp;
}
if (args[0]->inherits(CircleImp::stype())) {
const CircleImp *circle = static_cast<const CircleImp *>(args[0]);
Coordinate c = circle->center() - refc;
double clength = c.length();
Coordinate cnorm = Coordinate(1., 0.);
if (clength != 0.0)
cnorm = c / clength;
double r = circle->radius();
Coordinate tc = r * cnorm;
Coordinate b = c + tc; //(1 + t)*c;
double bsq = b.x * b.x + b.y * b.y;
Coordinate bprime = refrsq * b / bsq;
if (std::fabs(clength - r) < 1e-6 * clength) // circle through origin -> line
{
return new LineImp(bprime + refc, bprime + refc + Coordinate(-c.y, c.x));
}
Coordinate a = c - tc;
double asq = a.x * a.x + a.y * a.y;
Coordinate aprime = refrsq * a / asq;
Coordinate cprime = 0.5 * (aprime + bprime);
double rprime = 0.5 * (bprime - aprime).length();
return new CircleImp(cprime + refc, rprime);
}
if (args[0]->inherits(ArcImp::stype())) {
const ArcImp *arc = static_cast<const ArcImp *>(args[0]);
Coordinate c = arc->center() - refc;
double clength = c.length();
Coordinate cnorm = Coordinate(1., 0.);
if (clength != 0.0)
cnorm = c / clength;
double r = arc->radius();
/*
* r > clength means center of inversion circle inside of circle supporting arc
*/
Coordinate tc = r * cnorm;
Coordinate b = c + tc;
double bsq = b.x * b.x + b.y * b.y;
Coordinate bprime = refrsq * b / bsq;
if (std::fabs(clength - r) < 1e-6 * clength) // support circle through origin ->
// segment, ray or invalid
// (reversed segment, union of two rays)
{
bool valid1 = false;
bool valid2 = false;
Coordinate ep1 = arc->firstEndPoint() - refc;
Coordinate ep2 = arc->secondEndPoint() - refc;
Coordinate ep1inv = Coordinate::invalidCoord();
Coordinate ep2inv = Coordinate::invalidCoord();
double ep1sq = ep1.squareLength();
if (ep1sq > 1e-12) {
valid1 = true;
ep1inv = refrsq / ep1sq * ep1;
}
Coordinate rayendp = ep1inv;
int sign = 1;
double ep2sq = ep2.squareLength();
if (ep2sq > 1e-12) {
valid2 = true;
ep2inv = refrsq / ep2sq * ep2;
rayendp = ep2inv;
sign = -1;
}
if (valid1 || valid2) {
if (valid1 && valid2) {
// this gives either a segment or the complement of a segment (relative
// to its support line). We return a segment in any case (fixme)
double ang = atan2(-c.y, -c.x);
double sa = arc->startAngle();
if (ang < sa)
ang += 2 * M_PI;
if (ang - sa - arc->angle() < 0)
return new InvalidImp();
return new SegmentImp(ep1inv + refc, ep2inv + refc);
} else
return new RayImp(rayendp + refc, rayendp + refc + sign * Coordinate(-c.y, c.x)); // this should give a Ray
} else
return new LineImp(bprime + refc, bprime + refc + Coordinate(-c.y, c.x));
}
Coordinate a = c - tc;
double asq = a.x * a.x + a.y * a.y;
Coordinate aprime = refrsq * a / asq;
Coordinate cprime = 0.5 * (aprime + bprime);
double rprime = 0.5 * (bprime - aprime).length();
Coordinate ep1 = arc->firstEndPoint() - refc;
double ang1 = arc->startAngle();
double newstartangle = 2 * atan2(ep1.y, ep1.x) - ang1;
Coordinate ep2 = arc->secondEndPoint() - refc;
double ang2 = ang1 + arc->angle();
double newendangle = 2 * atan2(ep2.y, ep2.x) - ang2;
double newangle = newendangle - newstartangle;
/*
* newstartangle and newendangle might have to be exchanged:
* this is the case if the circle supporting our arc does not
* contain the center of the inversion circle
*/
if (r < clength) {
newstartangle = newendangle - M_PI;
newangle = -newangle;
// newendangle is no-longer valid
}
while (newstartangle <= -M_PI)
newstartangle += 2 * M_PI;
while (newstartangle > M_PI)
newstartangle -= 2 * M_PI;
while (newangle < 0)
newangle += 2 * M_PI;
while (newangle >= 2 * M_PI)
newangle -= 2 * M_PI;
return new ArcImp(cprime + refc, rprime, newstartangle, newangle);
}
return new InvalidImp;
}
/*
* inversion of a point
*/
static const ArgsParser::spec argsspecInvertPoint[] = {
{PointImp::stype(), kli18n("Compute the inversion of this point"), kli18n("Select the point to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(InvertPointType)
InvertPointType::InvertPointType()
: ArgsParserObjectType("InvertPoint", argsspecInvertPoint, 2)
{
}
InvertPointType::~InvertPointType()
{
}
const InvertPointType *InvertPointType::instance()
{
static const InvertPointType s;
return &s;
}
const ObjectImpType *InvertPointType::resultId() const
{
return PointImp::stype();
}
ObjectImp *InvertPointType::calc(const Args &args, const KigDocument &) const
{
if (args.size() == 2 && args[1]->inherits(LineImp::stype())) {
/* we also accept the special case when the circle becomes a
* straight line (see comment above)
*/
LineData d = static_cast<const AbstractLineImp *>(args[1])->data();
Transformation t = Transformation::lineReflection(d);
return args[0]->transform(t);
}
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *c = static_cast<const CircleImp *>(args[1]);
Coordinate center = c->center();
Coordinate relp = static_cast<const PointImp *>(args[0])->coordinate() - center;
double radiussq = c->squareRadius();
double normsq = relp.x * relp.x + relp.y * relp.y;
if (normsq == 0)
return new InvalidImp;
return new PointImp(center + (radiussq / normsq) * relp);
}
/*
* old-style invertion types. These can be safely removed, since trying
* to load kig files that use these constructions are correctly converted
* into the new CircularInversion.
*/
/*
* inversion of a line
*/
static const ArgsParser::spec argsspecInvertLine[] = {
{LineImp::stype(), kli18n("Compute the inversion of this line"), kli18n("Select the line to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(InvertLineType)
InvertLineType::InvertLineType()
: ArgsParserObjectType("InvertLineObsolete", argsspecInvertLine, 2)
{
}
InvertLineType::~InvertLineType()
{
}
const InvertLineType *InvertLineType::instance()
{
static const InvertLineType s;
return &s;
}
const ObjectImpType *InvertLineType::resultId() const
{
return CircleImp::stype();
}
ObjectImp *InvertLineType::calc(const Args &args, const KigDocument &) const
{
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *c = static_cast<const CircleImp *>(args[1]);
Coordinate center = c->center();
double radiussq = c->squareRadius();
const LineData line = static_cast<const AbstractLineImp *>(args[0])->data();
Coordinate relb = line.b - center;
Coordinate ab = line.b - line.a;
double t = (relb.x * ab.x + relb.y * ab.y) / (ab.x * ab.x + ab.y * ab.y);
Coordinate relh = relb - t * ab;
double normhsq = relh.x * relh.x + relh.y * relh.y;
if (normhsq < 1e-12 * radiussq)
return new LineImp(line.a, line.b);
Coordinate newcenter = center + 0.5 * radiussq / normhsq * relh;
double newradius = 0.5 * radiussq / sqrt(normhsq);
return new CircleImp(newcenter, newradius);
}
/*
* inversion of a segment
*/
static const ArgsParser::spec argsspecInvertSegment[] = {
{SegmentImp::stype(), kli18n("Compute the inversion of this segment"), kli18n("Select the segment to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(InvertSegmentType)
InvertSegmentType::InvertSegmentType()
: ArgsParserObjectType("InvertSegmentObsolete", argsspecInvertSegment, 2)
{
}
InvertSegmentType::~InvertSegmentType()
{
}
const InvertSegmentType *InvertSegmentType::instance()
{
static const InvertSegmentType s;
return &s;
}
const ObjectImpType *InvertSegmentType::resultId() const
{
return ArcImp::stype();
}
ObjectImp *InvertSegmentType::calc(const Args &args, const KigDocument &) const
{
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *c = static_cast<const CircleImp *>(args[1]);
Coordinate center = c->center();
double radiussq = c->squareRadius();
const LineData line = static_cast<const AbstractLineImp *>(args[0])->data();
Coordinate rela = line.a - center;
Coordinate relb = line.b - center;
Coordinate ab = relb - rela;
double t = (relb.x * ab.x + relb.y * ab.y) / (ab.x * ab.x + ab.y * ab.y);
Coordinate relh = relb - t * ab;
double normhsq = relh.x * relh.x + relh.y * relh.y;
/*
* compute the inversion of the two endpoints
*/
Coordinate newcenterrel = 0.5 * radiussq / normhsq * relh;
Coordinate relainv = radiussq / rela.squareLength() * rela;
Coordinate relbinv = radiussq / relb.squareLength() * relb;
if (normhsq < 1e-12 * radiussq) {
if (rela.squareLength() < 1e-12) {
return new RayImp(relbinv + center, 2 * relbinv + center);
}
if (relb.squareLength() < 1e-12) {
return new RayImp(relainv + center, 2 * relainv + center);
}
if (relb.x * rela.x + relb.y * rela.y > 0) {
return new SegmentImp(relainv + center, relbinv + center);
}
return new InvalidImp();
}
double newradius = 0.5 * radiussq / sqrt(normhsq);
relainv -= newcenterrel;
relbinv -= newcenterrel;
double angle1 = atan2(relainv.y, relainv.x);
double angle2 = atan2(relbinv.y, relbinv.x);
double angle = angle2 - angle1;
if (ab.x * rela.y - ab.y * rela.x > 0) {
angle1 = angle2;
angle = -angle;
}
while (angle1 < 0)
angle1 += 2 * M_PI;
while (angle1 >= 2 * M_PI)
angle1 -= 2 * M_PI;
while (angle < 0)
angle += 2 * M_PI;
while (angle >= 2 * M_PI)
angle -= 2 * M_PI;
return new ArcImp(newcenterrel + center, newradius, angle1, angle);
}
/*
* inversion of a circle
*/
static const ArgsParser::spec argsspecInvertCircle[] = {
{CircleImp::stype(), kli18n("Compute the inversion of this circle"), kli18n("Select the circle to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(InvertCircleType)
InvertCircleType::InvertCircleType()
: ArgsParserObjectType("InvertCircleObsolete", argsspecInvertCircle, 2)
{
}
InvertCircleType::~InvertCircleType()
{
}
const InvertCircleType *InvertCircleType::instance()
{
static const InvertCircleType s;
return &s;
}
const ObjectImpType *InvertCircleType::resultId() const
{
return CircleImp::stype();
}
ObjectImp *InvertCircleType::calc(const Args &args, const KigDocument &) const
{
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *refcircle = static_cast<const CircleImp *>(args[1]);
Coordinate refc = refcircle->center();
double refrsq = refcircle->squareRadius();
const CircleImp *circle = static_cast<const CircleImp *>(args[0]);
Coordinate c = circle->center() - refc;
double clength = c.length();
Coordinate cnorm = Coordinate(1., 0.);
if (clength != 0.0)
cnorm = c / clength;
double r = circle->radius();
Coordinate tc = r * cnorm;
Coordinate b = c + tc; //(1 + t)*c;
double bsq = b.x * b.x + b.y * b.y;
Coordinate bprime = refrsq * b / bsq;
if (std::fabs(clength - r) < 1e-6 * clength) // circle through origin -> line
{
return new LineImp(bprime + refc, bprime + refc + Coordinate(-c.y, c.x));
}
Coordinate a = c - tc;
double asq = a.x * a.x + a.y * a.y;
Coordinate aprime = refrsq * a / asq;
Coordinate cprime = 0.5 * (aprime + bprime);
double rprime = 0.5 * (bprime - aprime).length();
return new CircleImp(cprime + refc, rprime);
}
/*
* inversion of an arc
*/
static const ArgsParser::spec argsspecInvertArc[] = {
{ArcImp::stype(), kli18n("Compute the inversion of this arc"), kli18n("Select the arc to invert..."), false},
{CircleImp::stype(), str1, str2, false}};
KIG_INSTANTIATE_OBJECT_TYPE_INSTANCE(InvertArcType)
InvertArcType::InvertArcType()
: ArgsParserObjectType("InvertArcObsolete", argsspecInvertArc, 2)
{
}
InvertArcType::~InvertArcType()
{
}
const InvertArcType *InvertArcType::instance()
{
static const InvertArcType s;
return &s;
}
const ObjectImpType *InvertArcType::resultId() const
{
return ArcImp::stype();
}
ObjectImp *InvertArcType::calc(const Args &args, const KigDocument &) const
{
if (!margsparser.checkArgs(args))
return new InvalidImp;
const CircleImp *refcircle = static_cast<const CircleImp *>(args[1]);
Coordinate refc = refcircle->center();
double refrsq = refcircle->squareRadius();
const ArcImp *arc = static_cast<const ArcImp *>(args[0]);
Coordinate c = arc->center() - refc;
double clength = c.length();
Coordinate cnorm = Coordinate(1., 0.);
if (clength != 0.0)
cnorm = c / clength;
double r = arc->radius();
/*
* r > clength means center of inversion circle inside of circle supporting arc
*/
Coordinate tc = r * cnorm;
Coordinate b = c + tc;
double bsq = b.x * b.x + b.y * b.y;
Coordinate bprime = refrsq * b / bsq;
if (std::fabs(clength - r) < 1e-6 * clength) // support circle through origin ->
// segment, ray or invalid
// (reversed segment, union of two rays)
{
bool valid1 = false;
bool valid2 = false;
Coordinate ep1 = arc->firstEndPoint() - refc;
Coordinate ep2 = arc->secondEndPoint() - refc;
Coordinate ep1inv = Coordinate::invalidCoord();
Coordinate ep2inv = Coordinate::invalidCoord();
double ep1sq = ep1.squareLength();
if (ep1sq > 1e-12) {
valid1 = true;
ep1inv = refrsq / ep1sq * ep1;
}
Coordinate rayendp = ep1inv;
int sign = 1;
double ep2sq = ep2.squareLength();
if (ep2sq > 1e-12) {
valid2 = true;
ep2inv = refrsq / ep2sq * ep2;
rayendp = ep2inv;
sign = -1;
}
if (valid1 || valid2) {
if (valid1 && valid2) {
// this gives either a segment or the complement of a segment (relative
// to its support line). We return a segment in any case (fixme)
double ang = atan2(-c.y, -c.x);
double sa = arc->startAngle();
if (ang < sa)
ang += 2 * M_PI;
if (ang - sa - arc->angle() < 0)
return new InvalidImp();
return new SegmentImp(ep1inv + refc, ep2inv + refc);
} else
return new RayImp(rayendp + refc, rayendp + refc + sign * Coordinate(-c.y, c.x)); // this should give a Ray
} else
return new LineImp(bprime + refc, bprime + refc + Coordinate(-c.y, c.x));
}
Coordinate a = c - tc;
double asq = a.x * a.x + a.y * a.y;
Coordinate aprime = refrsq * a / asq;
Coordinate cprime = 0.5 * (aprime + bprime);
double rprime = 0.5 * (bprime - aprime).length();
Coordinate ep1 = arc->firstEndPoint() - refc;
double ang1 = arc->startAngle();
double newstartangle = 2 * atan2(ep1.y, ep1.x) - ang1;
Coordinate ep2 = arc->secondEndPoint() - refc;
double ang2 = ang1 + arc->angle();
double newendangle = 2 * atan2(ep2.y, ep2.x) - ang2;
double newangle = newendangle - newstartangle;
/*
* newstartangle and newendangle might have to be exchanged:
* this is the case if the circle supporting our arc does not
* contain the center of the inversion circle
*/
if (r < clength) {
newstartangle = newendangle - M_PI;
newangle = -newangle;
// newendangle is no-longer valid
}
while (newstartangle < 0)
newstartangle += 2 * M_PI;
while (newstartangle >= 2 * M_PI)
newstartangle -= 2 * M_PI;
while (newangle < 0)
newangle += 2 * M_PI;
while (newangle >= 2 * M_PI)
newangle -= 2 * M_PI;
return new ArcImp(cprime + refc, rprime, newstartangle, newangle);
}
|