1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
// SPDX-FileCopyrightText: 2002 Dominique Devriese <devriese@kde.org>
// SPDX-License-Identifier: GPL-2.0-or-later
#include "object_factory.h"
#include "bogus_imp.h"
#include "conic_types.h"
#include "curve_imp.h"
#include "intersection_types.h"
#include "line_imp.h"
#include "object_drawer.h"
#include "object_holder.h"
#include "other_type.h"
#include "point_imp.h"
#include "point_type.h"
#include "text_type.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include "../misc/calcpaths.h"
#include "../misc/coordinate.h"
#include "../misc/object_hierarchy.h"
#include "../misc/special_constructors.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <limits>
ObjectHolder *ObjectFactory::fixedPoint(const Coordinate &c) const
{
ObjectHolder *o = new ObjectHolder(fixedPointCalcer(c));
return o;
}
ObjectTypeCalcer *ObjectFactory::fixedPointCalcer(const Coordinate &c) const
{
std::vector<ObjectCalcer *> args;
args.push_back(new ObjectConstCalcer(new DoubleImp(c.x)));
args.push_back(new ObjectConstCalcer(new DoubleImp(c.y)));
ObjectTypeCalcer *oc = new ObjectTypeCalcer(FixedPointType::instance(), args);
return oc;
}
ObjectHolder *ObjectFactory::numericValue(const double value, const Coordinate &loc, const KigDocument &doc) const
{
return new ObjectHolder(numericValueCalcer(value, loc, doc));
}
ObjectTypeCalcer *ObjectFactory::numericValueCalcer(const double value, const Coordinate &loc, const KigDocument &doc) const
{
std::vector<ObjectCalcer *> parents;
parents.reserve(4);
const bool needframe = false;
parents.push_back(new ObjectConstCalcer(new IntImp(needframe ? 1 : 0)));
parents.push_back(getAttachPoint(nullptr, loc, doc));
parents.push_back(new ObjectConstCalcer(new StringImp(QStringLiteral("%1"))));
parents.push_back(new ObjectConstCalcer(new DoubleImp(value)));
ObjectTypeCalcer *ret = new ObjectTypeCalcer(NumericTextType::instance(), parents);
ret->calc(doc);
return ret;
}
ObjectTypeCalcer *ObjectFactory::cursorPointCalcer(const Coordinate &c) const
{
std::vector<ObjectCalcer *> args;
args.push_back(new ObjectConstCalcer(new DoubleImp(c.x)));
args.push_back(new ObjectConstCalcer(new DoubleImp(c.y)));
ObjectTypeCalcer *oc = new ObjectTypeCalcer(CursorPointType::instance(), args);
return oc;
}
const ObjectFactory *ObjectFactory::instance()
{
static ObjectFactory f;
return &f;
}
ObjectTypeCalcer *ObjectFactory::sensiblePointCalcer(const Coordinate &c, const KigDocument &d, const KigWidget &w) const
{
std::vector<ObjectHolder *> os = d.whatAmIOn(c, w);
if (os.size() == 2) {
// we can calc intersection point *only* between two objects...
std::vector<ObjectCalcer *> args;
int linecount = 0;
int coniccount = 0;
int circlecount = 0; // Note: a circle is a conic
// int cubiccount = 0; // not yet implemented
int lineid = -1;
int conicid = -1;
// int cubicid = -1;
for (int i = 0; i < 2; i++) {
if (os[i]->imp()->inherits(AbstractLineImp::stype())) {
linecount++;
lineid = i;
}
if (os[i]->imp()->inherits(ConicImp::stype())) {
coniccount++;
conicid = i;
}
if (os[i]->imp()->inherits(CircleImp::stype()))
circlecount++;
// if ( os[i]->imp()->inherits( CubicImp::stype() ) ) {cubiccount++; cubicid = i;}
}
if (linecount == 2) {
// the simplest case: two lines...
args.push_back(os[0]->calcer());
args.push_back(os[1]->calcer());
return new ObjectTypeCalcer(LineLineIntersectionType::instance(), args);
}
if (circlecount == 2 || (coniccount == 1 && linecount == 1)) {
// in this case there are generally two intersections, we need
// to check if one of these is already present, in which case
// we must use the "Other" variant of the intersection types
std::vector<ObjectCalcer *> points = d.findIntersectionPoints(os[0]->calcer(), os[1]->calcer());
std::vector<ObjectCalcer *> uniquepoints = removeDuplicatedPoints(points);
if (uniquepoints.size() == 1) {
bool doother = true;
std::vector<ObjectCalcer *> parents = uniquepoints[0]->parents();
if (parents.size() == 3) {
if ((parents[0] == os[0]->calcer() && parents[1] == os[1]->calcer()) || (parents[0] == os[1]->calcer() && parents[1] == os[0]->calcer())) {
if (parents[2]->imp()->inherits(IntImp::stype()))
doother = false; // we should test if the type is
// ConicLineIntersectionType or
// CircleCircleIntersectionType
}
}
if (doother) {
// in this case we construct an OtherIntersection
printf("*** trovata altra intersezione!\n");
if (circlecount == 2) {
args.push_back(os[0]->calcer());
args.push_back(os[1]->calcer());
args.push_back(uniquepoints[0]);
return new ObjectTypeCalcer(CircleCircleOtherIntersectionType::instance(), args);
} else {
args.push_back(os[conicid]->calcer());
args.push_back(os[lineid]->calcer());
args.push_back(uniquepoints[0]);
return new ObjectTypeCalcer(ConicLineOtherIntersectionType::instance(), args);
}
}
}
}
if (coniccount == 1 && linecount == 1) {
// conic-line intersection...
const ConicImp *conic = static_cast<const ConicImp *>(os[conicid]->imp());
const AbstractLineImp *line = static_cast<const AbstractLineImp *>(os[lineid]->imp());
// we have two intersections, select the nearest one
Coordinate p1, p2;
if (circlecount) // in this case we cannot use the ConicLine computation
{ // because "which" behaves differently when "calc"-ing
const CircleImp *c = static_cast<const CircleImp *>(conic);
p1 = calcCircleLineIntersect(c->center(), c->squareRadius(), line->data(), -1);
p2 = calcCircleLineIntersect(c->center(), c->squareRadius(), line->data(), 1);
} else {
p1 = calcConicLineIntersect(conic->cartesianData(), line->data(), 0.0, -1);
p2 = calcConicLineIntersect(conic->cartesianData(), line->data(), 0.0, 1);
}
int which = -1;
if ((p2 - c).length() < (p1 - c).length())
which = 1;
args.push_back(os[conicid]->calcer());
args.push_back(os[lineid]->calcer());
args.push_back(new ObjectConstCalcer(new IntImp(which)));
return new ObjectTypeCalcer(ConicLineIntersectionType::instance(), args);
}
if (circlecount == 2) {
// circle-circle intersection...
const CircleImp *c1 = static_cast<const CircleImp *>(os[0]->imp());
const CircleImp *c2 = static_cast<const CircleImp *>(os[1]->imp());
const Coordinate o1 = c1->center();
const Coordinate o2 = c2->center();
const double r1sq = c1->squareRadius();
const Coordinate a = calcCircleRadicalStartPoint(o1, o2, r1sq, c2->squareRadius());
const LineData lined = LineData(a, Coordinate(a.x - o2.y + o1.y, a.y + o2.x - o1.x));
Coordinate p1 = calcCircleLineIntersect(o1, r1sq, lined, -1);
Coordinate p2 = calcCircleLineIntersect(o1, r1sq, lined, 1);
int which = -1;
if ((p2 - c).length() < (p1 - c).length())
which = 1;
args.push_back(os[0]->calcer());
args.push_back(os[1]->calcer());
args.push_back(new ObjectConstCalcer(new IntImp(which)));
return new ObjectTypeCalcer(CircleCircleIntersectionType::instance(), args);
}
if (coniccount == 2) {
// conic-conic intersection...
const ConicImp *conic1 = static_cast<const ConicImp *>(os[0]->imp());
const ConicImp *conic2 = static_cast<const ConicImp *>(os[1]->imp());
bool valid;
double d1, d2, d3, d4;
Coordinate p1, p2, p3, p4;
d1 = d2 = d3 = d4 = std::numeric_limits<double>::max();
const LineData l1 =
calcConicRadical(static_cast<const ConicImp *>(conic1)->cartesianData(), static_cast<const ConicImp *>(conic2)->cartesianData(), -1, 1, valid);
if (valid) {
p1 = calcConicLineIntersect(conic1->cartesianData(), l1, 0.0, -1);
p2 = calcConicLineIntersect(conic1->cartesianData(), l1, 0.0, 1);
d1 = (p1 - c).length();
d2 = (p2 - c).length();
}
const LineData l2 =
calcConicRadical(static_cast<const ConicImp *>(conic1)->cartesianData(), static_cast<const ConicImp *>(conic2)->cartesianData(), 1, 1, valid);
if (valid) {
p3 = calcConicLineIntersect(conic1->cartesianData(), l2, 0.0, -1);
p4 = calcConicLineIntersect(conic1->cartesianData(), l2, 0.0, 1);
d3 = (p3 - c).length();
d4 = (p4 - c).length();
}
double d12 = fmin(d1, d2);
double d34 = fmin(d3, d4);
// test which is the right point, by now just choose p1
int whichline = -1;
if (d34 < d12) {
whichline = 1;
d1 = d3;
d2 = d4;
}
int whichpoint = -1;
if (d2 < d1)
whichpoint = 1;
args.push_back(os[0]->calcer());
args.push_back(os[1]->calcer());
args.push_back(new ObjectConstCalcer(new IntImp(whichline)));
args.push_back(new ObjectConstCalcer(new IntImp(1)));
ObjectTypeCalcer *radical = new ObjectTypeCalcer(ConicRadicalType::instance(), args);
radical->calc(d);
args.clear();
args.push_back(os[0]->calcer());
args.push_back(radical);
args.push_back(new ObjectConstCalcer(new IntImp(whichpoint)));
return new ObjectTypeCalcer(ConicLineIntersectionType::instance(), args);
}
// other cases will follow...
}
for (std::vector<ObjectHolder *>::iterator i = os.begin(); i != os.end(); ++i)
if ((*i)->imp()->inherits(CurveImp::stype()))
return constrainedPointCalcer((*i)->calcer(), c, d);
return fixedPointCalcer(c);
}
ObjectHolder *ObjectFactory::sensiblePoint(const Coordinate &c, const KigDocument &d, const KigWidget &w) const
{
return new ObjectHolder(sensiblePointCalcer(c, d, w));
}
ObjectTypeCalcer *ObjectFactory::relativePointCalcer(ObjectCalcer *o, const Coordinate &loc) const
{
Coordinate reference = static_cast<const ObjectImp *>(o->imp())->attachPoint();
assert(reference.valid());
double x = 0.0;
double y = 0.0;
if (loc.valid()) {
x = loc.x - reference.x;
y = loc.y - reference.y;
}
std::vector<ObjectCalcer *> parents;
parents.push_back(new ObjectConstCalcer(new DoubleImp(x)));
parents.push_back(new ObjectConstCalcer(new DoubleImp(y)));
parents.push_back(o);
return new ObjectTypeCalcer(RelativePointType::instance(), parents);
}
ObjectTypeCalcer *ObjectFactory::constrainedPointCalcer(ObjectCalcer *curve, double param) const
{
assert(curve->imp()->inherits(CurveImp::stype()));
std::vector<ObjectCalcer *> parents;
parents.push_back(new ObjectConstCalcer(new DoubleImp(param)));
parents.push_back(curve);
return new ObjectTypeCalcer(ConstrainedPointType::instance(), parents);
}
ObjectHolder *ObjectFactory::constrainedPoint(ObjectCalcer *curve, double param) const
{
return new ObjectHolder(constrainedPointCalcer(curve, param));
}
ObjectTypeCalcer *ObjectFactory::constrainedPointCalcer(ObjectCalcer *curve, const Coordinate &c, const KigDocument &d) const
{
assert(curve->imp()->inherits(CurveImp::stype()));
double param = static_cast<const CurveImp *>(curve->imp())->getParam(c, d);
return constrainedPointCalcer(curve, param);
}
ObjectHolder *ObjectFactory::constrainedPoint(ObjectCalcer *curve, const Coordinate &c, const KigDocument &d) const
{
return new ObjectHolder(constrainedPointCalcer(curve, c, d));
}
ObjectTypeCalcer *ObjectFactory::constrainedRelativePointCalcer(ObjectCalcer *curve, double param) const
{
assert(curve->imp()->inherits(CurveImp::stype()));
std::vector<ObjectCalcer *> parents;
parents.push_back(new ObjectConstCalcer(new DoubleImp(0.0)));
parents.push_back(new ObjectConstCalcer(new DoubleImp(0.0)));
parents.push_back(new ObjectConstCalcer(new DoubleImp(param)));
parents.push_back(curve);
return new ObjectTypeCalcer(ConstrainedRelativePointType::instance(), parents);
}
ObjectTypeCalcer *ObjectFactory::locusCalcer(ObjectCalcer *a, ObjectCalcer *b) const
{
assert(dynamic_cast<const ObjectTypeCalcer *>(a));
ObjectTypeCalcer *constrained = static_cast<ObjectTypeCalcer *>(a);
assert(constrained->type()->inherits(ObjectType::ID_ConstrainedPointType));
assert(constrained->parents().size() == 2);
ObjectCalcer *curve = a->parents().back();
const ObjectCalcer *moving = b;
std::vector<ObjectCalcer *> hierparents;
hierparents.push_back(constrained);
std::vector<ObjectCalcer *> sideOfTree = sideOfTreePath(hierparents, moving);
std::copy(sideOfTree.begin(), sideOfTree.end(), std::back_inserter(hierparents));
ObjectHierarchy hier(hierparents, moving);
std::vector<ObjectCalcer *> realparents(2 + sideOfTree.size(), nullptr);
realparents[0] = new ObjectConstCalcer(new HierarchyImp(hier));
realparents[1] = curve;
std::copy(sideOfTree.begin(), sideOfTree.end(), realparents.begin() + 2);
return new ObjectTypeCalcer(LocusType::instance(), realparents);
}
ObjectHolder *ObjectFactory::locus(ObjectCalcer *a, ObjectCalcer *b) const
{
return new ObjectHolder(locusCalcer(a, b));
}
ObjectHolder *
ObjectFactory::label(const QString &s, const Coordinate &loc, bool needframe, const std::vector<ObjectCalcer *> &parents, const KigDocument &doc) const
{
return new ObjectHolder(labelCalcer(s, loc, needframe, parents, doc));
}
ObjectTypeCalcer *
ObjectFactory::labelCalcer(const QString &s, const Coordinate &loc, bool needframe, const std::vector<ObjectCalcer *> &parents, const KigDocument &doc) const
{
return attachedLabelCalcer(s, nullptr, loc, needframe, parents, doc);
}
ObjectTypeCalcer *ObjectFactory::attachedLabelCalcer(const QString &s,
ObjectCalcer *p,
const Coordinate &loc,
bool needframe,
const std::vector<ObjectCalcer *> &nparents,
const KigDocument &doc) const
{
std::vector<ObjectCalcer *> parents;
parents.reserve(nparents.size() + 3);
parents.push_back(new ObjectConstCalcer(new IntImp(needframe ? 1 : 0)));
parents.push_back(getAttachPoint(p, loc, doc));
parents.push_back(new ObjectConstCalcer(new StringImp(s)));
std::copy(nparents.begin(), nparents.end(), std::back_inserter(parents));
ObjectTypeCalcer *ret = new ObjectTypeCalcer(TextType::instance(), parents);
ret->calc(doc);
return ret;
}
ObjectCalcer *ObjectFactory::getAttachPoint(ObjectCalcer *p, const Coordinate &loc, const KigDocument &doc) const
{
/*
* mp: (changes to add relative-attachment). Now an object is tested
* as follows:
* - if attachPoint() returns a valid coordinate, then we use the new method
* - if it is a point: 'old-style' treatment (we can change this shortly)
* - if it is a curve: use the new (nov 2009) ConstrainedRelativePoint
* similar to the RelativePoint
*
* the first condition that matches determines the behaviour.
* the new method works similarly to the curve case, but we generate a new
* RelativePointType instead of a ConstrainedPointType; this will in turn make use
* of the new attachPoint() method for objects.
*
* changed the preference order 2005/01/21 (now attachPoint has preference over points)
*
* NOTE: changes in the tests performed should be matched also in
* modes/popup.cc (addNameLabel) and in label.cc (TextLabelModeBase::mouseMoved)
*/
if (p && p->imp()->attachPoint().valid()) {
ObjectCalcer *o = relativePointCalcer(p, loc);
o->calc(doc);
return o;
} else if (p && p->imp()->inherits(PointImp::stype())) {
return p;
} else if (p && p->imp()->inherits(CurveImp::stype())) {
double param = 0.5;
if (loc.valid())
param = static_cast<const CurveImp *>(p->imp())->getParam(loc, doc);
ObjectCalcer *o = constrainedRelativePointCalcer(p, param);
o->calc(doc);
return o;
} else {
if (loc.valid())
return new ObjectConstCalcer(new PointImp(loc));
else
return new ObjectConstCalcer(new PointImp(Coordinate(0, 0)));
}
}
ObjectHolder *ObjectFactory::attachedLabel(const QString &s,
ObjectCalcer *locationparent,
const Coordinate &loc,
bool needframe,
const std::vector<ObjectCalcer *> &parents,
const KigDocument &doc) const
{
return new ObjectHolder(attachedLabelCalcer(s, locationparent, loc, needframe, parents, doc));
}
ObjectPropertyCalcer *ObjectFactory::propertyObjectCalcer(ObjectCalcer *o, const char *p) const
{
int wp = o->imp()->propertiesInternalNames().indexOf(p);
if (wp == -1)
return nullptr;
return new ObjectPropertyCalcer(o, p);
}
ObjectHolder *ObjectFactory::propertyObject(ObjectCalcer *o, const char *p) const
{
return new ObjectHolder(propertyObjectCalcer(o, p));
}
void ObjectFactory::redefinePoint(ObjectTypeCalcer *point, const Coordinate &c, KigDocument &doc, const KigWidget &w) const
{
std::vector<ObjectHolder *> hos = doc.whatAmIOn(c, w);
std::vector<ObjectCalcer *> os;
ObjectCalcer *(ObjectHolder::*calcmeth)() = &ObjectHolder::calcer;
std::transform(hos.begin(), hos.end(), std::back_inserter(os), std::mem_fn(calcmeth));
ObjectCalcer *v = nullptr;
// we don't want one of our children as a parent...
std::set<ObjectCalcer *> children = getAllChildren(point);
for (std::vector<ObjectCalcer *>::iterator i = os.begin(); i != os.end(); ++i)
if ((*i)->imp()->inherits(CurveImp::stype()) && children.find(*i) == children.end()) {
v = *i;
break;
};
if (v) {
// we want a constrained point...
const CurveImp *curveimp = static_cast<const CurveImp *>(v->imp());
double newparam = curveimp->getParam(c, doc);
if (point->type()->inherits(ObjectType::ID_ConstrainedPointType)) {
// point already was constrained -> simply update the param
// DataObject and make sure point is on the right curve...
ObjectCalcer *dataobj = nullptr;
std::vector<ObjectCalcer *> parents = point->parents();
assert(parents.size() == 2);
assert(parents[0]->imp()->inherits(DoubleImp::stype()));
dataobj = parents[0];
parents.clear();
parents.push_back(dataobj);
parents.push_back(v);
point->setParents(parents);
assert(dynamic_cast<ObjectConstCalcer *>(dataobj));
static_cast<ObjectConstCalcer *>(dataobj)->setImp(new DoubleImp(newparam));
} else {
// point used to be fixed -> add a new DataObject etc.
std::vector<ObjectCalcer *> args;
args.push_back(new ObjectConstCalcer(new DoubleImp(newparam)));
args.push_back(v);
point->setType(ConstrainedPointType::instance());
point->setParents(args);
}
} else {
// a fixed point...
if (point->type()->inherits(ObjectType::ID_ConstrainedPointType)) {
// point used to be constrained..
std::vector<ObjectCalcer *> a;
a.push_back(new ObjectConstCalcer(new DoubleImp(c.x)));
a.push_back(new ObjectConstCalcer(new DoubleImp(c.y)));
point->setType(FixedPointType::instance());
point->setParents(a);
} else {
// point used to be fixed -> simply update the DataObject's
// we can use the point's move function for that..
point->move(c, doc);
};
}
}
|