1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
from math import sqrt
import math
import logging
import pdb
import traceback
import sys
from scipy.special import erfc
import scipy.stats.mstats as mstats
import scipy.stats as s
import numpy as np
from kineticsTools.MixtureEstimationMethods import MixtureEstimationMethods
from kineticsTools.MultiSiteCommon import MultiSiteCommon, canonicalBaseMap, modNames, ModificationPeakMask, FRAC, FRAClow, FRACup, log10e
from kineticsTools.MultiSiteDetection import *
from kineticsTools.MedakaLdaEnricher import MedakaLdaEnricher
from kineticsTools.BasicLdaEnricher import BasicLdaEnricher
#from kineticsTools.PositiveControlEnricher import PositiveControlEnricher
from kineticsTools.ModificationDecode import ModificationDecode, ModificationPeakMask
from kineticsTools.WorkerProcess import WorkerProcess
# Raw ipd record
ipdRec = [('tpl', '<u4'), ('strand', '<i8'), ('ipd', '<f4')]
def _tTest(x, y, exclude=95):
"""Compute a one-sided Welsh t-statistic."""
with np.errstate(all="ignore"):
def cappedSlog(v):
q = np.percentile(v, exclude)
v2 = v.copy()
v2 = v2[~np.isnan(v2)]
v2[v2 > q] = q
v2[v2 <= 0] = 1. / (75 + 1)
return np.log(v2)
x1 = cappedSlog(x)
x2 = cappedSlog(y)
sx1 = np.var(x1) / len(x1)
sx2 = np.var(x2) / len(x2)
totalSE = np.sqrt(sx1 + sx2)
if totalSE == 0:
stat = 0
else:
stat = (np.mean(x1) - np.mean(x2)) / totalSE
#df = (sx1 + sx2)**2 / (sx1**2/(len(x1)-1) + sx2**2/(len(x2) - 1))
#pval = 1 - scidist.t.cdf(stat, df)
# Scipy's t distribution CDF implementaton has inadequate
# precision. We have switched to the normal distribution for
# better behaved p values.
pval = 0.5 * erfc(stat / sqrt(2))
return {'testStatistic': stat, 'pvalue': pval}
class KineticWorkerProcess(WorkerProcess):
"""
Manages the summarization of pulse features over a single reference
"""
def __init__(self,
options,
workQueue,
resultsQueue,
ipdModel,
sharedAlignmentSet=None):
WorkerProcess.__init__(self, options, workQueue,
resultsQueue, sharedAlignmentSet)
self.ipdModel = ipdModel
self.debug = False
def _prepForReferenceWindow(self, referenceWindow):
""" Set up member variable to call modifications on a window. """
start = referenceWindow.start
end = referenceWindow.end
# FIXME some inconsistency in how reference info is retrieved -
# DataSet API uses Name, ipdModel.py uses ID
self.refId = referenceWindow.refId
self.refName = referenceWindow.refName
refInfoTable = self.caseAlignments.referenceInfo(self.refName)
# Each chunk is from a single reference -- fire up meanIpd func on the
# current reference
self.meanIpdFunc = self.ipdModel.predictIpdFunc(self.refId)
self.manyManyIpdFunc = self.ipdModel.predictManyIpdFunc(self.refId)
# Get the cognate base at a given position
self.cognateBaseFunc = self.ipdModel.cognateBaseFunc(self.refId)
# Padding needed for multi-site models
self.pad = self.ipdModel.gbmModel.pre + self.ipdModel.gbmModel.post + 1
# Sequence we work over
self.sequence = self.ipdModel.getReferenceWindow(
self.refId, 0, start, end)
def onChunk(self, referenceWindow):
# Setup the object for a new window.
self._prepForReferenceWindow(referenceWindow)
# start and end are the windows of the reference that we are responsible for reporting data from.
# We may elect to pull data from a wider window for use with positive
# control
start = referenceWindow.start
end = referenceWindow.end
# Trim end coordinate to length of current template
end = min(end, self.ipdModel.refLength(self.refId))
if self.options.identify:
# If we are attempting to identify modifications, get the raw data for a slightly expanded window
# then do the decoding, then weave the modification results back
# into the main results
padStart = start - self.pad
padEnd = end + self.pad
perSiteResults = self._summarizeReferenceRegion(
(padStart, padEnd), self.options.methylFraction, self.options.identify)
if self.options.useLDA:
# FIXME: add on a column "Ca5C" containing LDA score for each C-residue site
# Below is an example of how to use an alternative, the BasicLdaEnricher, which does not use the positive control model
# PositiveControlEnricher currently uses a logistic regression
# model trained using SMRTportal job 65203 (native E. coli)
lda = MedakaLdaEnricher(
self.ipdModel.gbmModel, self.sequence, perSiteResults, self.options.m5Cclassifier)
# lda = BasicLdaEnricher( self.ipdModel.gbmModel, self.sequence, perSiteResults, self.options.identify, self.options.modsToCall )
# lda = PositiveControlEnricher(self.ipdModel.gbmModel, self.sequence, perSiteResults)
perSiteResults = lda.callEnricherFunction(perSiteResults)
try:
# Handle different modes of 'extra analysis' here -- this one is for multi-site m5C detection
# mods = self._multiSiteDetection(perSiteResults, (start, end))
mods = self._decodePositiveControl(
perSiteResults, (start, end))
except BaseException:
type, value, tb = sys.exc_info()
traceback.print_exc()
pdb.post_mortem(tb)
finalCalls = []
# Weave together results
for strand in [0, 1]:
strandSign = 1 if strand == 0 else -1
siteDict = dict((x['tpl'], x) for x in perSiteResults if start <=
x['tpl'] < end and x['strand'] == strand)
modDict = dict((x['tpl'], x) for x in mods if start <=
x['tpl'] < end and x['strand'] == strand)
# Go through the modifications - add tags for identified mods to per-site stats
# add a 'offTarget' tag to the off target peaks.
for (pos, mod) in modDict.items():
# Only convert to positive control call if we actually have enough
# coverage on the cognate base!
if mod['tpl'] in siteDict:
# Copy mod identification data
siteDict[mod['tpl']]['modificationScore'] = mod['QMod']
siteDict[mod['tpl']
]['modification'] = mod['modification']
if self.options.methylFraction and FRAC in mod:
siteDict[mod['tpl']][FRAC] = mod[FRAC]
siteDict[mod['tpl']][FRAClow] = mod[FRAClow]
siteDict[mod['tpl']][FRACup] = mod[FRACup]
# Copy any extra properties that were added
newKeys = set(mod.keys()) - \
set(siteDict[mod['tpl']].keys())
for nk in newKeys:
siteDict[mod['tpl']][nk] = mod[nk]
if 'Mask' in mod:
# The decoder should supply the off-target peak mask
mask = mod['Mask']
# make sure we always mask the cognate position
mask.append(0)
else:
# If the decoder doesn't supply a mask - use a hard-coded version
# FIXME - this branch is deprecated
mask = ModificationPeakMask[mod['modification']]
# Mask out neighbor peaks that may have been caused by this
# mod
for offset in mask:
shadowPos = mod['tpl'] + strandSign * offset
if shadowPos in siteDict:
siteDict[shadowPos]['offTargetPeak'] = True
finalCalls.extend(siteDict.values())
# Sort by template position
finalCalls.sort(key=lambda x: x['tpl'])
return finalCalls
else:
result = self._summarizeReferenceRegion(
(start, end), self.options.methylFraction, self.options.identify)
if self.options.useLDA and self.controlAlignments is None:
# FIXME: add on a column "Ca5C" containing LDA score for each
# C-residue site
lda = MedakaLdaEnricher(
self.ipdModel.gbmModel, self.sequence, result, self.options.m5Cclassifier)
# lda = BasicLdaEnricher(self.ipdModel.gbmModel, self.sequence, result, self.options.identify)
# lda = PositiveControlEnricher(self.ipdModel.gbmModel, self.sequence, result)
results = lda.callEnricherFunction(result)
result.sort(key=lambda x: x['tpl'])
return result
def _summarizeReferenceRegion(
self, targetBounds, methylFractionFlag, identifyFlag):
"""Compute the ipd stats for a chunk of the reference"""
(start, end) = targetBounds
logging.info('Making summary: %d to %d' % (start, end))
caseReferenceGroupId = self.caseAlignments.referenceInfo(
self.refName).Name
(caseChunks, capValue) = self._fetchChunks(
caseReferenceGroupId, targetBounds, self.caseAlignments)
if self.controlAlignments is None:
# in silico control workflow -- only get data from the main 'case'
# alignments
goodSites = [x for x in caseChunks if x['data']['ipd'].size > 2]
# Flip the strand, and make predictions for the whole chunk
predictions = self.manyManyIpdFunc(
[(x['tpl'], 1 - x['strand']) for x in goodSites])
goodSitesWithPred = zip(goodSites, predictions)
return [self._computePositionSyntheticControl(
x, capValue, methylFractionFlag, identifyFlag, prediction.item()) for (x, prediction) in goodSitesWithPred]
else:
# case/control workflow -- get data from the case and control files
# and compare
result = []
contigName = self.caseAlignments.referenceInfo(
self.refName).FullName
controlRefTable = self.controlAlignments.referenceInfoTable
# Make sure this RefId contains a refGroup in the control alignments file
# if self.refId in self.controlAlignments.referenceInfoTable.Name:
# if self.refId in [ int( str.split('ref')[1] ) for str in
# self.controlAlignments.referenceInfoTable.Name ]:
if contigName in controlRefTable.FullName:
controlRefRow = controlRefTable[controlRefTable['FullName']
== contigName][0]
(controlChunks, controlCapValue) = self._fetchChunks(
controlRefRow.ID, targetBounds, self.controlAlignments)
controlSites = {(x['strand'], x['tpl']): x for x in controlChunks}
for caseChunk in caseChunks:
# try:
# FIXME: catch None or the exception.
caseKey = (caseChunk['strand'], caseChunk['tpl'])
controlChunk = controlSites.get(
caseKey) # , default = None)
if controlChunk and \
caseChunk['data']['ipd'].size > 2 and \
controlChunk['data']['ipd'].size > 2:
result.append(self._computePositionTraditionalControl(
caseChunk, controlChunk, capValue, controlCapValue, methylFractionFlag, identifyFlag))
# except:
# pass
return result
def _decodePositiveControl(self, kinetics, bounds):
"""Compute the ipd stats for a chunk of the reference"""
(kinStart, kinEnd) = bounds
callBounds = (self.pad, kinEnd - kinStart + self.pad)
chunkFwd = dict((x['tpl'], x) for x in kinetics if x['strand']
== 0 and x['coverage'] > self.options.identifyMinCov)
chunkRev = dict((x['tpl'], x) for x in kinetics if x['strand']
== 1 and x['coverage'] > self.options.identifyMinCov)
modCalls = []
# Fwd sequence window
canonicalSequence = self.ipdModel.getReferenceWindow(
self.refId, 0, kinStart - self.pad, kinEnd + self.pad)
# Map the raw kinetics into the frame-of reference of our sequence
# snippets
def toRef(p):
return p - (kinStart - self.pad)
def fromRef(r):
return r + (kinStart - self.pad)
mappedChunk = dict((toRef(pos), k) for (pos, k) in chunkFwd.items())
# Decode the modifications
decoder = ModificationDecode(self.ipdModel.gbmModel, canonicalSequence, mappedChunk, callBounds,
self.options.methylMinCov, self.options.modsToCall, self.options.methylFraction, self.options.useLDA)
# Map the modification positions back to normal template indices
for (r, mod) in decoder.decode().items():
mod["strand"] = 0
mod['tpl'] = fromRef(r)
modCalls.append(mod)
# Repeat decoding on reverse sequence
# Reverse sequence
canonicalSequence = self.ipdModel.getReferenceWindow(
self.refId, 1, kinStart - self.pad, kinEnd + self.pad)
# Map the raw kinetics into the frame-of reference of our sequence
# snippets
def toRefRev(p):
return len(canonicalSequence) - p + (kinStart - self.pad)
def fromRefRev(r):
return len(canonicalSequence) - r + (kinStart - self.pad)
mappedChunk = dict((toRefRev(pos), k) for (pos, k) in chunkRev.items())
decoder = ModificationDecode(self.ipdModel.gbmModel, canonicalSequence, mappedChunk, callBounds,
self.options.methylMinCov, self.options.modsToCall, self.options.methylFraction, self.options.useLDA)
for (r, mod) in decoder.decode().items():
mod["strand"] = 1
mod['tpl'] = fromRefRev(r)
modCalls.append(mod)
return modCalls
def _multiSiteDetection(self, kinetics, bounds):
"""Compute the ipd stats for a chunk of the reference"""
(kinStart, kinEnd) = bounds
callBounds = (self.pad, kinEnd - kinStart + self.pad)
chunkFwd = dict((x['tpl'], x) for x in kinetics if x['strand']
== 0 and x['coverage'] > self.options.identifyMinCov)
chunkRev = dict((x['tpl'], x) for x in kinetics if x['strand']
== 1 and x['coverage'] > self.options.identifyMinCov)
modCalls = []
# Fwd sequence window
canonicalSequence = self.ipdModel.getReferenceWindow(
self.refId, 0, kinStart - self.pad, kinEnd + self.pad)
# Map the raw kinetics into the frame-of reference of our sequence
# snippets
def toRef(p):
return p - (kinStart - self.pad)
def fromRef(r):
return r + (kinStart - self.pad)
mappedChunk = dict((toRef(pos), k) for (pos, k) in chunkFwd.items())
# Decode the modifications
decoder = MultiSiteDetection(
self.ipdModel.gbmModel, canonicalSequence, mappedChunk, callBounds, self.options.methylMinCov)
# Map the modification positions back to normal template indices
for (r, mod) in decoder.decode().items():
mod["strand"] = 0
mod['tpl'] = fromRef(r)
modCalls.append(mod)
# Repeat decoding on reverse sequence
# Reverse sequence
canonicalSequence = self.ipdModel.getReferenceWindow(
self.refId, 1, kinStart - self.pad, kinEnd + self.pad)
# Map the raw kinetics into the frame-of reference of our sequence
# snippets
def toRefRef(p):
return len(canonicalSequence) - p + (kinStart - self.pad)
def fromRefRev(r):
return len(canonicalSequence) - r + (kinStart - self.pad)
mappedChunk = dict((toRefRef(pos), k) for (pos, k) in chunkRev.items())
decoder = MultiSiteDetection(
self.ipdModel.gbmModel, canonicalSequence, mappedChunk, callBounds, self.options.methylMinCov)
for (r, mod) in decoder.decode().items():
mod["strand"] = 1
mod['tpl'] = fromRefRev(r)
modCalls.append(mod)
return modCalls
def _fetchChunks(self, refGroupId, targetBounds, alignmentFile):
"""Get the IPDs for each position/strand on the given reference in the given window, from the given alignment file"""
(start, end) = targetBounds
# Take <= N alignments overlapping window with
# - mapQV >= threshold,
# - identity >= 0.82
# (the N are randomly chosen if there are more)
# N = self.options.maxAlignments, default=1500
MIN_IDENTITY = 0.0 # identity filter was broken
# previously. leaving "off" for now for
# bw compat
MIN_READLENGTH = 50
hits = [hit for hit in alignmentFile.readsInRange(refGroupId,
max(start, 0), end)
if ((hit.mapQV >= self.options.mapQvThreshold) and
(hit.identity >= MIN_IDENTITY) and
(hit.readLength >= MIN_READLENGTH))]
logging.info("Retrieved %d hits" % len(hits))
if len(hits) > self.options.maxAlignments:
# XXX a bit of a hack - to ensure deterministic behavior when
# running in parallel, re-seed the RNG before each call
if self.options.randomSeed is None:
np.random.seed(len(hits))
hits = np.random.choice(
hits, size=self.options.maxAlignments, replace=False)
# FIXME -- we are dealing with the IPD format change from seconds to
# frames here
factor = 1.0 / alignmentFile.readGroupTable[0].FrameRate
# Should be handled in pbcore
# for alnFile in alignmentFile.resourceReaders():
# ver = alnFile.version[0:3]
# if ver == '1.2':
# factor = 1.0
# else:
# # NOTE -- assuming that all movies have the same frame rate!
# fr = alignmentFile.readGroupTable[0].FrameRate
# factor = 1.0 / fr
# break
rawIpds = self._loadRawIpds(hits, start, end, factor)
ipdVect = rawIpds['ipd']
if ipdVect.size < 10:
# Default is there is no coverage
capValue = 5.0
else:
# Compute IPD quantiles on the current block -- will be used for
# trimming extreme IPDs
capValue = np.percentile(ipdVect, self.options.cap_percentile)
chunks = self._chunkRawIpds(rawIpds)
return chunks, capValue
def _loadRawIpds(self, alnHitIter, targetStart=-
1, targetEnd=3e12, factor=1.0):
"""
Get a DataFrame of the raw ipds in the give alignment hits, indexed by template position and strand.
Factor is a normalization factor to the get units into seconds.
"""
# Put in an empty 'starter' array -- the np.concatenate call below will
# fail on an empty list
array0 = np.zeros(0, dtype=ipdRec)
# Maintain separate lists for each strand to speed up sorting
s0list = [array0]
s1list = [array0]
for aln in alnHitIter:
# Pull out error-free position
matched = np.logical_and(np.array(
[x != '-' for x in aln.read()]), np.array([x != '-' for x in aln.reference()]))
# Normalize kinetics of the entire subread
rawIpd = aln.IPD() * factor
np.logical_and(np.logical_not(np.isnan(rawIpd)),
matched, out=matched)
normalization = self._subreadNormalizationFactor(rawIpd[matched])
rawIpd /= normalization
# Trim down to just the position that cover our interval
referencePositions = aln.referencePositions()
np.logical_and(referencePositions < targetEnd, matched, matched)
np.logical_and(referencePositions >= targetStart, matched, matched)
nm = matched.sum()
# Bail out if we don't have any samples
if nm == 0:
continue
ipd = rawIpd[matched]
tpl = referencePositions[matched]
dfTemp = np.zeros(nm, dtype=ipdRec)
dfTemp['ipd'] = ipd
dfTemp['tpl'] = tpl
dfTemp['strand'] = aln.isReverseStrand
if aln.isForwardStrand:
s0list.append(dfTemp)
else:
s1list.append(dfTemp)
# Sort the set of ipd observations
s0Ipds = np.concatenate(s0list)
sortOrder = np.argsort(s0Ipds['tpl'])
s0Ipds = s0Ipds[sortOrder]
s1Ipds = np.concatenate(s1list)
sortOrder = np.argsort(s1Ipds['tpl'])
s1Ipds = s1Ipds[sortOrder]
return np.concatenate([s0Ipds, s1Ipds])
def _chunkRawIpds(self, rawIpds):
"""
Return a list of view recarrays into the rawIpds recarray, one for each unique (tpl, stand) level
"""
views = []
# Bail out if we have no data
if rawIpds.size == 0:
return views
start = 0
tpl = rawIpds['tpl']
strand = rawIpds['strand']
# Start off at the first chunk
curIdx = (tpl[0], strand[0])
for i in range(1, rawIpds.shape[0]):
newIdx = (tpl[i], strand[i])
# In this case we are still int he same chunk -- continue
if curIdx == newIdx:
continue
# In this case we have completed the chunk -- emit the chunk
else:
obj = {'tpl': curIdx[0], 'strand': curIdx[1],
'data': rawIpds[start:i]}
views.append(obj)
start = i
curIdx = newIdx
# Make sure to return final chunk
obj = {'tpl': curIdx[0], 'strand': curIdx[1], 'data': rawIpds[start:]}
views.append(obj)
# If the user has specified a maximum coverage level to use, enforce it
# here -- just take the first n reads
if self.options.maxCoverage is not None:
maxCov = self.options.maxCoverage
for x in views:
d = x['data']
d = d[0:maxCov]
x['data'] = d
return views
def _subreadNormalizationFactor(self, rawIpds):
"""
Normalize subread ipds
"""
# Default normalization factor -- this value should very rarely get
# used
if rawIpds.size < 2:
return 0.1
if np.isnan(rawIpds).any():
print("got nan: %s" % str(rawIpds))
if rawIpds.mean() < 0.0001:
print("small")
print("got small: %s" % str(rawIpds))
capValue = min(10, np.percentile(rawIpds, 99))
capIpds = np.minimum(rawIpds, capValue)
return capIpds.mean()
def computeObservationPValue(self, siteObs):
"""
Compute a p-value on the observation of a kinetic event
"""
# p-value of detection -- FIXME needs much more thought here!
# p-value computation (slightly robustified Gaussian model)
# emf - rms fractional error of background model
# em - rms error of background model = um * emf
# um - predicted mean of unmodified ipd from model
# uo - (trimmed) observed mean ipd
# eo - (trimmed) standard error of observed mean (std / sqrt(coverage))
# Null model is ~N(um, em^2 + eo^2)
# Then compute standard gaussian p-value = erfc((uo-um) / sqrt(2 * (em^2 + eo^2))) / 2
# FIXME? -- right now we only detect the case where the ipd gets
# longer.
um = siteObs['modelPrediction']
# FIXME -- pipe through model error
em = 0.1 * um
# em = model.fractionalModelError * em
uo = siteObs['tMean']
eo = siteObs['tErr']
pvalue = erfc((uo - um) / sqrt(2 * (em ** 2 + eo ** 2))) / 2
return pvalue.item()
def computeObservationTstatistic(self, siteObs):
"""
Compute a p-value on the observation of a kinetic event
"""
# p-value of detection -- FIXME needs much more thought here!
# p-value computation (slightly robustified Gaussian model)
# emf - rms fractional error of background model
# em - rms error of background model = um * emf
# um - predicted mean of unmodified ipd from model
# uo - (trimmed) observed mean ipd
# eo - (trimmed) standard error of observed mean (std / sqrt(coverage))
# Null model is ~N(um, em^2 + eo^2)
# Then compute standard gaussian p-value = erfc((uo-um) / sqrt(2 * (em^2 + eo^2))) / 2
# FIXME? -- right now we only detect the case where the ipd gets
# longer.
um = siteObs['modelPrediction']
# FIXME -- pipe through model error
#em = 0.06 * um + 0.12 * um**2.0
em = 0.01 + 0.03 * um + 0.06 * um ** (1.7)
# em = model.fractionalModelError * em
uo = siteObs['tMean']
eo = siteObs['tErr']
import scipy.stats as s
t = -(uo - um) / sqrt(em ** 2 + eo ** 2)
return t
def computeObservationPValueTTest(self, siteObs):
t = siteObs['tStatistic']
df = max(1, siteObs['coverage'] - 1)
pvalue = s.t._cdf(t, df)
return pvalue.item()
def _computePositionSyntheticControl(
self, caseObservations, capValue, methylFractionFlag, identifyFlag, modelPrediction=None):
"""Summarize the observed ipds at one template position/strand, using the synthetic ipd model"""
# Compute stats on the observed ipds
d = caseObservations['data']['ipd']
res = dict()
# ref00000x name
res['refId'] = self.refId
# FASTA header name
res['refName'] = self.refName
# NOTE -- this is where the strand flipping occurs -- make sure to
# reproduce this in the all calling methods
strand = res['strand'] = 1 - caseObservations['strand']
tpl = res['tpl'] = caseObservations['tpl']
res['coverage'] = d.size
# Don't compute these stats - they just take time and confuse things
# res['mean'] = d.mean().item()
# res['median'] = np.median(d).item()
# res['std'] = np.std(d).item()
# Compute the predicted IPD from the model
# NOTE! The ipd model is in the observed read strand
if modelPrediction is None:
modelPrediction = self.meanIpdFunc(tpl, strand).item()
res['modelPrediction'] = modelPrediction
res['base'] = self.cognateBaseFunc(tpl, strand)
# Store in case of methylated fraction estimtion:
res['rawData'] = d
# Try a hybrid capping approach -- cap at the higher of
# - 5x the model prediction
# - 90th percentile of the local data (at low coverage we pick a lower percentile to ensure we trim the highest datapoint
# - global cap value
percentile = min(90, (1.0 - 1.0 / (d.size - 1)) * 100)
localPercentile = np.percentile(d, percentile)
capValue = max(capValue, 4.0 * modelPrediction, localPercentile)
# np.minimum(d, capValue, out=d) # this version will send capped IPDs
# to modified fraction estimator
d = np.minimum(d, capValue)
# Trimmed stats
res['tMean'] = d.mean().item()
res['tErr'] = np.std(d).item() / sqrt(d.size)
ipdRatio = res['tMean'] / res['modelPrediction']
if not np.isnan(ipdRatio):
res['ipdRatio'] = ipdRatio
else:
res['ipdRatio'] = 1.0
# Don't know the modification yet
res["modification"] = "."
# use ttest-based pvalue
# res['pvalue'] = self.computeObservationPValue(res)
res['tStatistic'] = self.computeObservationTstatistic(res)
res['pvalue'] = self.computeObservationPValueTTest(res)
pvalue = max(sys.float_info.min, res['pvalue'])
score = round(-10.0 * math.log10(pvalue))
res['score'] = score
# If the methylFractionFlag is set, then estimate fraction using just
# modelPrediction in the detection case.
if methylFractionFlag and pvalue < self.options.pvalue and not identifyFlag:
if res['coverage'] > self.options.methylMinCov:
modelPrediction = self.meanIpdFunc(tpl, strand).item()
# Instantiate mixture estimation methods:
mixture = MixtureEstimationMethods(
self.ipdModel.gbmModel.post, self.ipdModel.gbmModel.pre, res, self.options.methylMinCov)
x = mixture.detectionMixModelBootstrap(modelPrediction, d)
# x = self.detectionMixModelBootstrap(modelPrediction, d)
res[FRAC] = x[0]
res[FRAClow] = x[1]
res[FRACup] = x[2]
else:
res[FRAC] = np.nan
res[FRACup] = np.nan
res[FRAClow] = np.nan
# print res
return res
##
# Null simulation. the test below assumes that IPDs are normal after
# capping and logging. FIXME: permutation based
##
# def sim(N=100):
# return [ _tTest(np.exp(x1),np.exp(x2), 100)['pvalue'] for x1,x2 in
# zip([ np.random.normal(size=100) for g in range(0, N)],
# [ np.random.normal(size=100) for g in range(0, N) ] )]
#
## _tTest(np.exp(np.random.normal(1.5, size = 100)), np.exp(np.random.normal(1., size = 100)))
##
def _computePositionTraditionalControl(self, caseObservations, controlObservations,
capValue, controlCapValue, methylFractionFlag, identifyFlag, testProcedure=_tTest):
oCapValue = capValue
oControlCapValue = controlCapValue
"""Summarize the observed ipds at one template position/strand, using a case-control analysis"""
# Compute stats on the observed ipds
caseData = caseObservations['data']['ipd']
controlData = controlObservations['data']['ipd']
# cap both the native and control data, more or less as it is done in
# computePositionSyntheticControl:
percentile = min(90, (1.0 - 1.0 / (caseData.size - 1)) * 100)
localPercentile = np.percentile(caseData, percentile)
capValue = max(capValue, 4.0 *
np.median(caseData).item(), localPercentile)
caseData = np.minimum(caseData, capValue)
percentile = min(90, (1.0 - 1.0 / (controlData.size - 1)) * 100)
localPercentile = np.percentile(controlData, percentile)
controlCapValue = max(controlCapValue, 4.0 *
np.median(controlData).item(), localPercentile)
controlData = np.minimum(controlData, controlCapValue)
res = dict()
res['refId'] = self.refId
# FASTA header name
res['refName'] = self.refName
strand = res['strand'] = 1 - caseObservations['strand']
tpl = res['tpl'] = caseObservations['tpl']
res['base'] = self.cognateBaseFunc(tpl, strand)
# need a coverage annotation
res['coverage'] = int(round((caseData.size + controlData.size) / 2.0))
res['caseCoverage'] = caseData.size
res['controlCoverage'] = controlData.size
res['caseMean'] = caseData.mean().item()
res['caseMedian'] = np.median(caseData).item()
res['caseStd'] = np.std(caseData).item()
res['controlMean'] = controlData.mean().item()
res['controlMedian'] = np.median(controlData).item()
res['controlStd'] = np.std(controlData).item()
trim = (0.001, 0.03)
ctrlMean = mstats.trimmed_mean(controlData, trim).item()
if abs(ctrlMean) > 1e-3:
res['ipdRatio'] = (mstats.trimmed_mean(
caseData, trim).item() / ctrlMean)
else:
res['ipdRatio'] = 1.0
testResults = testProcedure(caseData, controlData)
res['testStatistic'] = testResults['testStatistic']
res['pvalue'] = testResults['pvalue']
# res['testStatistic'] = ( res['caseMedian'] - res['controlMedian'] ) / sqrt( res['caseStd']**2 + res['controlStd']**2 )
# res['pvalue'] = 0.5 * erfc(res['testStatistic'] / sqrt(2))
pvalue = max(sys.float_info.min, res['pvalue'])
res['score'] = round(-10.0 * math.log10(pvalue))
# print res
# If the methylFractionFlag is set, then estimate fraction using just
# modelPrediction in the detection case.
if methylFractionFlag and pvalue < self.options.pvalue and not identifyFlag:
if res['controlCoverage'] > self.options.methylMinCov and res['caseCoverage'] > self.options.methylMinCov:
# Instantiate mixture estimation methods:
mixture = MixtureEstimationMethods(
self.ipdModel.gbmModel.post, self.ipdModel.gbmModel.pre, res, self.options.methylMinCov)
x = mixture.detectionMixModelBootstrap(
res['controlMean'], caseData)
res[FRAC] = x[0]
res[FRAClow] = x[1]
res[FRACup] = x[2]
else:
res[FRAC] = np.nan
res[FRACup] = np.nan
res[FRAClow] = np.nan
return res
|