1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
from math import sqrt
import math
import scipy.stats as s
import array as a
from scipy.optimize import fminbound
from numpy import log, pi, log10, e, log1p, exp
import numpy as np
import traceback
log10e = log10(e)
# canonicalBaseMap = { 'A': 'A', 'C':'C', 'G':'G', 'T':'T', 'H':'A', 'I':'C', 'J':'C', 'K':'C' }
# modNames = { 'H':'m6A', 'I':'m5C', 'J':'m4C', 'K':'m5C' }
# ModificationPeakMask = { 'm6A' : [0, -5], 'm4C': [0, -5], 'm5C': [2, 0, -1, -2, -4, -5, -6] }
# Labels for modified fraction:
# FRAC = 'frac'
# FRAClow = 'fracLow'
# FRACup = 'fracUp'
# Try computing these only once
k1 = s.norm.ppf(0.025)
k2 = s.norm.ppf(0.975)
class MixtureEstimationMethods(object):
def __init__(self, gbmModelPost, gbmModelPre, rawKinetics, methylMinCov):
"""
All indexes are 0-based into the the sequence.
find a set of sites that _might_ have a modification - each modification type will include a list of
'neighbor peaks' that can add the current site to the 'options' list.
6mA and 4mC will use only the on-target peak
5caC will use on target, -2 and -6.
Only hits that make this list will be tested in the mod identification process
Use the viterbi algorithm to find the optimal modifications to include, by measuring the per-site likelihood
of the observed IPD, given the underlying sequence and methylation states.
"""
self.methylMinCov = methylMinCov
# Temporary:
# self.useLDA = useLDAFlag
# self.modsToCall = modsToCall
# self.methylFractionFlag = methylFractionFlag
# log1p = math.log(0.05)
# self.modPriors = { 'H': log1p, 'I': log1p, 'J': log1p, 'K': log1p }
# self.gbmModel = gbmModel
# self.sequence = sequence
# self.callStart = callBounds[0]
# self.callEnd = callBounds[1]
# Extents that we will attemp to call a modification
# self.callRange = range(self.callStart, self.callEnd)
# These switch because we changing viewpoints
self.pre = gbmModelPost
self.post = gbmModelPre
# self.lStart = self.pre
# self.lEnd = len(self.sequence) - self.post
# Extents that we will use for likelihoods
# self.likelihoodRange = range(self.lStart, self.lEnd)
# self.alternateBases = dict((x, set(sequence[x])) for x in range(len(sequence)))
self.rawKinetics = rawKinetics
# Return value of mixture model log likelihood function
def mixModelFn(self, p, a0, a1):
tmp = (1 - p) * a0 + p * a1
return -np.log(tmp[np.nonzero(tmp)]).sum()
# return -np.ma.log( tmp ).sum()
# Try to speed up calculation by avoiding a call to scipy.stats.norm.pdf()
def replaceScipyNormPdf(self, data, mu):
return np.exp(-np.divide(data, mu)) / mu
# tmp = np.divide(data, mu)
# return np.exp(np.subtract(tmp, np.power(tmp, 2) / 2.0)) / mu
# pdf for normal distribution: res = res / sqrt( 2 * pi ) (can factor
# out sqrt(2 * pi))
# Return optimum argument (mixing proportion) of mixture model log
# likelihood function.
def estimateSingleFraction(self, mu1, data, mu0, L, optProp=True):
# NOTE: ignoring the warnings here is sloppy, should be looked
# at later.
with np.errstate(all="ignore"):
a0 = self.replaceScipyNormPdf(data, mu0)
a1 = self.replaceScipyNormPdf(data, mu1)
# if f'(0) < 0 (equ. a1/a0 < L), then f'(1) < 0 as well and
# solution p-hat <= 0
if np.divide(a1, a0).sum() <= L:
res = 0.0
# if f'(1) > 0 (equ. a0/a1 < L), then f'(0) > 0 as well and
# solution p-hat >= 1
elif np.divide(a0, a1).sum() <= L:
res = 1.0
else:
# unconstrained minimization of convex, single-variable
# function
res = fminbound(self.mixModelFn, 0.01, 0.99,
args=(a0, a1), xtol=1e-02)
if optProp:
# return the optimal proportion
return res
else:
# return the corresponding log likelihood function value
return self.mixModelFn(res, a0, a1)
# Try bias-corrected, accelerated quantiles for bootstrap confidence
# intervals
def bcaQuantile(self, estimate, bootDist, data, mu0, mu1, nSamples, n):
tmp = sum(y <= estimate for y in bootDist) / float(nSamples + 1)
if tmp > 0 and tmp < 1:
# bias correction
z0 = s.norm.ppf(tmp)
# acceleration
x = np.zeros(n)
for i in range(n):
x[i] = self.estimateSingleFraction(
mu1, np.delete(data, i), mu0, n - 1)
xbar = np.mean(x)
denom = np.power(np.sum(np.power(x - xbar, 2)), 1.5)
if abs(denom) < 1e-4:
q1 = 2.5
q2 = 97.5
else:
a = np.divide(np.sum(np.power(x - xbar, 3)), denom) / 6.0
# quantiles: (k1 and k2 are defined globally)
q1 = 100 * s.norm.cdf(z0 + (z0 + k1) / (1 - a * (z0 + k1)))
q2 = 100 * s.norm.cdf(z0 + (z0 + k2) / (1 - a * (z0 + k2)))
elif tmp == 0.0:
q1 = 0
q2 = 0
elif tmp == 1.0:
q1 = 100
q2 = 100
return (q1, q2)
# Bootstraps mix prop estimates to return estimate and simple bounds for
# 95% confidence interval
def bootstrap(self, pos, mu0, mu1, nSamples=500):
if pos not in self.rawKinetics:
return np.array([float('nan'), float('nan'), float('nan')])
res = np.zeros(3)
sample = self.rawKinetics[pos]["rawData"]
L = len(sample)
X = np.zeros(nSamples + 1)
res[0] = self.estimateSingleFraction(mu1, sample, mu0, L)
X[nSamples] = res[0]
for i in range(nSamples):
bootstrappedSamples = sample[s.randint.rvs(0, L - 1, size=L)]
X[i] = self.estimateSingleFraction(
mu1, bootstrappedSamples, mu0, L)
q1, q2 = self.bcaQuantile(
res[0], X, sample, mu0, mu1, (nSamples + 1), L)
res[1] = np.percentile(X, q1)
res[2] = np.percentile(X, q2)
return res
# Returns [estimate, 95% CI lower bnd, 95% CI upper bound] using a weighted sum
# The hope is that this would work better for a multi-site signature, such
# as m5C_TET
def estimateMethylatedFractions(
self, pos, meanVector, modMeanVector, maskPos):
maskPos = np.array(maskPos)
L = len(maskPos)
if L == 0:
res = self.bootstrap(
pos, meanVector[self.post], modMeanVector[self.post])
else:
est = np.zeros(L)
low = np.zeros(L)
upp = np.zeros(L)
res = np.zeros(3)
wts = np.zeros(L)
# for offset in maskPos:
for count in range(L):
offset = maskPos[count]
mu0 = meanVector[self.post + offset]
mu1 = modMeanVector[self.post + offset]
if mu1 > mu0:
k = self.bootstrap((pos + offset), mu0, mu1)
wts[count] = k[0] * (mu1 - mu0)
est[count] = k[0]
low[count] = k[1]
upp[count] = k[2]
if sum(wts) > 1e-3:
wts = wts / sum(wts)
res[0] = np.multiply(est, wts).sum()
res[1] = np.multiply(low, wts).sum()
res[2] = np.multiply(upp, wts).sum()
# print str(res)
return res
# Return the optimal mixing proportion in the detection case: estimate
# both p and mu1
def optimalMixProportion(self, data, mu0, L):
# mistake: want a function that returns optimum likelihood function
# value, not optimizing proportion
mu1 = fminbound(self.estimateSingleFraction, mu0, 10.0 *
mu0, args=(data, mu0, L, False), xtol=1e-01)
return self.estimateSingleFraction(mu1, data, mu0, L)
# Bootstraps mix prop estimates to return estimate and simple bounds for
# 95% confidence interval
def detectionMixModelBootstrap(self, modelPrediction, data, nSamples=100):
# Case-resampled bootstrapped estimates:
L = len(data)
res = np.zeros(4)
res[0] = self.optimalMixProportion(data, modelPrediction, L)
X = np.zeros(nSamples + 1)
X[nSamples] = res[0]
for i in range(nSamples):
resampledData = [data[j] for j in s.randint.rvs(0, L - 1, size=L)]
X[i] = self.optimalMixProportion(resampledData, modelPrediction, L)
# A very basic way to estimate the 95% confidence interval:
res[1] = np.percentile(X, 2.5)
res[2] = np.percentile(X, 97.5)
# Estimate a weight:
# weight = np.maximum( (x[1] - modelPrediction), 0 )
res[3] = 1.0
return res
# Everything below here is unused for now:
# Return second derivative of mixture model log likelihood function -
# unused for now
def mixModelFnPrime2(self, p, a0, a1):
tmp = np.square((1 - p) * a0 + p * a1)
nonzero_indices = np.nonzero(tmp)
return np.divide(np.square(a1 - a0)
[nonzero_indices], tmp[nonzero_indices]).sum()
# Return third derivative of mixture model log likelihood function -
# unused for now
def mixModelFnPrime3(self, p, a0, a1):
tmp = np.power((1 - p) * a0 + p * a1, 3)
nonzero_indices = np.nonzero(tmp)
return -np.divide(np.power(a1 - a0, 3)
[nonzero_indices], tmp[nonzero_indices]).sum()
# Try removing very large values before case resampling for bootstrap
# estimation - unused for now
def processSample(self, sample):
q1 = np.percentile(sample, 25)
q2 = np.percentile(sample, 75)
iqr = 1.5 * (q2 - q1)
uif = q2 + iqr
lif = q1 - iqr
def removeBoxplotOutliers(x):
if (x > lif) and (x < uif):
return x
return filter(removeBoxplotOutliers, sample)
# Return derivative of mixture model log likelihood function -- unused for
# now
def mixModelFnPrime(self, p, a0, a1):
tmp = (1 - p) * a0 + p * a1
nonzero_indices = np.nonzero(tmp)
return -np.divide((a1 - a0)[nonzero_indices],
tmp[nonzero_indices]).sum()
# unconstrained minimization of convex, single-variable function - unused for now
# much slower than fminbound
def homeMadeMinimization(self, a0, a1, low, up, xtol=1e-02, maxIters=500):
nIters = 0
while (up - low) > xtol and nIters < maxIters:
p0 = (up - low) / 2.0
if self.mixModelFnPrime(p0, a0, a1) <= 0:
low = p0
else:
up = p0
nIters += 1
return p0
|