1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
from math import sqrt
import math
import scipy.stats as s
import array as a
from scipy.optimize import fminbound
from scipy.special import gammaln as gamln
from numpy import log, pi, log10, e, log1p, exp
import numpy as np
from .MultiSiteCommon import MultiSiteCommon, canonicalBaseMap, modNames, ModificationPeakMask, FRAC, FRAClow, FRACup, log10e
from .MixtureEstimationMethods import MixtureEstimationMethods
class ModificationDecode(MultiSiteCommon):
def __init__(self, gbmModel, sequence, rawKinetics, callBounds, methylMinCov, modsToCall=[
'H', 'J', 'K'], methylFractionFlag=False, useLDAFlag=False):
MultiSiteCommon.__init__(self, gbmModel, sequence, rawKinetics)
# Extents that we will attemp to call a modification
self.callStart = callBounds[0]
self.callEnd = callBounds[1]
self.callRange = range(self.callStart, self.callEnd)
self.methylMinCov = methylMinCov
self.modsToCall = modsToCall
self.methylFractionFlag = methylFractionFlag
self.useLDA = useLDAFlag
def decode(self):
"""Use this method to do the full modification finding protocol"""
# Find potential modification sites
self.findAlternates()
# Compute all the required mean ipds under all possible composite
# hypotheses
self.computeContextMeans()
# Fill out the forward matrix
self.fwdRecursion()
# Trace back the fwd matrix and return modification calls
modCalls = self.traceback()
# Compute a confidence for each mod and return results
return self.scoreMods(modCalls)
def findAlternates(self):
""" Use rules about where IPD peaks appear to generate list
the set of possible modified bases that we will test during decoding."""
scoreThresholdLow = 16
scoreThresholdHigh = 19
seq = self.sequence
for (pos, peak) in self.rawKinetics.items():
score = peak['score']
# if self.useLDA:
# Try using LDA model to identify putative Ca5C, regardless of scores
# if peak.has_key('Ca5C'):
# if peak['Ca5C'] < 0:
# self.alternateBases[pos].add('K')
# Exclude points with low score
if score < scoreThresholdLow:
continue
# note -- don't use the tpl in the actual array - use the dict key
# we have reversed the indexing to deal with the reverse strand
if self.callStart <= pos < self.callEnd:
c = seq[pos]
# On-target A peak
if 'H' in self.modsToCall and c == 'A' and score > scoreThresholdHigh:
self.alternateBases[pos].add('H')
# On-target C peak
if 'J' in self.modsToCall and c == 'C' and score > scoreThresholdHigh:
self.alternateBases[pos].add('J')
if 'K' in self.modsToCall:
if c == 'C':
self.alternateBases[pos].add('K')
# peak at -1 or -2 or -6 of a C -- 5caC
if seq[pos - 2] == 'C' and pos - 2 >= self.callStart:
self.alternateBases[pos - 2].add('K')
if seq[pos + 1] == 'C' and pos + 1 < self.callEnd:
self.alternateBases[pos + 1].add('K')
if seq[pos + 2] == 'C' and pos + 2 < self.callEnd:
self.alternateBases[pos + 2].add('K')
if seq[pos + 5] == 'C' and pos + 5 < self.callEnd:
self.alternateBases[pos + 5].add('K')
if seq[pos + 6] == 'C' and pos + 6 < self.callEnd:
self.alternateBases[pos + 6].add('K')
def fwdRecursion(self):
start = self.lStart
end = self.lEnd
# Likelihood of each configuration at each position
scores = dict()
# fwd score matrix and fwd lookback matrix
fwdScore = dict()
fwdPrevState = dict()
# Fill out first column of score & fwd matrix
scores[start] = dict((cfg, self.scorePosition(start, cfg))
for cfg in self.getConfigs(start))
# First column of fwd matrix is same a score matrix, with 'None' in the
# index matrix
fwdScore[start] = scores[start]
fwdPrevState[start] = dict((x, None) for x in scores[start].keys())
for centerPos in range(start + 1, end):
# Score and fwd column for current position
scoreCol = dict()
fwdScoreCol = dict()
fwdPrevStateCol = dict()
# Loop over current state options
for cfg in self.getConfigs(centerPos):
score = self.scorePosition(centerPos, cfg)
scoreCol[cfg] = score
bestPrevState = None
bestScore = -1e20
# Loop over previous state options
for (prevCfg, prevScore) in fwdScore[centerPos - 1].items():
if self.compareStates(
cfg, prevCfg) and prevScore + score > bestScore:
bestScore = prevScore + score
bestPrevState = prevCfg
fwdScoreCol[cfg] = bestScore
fwdPrevStateCol[cfg] = bestPrevState
scores[centerPos] = scoreCol
fwdScore[centerPos] = fwdScoreCol
fwdPrevState[centerPos] = fwdPrevStateCol
self.fwdScore = fwdScore
self.fwdPrevState = fwdPrevState
self.scores = scores
def traceback(self):
"""
Traceback the fwd matrix to get the bset scoring configuration of modifications
"""
start = self.lStart
end = self.lEnd
modCalls = dict()
def cogBase(cfg):
return cfg[self.pre]
pos = end - 1
currentCol = self.fwdScore[end - 1]
bestConfig = max(currentCol, key=lambda x: currentCol[x])
while True:
if cogBase(bestConfig) != self.sequence[pos]:
# Found a modification - save it!
modCalls[pos] = cogBase(bestConfig)
bestConfig = self.fwdPrevState[pos][bestConfig]
pos -= 1
if bestConfig is None:
break
# if self.useLDA:
# allow LDA-predicted sites through to GFF file
# for pos in range(start, end):
# if self.rawKinetics.has_key(pos):
# if self.rawKinetics[pos].has_key('Ca5C'):
# if 'K' in self.modsToCall:
# cutoff = min( 0, self.rawKinetics[pos]['coverage']/20.0 - 3.0 )
# cutoff = 0
# echoSites = [modCalls[pos + i] for i in [-6, -5, -2, -1, 2] if modCalls.has_key(pos + i)]
# else:
# cutoff = -2.25
# echoSites = [modCalls[pos + i] for i in range(-10,11) if modCalls.has_key(pos + i)]
# if self.rawKinetics[pos]['Ca5C'] < cutoff:
# so long as those sites are not in the vicinity of a m6A/m4C call
# if 'H' not in echoSites and 'J' not in echoSites:
# modCalls[pos] = 'K'
# else:
# remove any non-LDA-predicted sites from modCalls dictionary?
# if modCalls.has_key(pos):
# del modCalls[pos]
# correct adjacent calls:
# if self.useLDA:
# for pos in range(start + 2, end - 2, 2 ):
# x = [pos + i for i in range(-2,3) if modCalls.has_key( pos + i) and self.rawKinetics.has_key( pos + i) ]
# y = [modCalls[j] for j in x]
# if y.count('K') > 1:
# tmp = [self.rawKinetics[j]['Ca5C'] for j in x if self.rawKinetics[j].has_key('Ca5C') ]
# if len(tmp) > 0:
# lowest = min(tmp)
# for j in x:
# if self.rawKinetics[j].has_key('Ca5C'):
# if self.rawKinetics[j]['Ca5C'] > lowest:
# del modCalls[j]
#
# if adjacent m5C calls are made by the LDA, select the one that has the lower LDA score (Ca5C)
# for pos in range(start, end):
# if modCalls.has_key(pos) and self.rawKinetics.has_key(pos) and modCalls.has_key(pos+1) and self.rawKinetics.has_key(pos+1):
# if self.rawKinetics[pos].has_key('Ca5C') and self.rawKinetics[pos+1].has_key('Ca5C'):
# if self.rawKinetics[pos]['Ca5C'] < self.rawKinetics[pos+1]['Ca5C']:
# del modCalls[pos+1]
# else:
# del modCalls[pos]
return modCalls
def scoreMods(self, modCalls):
"""
For each modification in the best scoring configuration, score a config excluding the current mod against the winning config
use this value as the Qmod for the deleted modification
"""
qvModCalls = dict()
modSeq = a.array('b')
modSeq.frombytes(bytes(self.sequence, "ascii"))
# Apply the found modifications to the raw sequence
for (pos, call) in modCalls.items():
modSeq[pos] = ord(call)
for (pos, call) in modCalls.items():
# Score the modified template at all positions affected by this mod
modScore = self.scoreRegion(
pos - self.post, pos + self.pre, modSeq)
modScores = self.getRegionScores(
pos - self.post, pos + self.pre, modSeq)
if self.methylFractionFlag and pos in self.rawKinetics:
if self.rawKinetics[pos]["coverage"] > self.methylMinCov:
modifiedMeanVectors = self.getContextMeans(
pos - self.post, pos + self.pre, modSeq)
# Switch back to the unmodified base and re-score
modSeq[pos] = ord(canonicalBaseMap[call])
noModScore = self.scoreRegion(
pos - self.post, pos + self.pre, modSeq)
noModScores = self.getRegionScores(
pos - self.post, pos + self.pre, modSeq)
if self.methylFractionFlag and pos in self.rawKinetics:
if self.rawKinetics[pos]["coverage"] > self.methylMinCov:
unModifiedMeanVectors = self.getContextMeans(
pos - self.post, pos + self.pre, modSeq)
# Put back the modified base
modSeq[pos] = ord(call)
# Compute score difference
llr = modScore - noModScore
# Convert from LLR to phred-scaled probability of modification
qModScore = 10 * llr * log10e + 10 * log1p(exp(-llr)) * log10e
# Figure out which secondary peaks were likely generated by this modification
# What is the posterior that the peak was generated by this mod?
maskPos = self.findMaskPositions(pos, modScores, noModScores)
# FIXME: Without this, currently, the identificationQv score is too low for many Ca5C sites
# if self.useLDA:
# if self.rawKinetics.has_key(pos):
# if self.rawKinetics[pos].has_key('Ca5C'):
# llr = -self.rawKinetics[pos]['Ca5C']
# qModScore = 100 * llr * log10e + 100*log1p(exp(-llr))*log10e
if self.methylFractionFlag and pos in self.rawKinetics:
if self.rawKinetics[pos]["coverage"] > self.methylMinCov:
# Instantiate mixture estimation methods:
mixture = MixtureEstimationMethods(
self.gbmModel.post, self.gbmModel.pre, self.rawKinetics, self.methylMinCov)
# Use modifiedMeanVectors and unmodifiedMeanVectors to
# calculate mixing proportion, and 95% CI limits.
methylFracEst, methylFracLow, methylFracUpp = mixture.estimateMethylatedFractions(
pos, unModifiedMeanVectors, modifiedMeanVectors, ModificationPeakMask[modNames[call]])
qvModCalls[pos] = {'modification': modNames[call], 'QMod': qModScore, 'LLR': llr, 'Mask': maskPos,
FRAC: methylFracEst, FRAClow: methylFracLow, FRACup: methylFracUpp}
else:
qvModCalls[pos] = {'modification': modNames[call],
'QMod': qModScore, 'LLR': llr, 'Mask': maskPos}
else:
# Store the full results
qvModCalls[pos] = {'modification': modNames[call],
'QMod': qModScore, 'LLR': llr, 'Mask': maskPos}
return qvModCalls
def scoreRegion(self, start, end, sequence):
sc = 0.0
for pos in range(start, end + 1):
ctx = sequence[(pos - self.pre):(pos + self.post + 1)
].tobytes().decode("ascii")
if pos in self.scores:
sc += self.scores[pos][ctx]
return sc
def getRegionScores(self, start, end, sequence):
scores = np.zeros(end - start + 1)
for pos in range(start, end + 1):
ctx = sequence[(pos - self.pre):(pos + self.post + 1)
].tobytes().decode("ascii")
if pos in self.scores:
scores[pos - start] = self.scores[pos][ctx]
return scores
def findMaskPositions(self, pos, modScores, noModScores):
maskPos = []
start = pos - self.post
end = pos + self.pre
for i in range(start, end + 1):
# Add a neighboring peak to the mask if
# a) it has a single-site qv > 20
# b) the observed IPDs are somewhat more likely under the modified
# hypothesis than the unmodified hypothesis
if i in self.rawKinetics and self.rawKinetics[i]["score"] > 20:
if modScores[i - start] - noModScores[i - start] > 1.0:
maskPos.append(i - pos)
return maskPos
def compareStates(self, current, prev):
return current[0:-1] == prev[1:]
|