1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
from importlib import resources
import logging
import gzip
import os.path as op
import os
import re
import numpy as np
import ctypes as C
from kineticsTools.sharedArray import SharedArray
# XXX can this vary?
LINUX_SO_FILE = "tree_predict.cpython-37m-x86_64-linux-gnu.so"
byte = np.dtype('byte')
uint8 = np.dtype('uint8')
# Map for ascii encoded bases to integers 0-3 -- will be used to define a 24-bit lookup code
# for fetching predicted IPDs from the kinetic LUT.
# We start everything at 0, so anything will map to 'A' unless it appears
# in this table
lutCodeMap = np.zeros(256, dtype=uint8)
maps = {'a': 0, 'A': 0, 'c': 1, 'C': 1, 'g': 2, 'G': 2, 't': 3, 'T': 3}
for k in maps:
lutCodeMap[ord(k)] = maps[k]
lutReverseMap = {0: 'A', 1: 'C', 2: 'G', 3: 'T'}
seqCodeMap = np.ones(256, dtype=uint8) * 4
for k in maps:
seqCodeMap[ord(k)] = maps[k]
seqMap = {0: 'A', 1: 'C', 2: 'G', 3: 'T', 4: 'N'}
seqMapNp = np.array(['A', 'C', 'G', 'T', 'N'])
seqMapComplement = {0: 'T', 1: 'G', 2: 'C', 3: 'A', 4: 'N'}
seqMapComplementNp = np.array(['T', 'G', 'C', 'A', 'N'])
# Base letters for modification calling
# 'H' : m6A, 'I' : m5C, 'J' : m4C, 'K' : m5C/TET
baseToCode = {'N': 0, 'A': 0, 'C': 1, 'G': 2,
'T': 3, 'H': 4, 'I': 5, 'J': 6, 'K': 7}
baseToCanonicalCode = {'N': 0, 'A': 0, 'C': 1,
'G': 2, 'T': 3, 'H': 0, 'I': 1, 'J': 1, 'K': 1}
codeToBase = dict([(y, x) for (x, y) in baseToCode.items()])
def _getAbsPath(fname):
try:
with resources.as_file(resources.files('kineticsTools') / fname) as path:
return str(path)
except:
return os.path.join(os.path.dirname(__file__), path)
class GbmContextModel(object):
"""
Class for computing ipd predictions on contexts. Evaluate the GBM tree model for a list of contexts
Contexts may contain arbitrary combinations of modified bases
"""
def __init__(self, modelH5Group, modelIterations=-1):
# This will hold the ctypes function pointer
# It will be lazily initialized
self.nativeInnerPredict = None
self.nativeInnerPredictCtx = None
def ds(name):
return modelH5Group[name][:]
self.varNames = [v.decode("ascii") for v in ds("VarNames")]
self.modFeatureIdx = dict((int(self.varNames[x][1:]), x) for x in range(
len(self.varNames)) if self.varNames[x][0] == 'M')
self.canonicalFeatureIdx = dict((int(self.varNames[x][1:]), x) for x in range(
len(self.varNames)) if self.varNames[x][0] == 'R')
self.pre = 10
self.post = 4
self.ctxSize = self.pre + self.post + 1
self.splitVar = ds("Variables")
self.leftNodes = ds("LeftNodes")
self.rightNodes = ds("RightNodes")
self.missingNodes = ds("MissingNodes")
self.splitVar16 = self.splitVar.astype(np.int16)
self.splitCodes = ds("SplitCodes").astype(np.float32)
self.cSplits = ds("CSplits")
self.maxCSplits = self.cSplits.shape[1]
self.initialValue = ds("InitialValue").astype(np.float32)[0]
exp = 2 ** np.arange(self.cSplits.shape[1] - 1, -1, -1)
self.bSplits = ((self.cSplits > 0) * exp).sum(1)
# total number of trees in model
self.nTrees = self.splitVar.shape[0]
self.treeSize = self.splitVar.shape[1]
offsets = np.floor(np.arange(0, self.leftNodes.size) /
self.treeSize) * self.treeSize
offsets = offsets.astype(np.int32)
self.leftNodesOffset = self.leftNodes.flatten().astype(np.int32) + offsets
self.rightNodesOffset = self.rightNodes.flatten().astype(np.int32) + offsets
self.missingNodesOffset = self.missingNodes.flatten().astype(np.int32) + offsets
self.splitCodesCtx = self.splitCodes.copy().flatten()
splitCodesCtxView = self.splitCodesCtx.view()
splitCodesCtxView.dtype = np.uint32
# Pack the cSplits as a bit array directly into the splitCode array
# using an uin32 view of the splitCode array
flatSplitVar = self.splitVar.flatten()
powOfTwo = 2 ** np.arange(self.maxCSplits)
for i in range(self.splitCodesCtx.shape[0]):
if flatSplitVar[i] != -1:
# This is a pointer to a cSplit row -- pack the csplit into a unit32, then overwirte
# this slot of the ctxSplitCodes
cs = self.cSplits[int(self.splitCodesCtx[i]), :]
v = (powOfTwo * (cs > 0)).sum()
splitCodesCtxView[i] = v
# If the user has requested fewer iterations, update nTrees
if modelIterations > 0:
self.nTrees = modelIterations
def _initNativeTreePredict(self):
"""
Initialization routine the C tree-predict method
Needs to be invoked lazily because the native function pointer cannot be pickled
"""
dll_path = op.dirname(_getAbsPath(LINUX_SO_FILE))
if os.path.exists(dll_path):
self._lib = np.ctypeslib.load_library("tree_predict", dll_path)
else:
raise ImportError(
"can't find tree_predict.so at '{}'".format(dll_path))
lpb = self._lib
lpb.init_native.argtypes = [C.c_int]
fp = C.POINTER(C.c_float)
fpp = C.POINTER(fp)
ip = C.POINTER(C.c_int)
sp = C.POINTER(C.c_int16)
ui64p = C.POINTER(C.c_uint64)
args = [fp, fpp, C.c_int, ip, ip, ip, fp, ip,
ip, ip, C.c_float, C.c_int, C.c_int, C.c_int]
lpb.innerPredict.argtypes = args
self.nativeInnerPredict = lpb.innerPredict
# Fast version
# void innerPredictCtx(
# int ctxSize, float radPredF[], uint64_t contextPack[], int cRows,
# int16 left[], int16 right[], int16 missing[], float splitCode[], int16 splitVar[],
# int varTypes[], float initialValue, int treeSize, int numTrees, int maxCSplitSize)
args = [C.c_int, fp, ui64p, C.c_int, ip, ip, ip, fp,
sp, ip, C.c_float, C.c_int, C.c_int, C.c_int]
lpb.innerPredictCtx.argtypes = args
self.nativeInnerPredictCtx = lpb.innerPredictCtx
def getPredictionsSlow(self, ctxStrings, nTrees=None):
"""Compute IPD predictions for arbitrary methylation-containing contexts."""
# C prototype that we call:
# void innerPredict(
# float[] radPredF,
# IntPtr[] dataMatrix,
# int cRows, int[] left, int[] right, int[] missing,
# float[] splitCode, int[] splitVar, int[] cSplits,
# int[] varTypes, float initialValue,
# int treeSize, int numTrees, int maxCSplitSize);
# Make sure native library is initialized
if self.nativeInnerPredict is None:
self._initNativeTreePredict()
def fp(arr):
return arr.ctypes.data_as(C.POINTER(C.c_float))
def ip(arr):
return arr.ctypes.data_as(C.POINTER(C.c_int))
if nTrees is None:
nTrees = self.nTrees
n = len(ctxStrings)
mCols = [np.zeros(n, dtype=np.float32) for x in range(self.ctxSize)]
rCols = [np.zeros(n, dtype=np.float32) for x in range(self.ctxSize)]
for stringIdx in range(len(ctxStrings)):
s = ctxStrings[stringIdx]
for i in range(len(s)):
mCols[i][stringIdx] = baseToCode[s[i]]
rCols[i][stringIdx] = baseToCanonicalCode[s[i]]
dataPtrs = (C.POINTER(C.c_float) * (2 * self.ctxSize))()
varTypes = np.zeros(2 * self.ctxSize, dtype=np.int32)
for i in range(self.ctxSize):
dataPtrs[self.modFeatureIdx[i]] = mCols[i].ctypes.data_as(
C.POINTER(C.c_float))
dataPtrs[self.canonicalFeatureIdx[i]
] = rCols[i].ctypes.data_as(C.POINTER(C.c_float))
varTypes[self.modFeatureIdx[i]] = 8
varTypes[self.canonicalFeatureIdx[i]] = 4
self.predictions = np.zeros(len(ctxStrings), dtype=np.float32)
self.nativeInnerPredict(
fp(self.predictions), dataPtrs,
n, ip(self.leftNodes), ip(self.rightNodes), ip(self.missingNodes),
fp(self.splitCodes), ip(self.splitVar), ip(self.cSplits),
ip(varTypes), self.initialValue, self.treeSize, nTrees, self.maxCSplits)
return np.exp(self.predictions)
def getPredictions(self, ctxStrings, nTrees=None):
"""Compute IPD predictions for arbitrary methylation-containing contexts."""
# C prototype that we call:
# void innerPredictCtx(
# int ctxSize, float[] radPredF,
# int[] contextPack,
# int cRows, int[] left, int[] right, int[] missing,
# float[] splitCode, int[] splitVar,
# int[] varTypes, float initialValue,
# int treeSize, int numTrees, int maxCSplitSize);
# Make sure native library is initialized
if self.nativeInnerPredictCtx is None:
self._initNativeTreePredict()
def fp(arr):
return arr.ctypes.data_as(C.POINTER(C.c_float))
def ip(arr):
return arr.ctypes.data_as(C.POINTER(C.c_int))
def ulp(arr):
return arr.ctypes.data_as(C.POINTER(C.c_uint64))
def sp(arr):
return arr.ctypes.data_as(C.POINTER(C.c_int16))
n = len(ctxStrings)
if nTrees is None:
nTrees = self.nTrees
packCol = np.zeros(n, dtype=np.uint64)
for stringIdx in range(len(ctxStrings)):
s = ctxStrings[stringIdx] # .strip().strip('\x00')
code = 0
for i in range(len(s)):
modBits = baseToCode[s[i]]
slotForPosition = self.modFeatureIdx[i]
code = code | (modBits << (4 * slotForPosition))
packCol[stringIdx] = code
# print packed base codes
# for v in packCol.flatten():
# print v
# for i in np.arange(12):
# print "%d: %o" % (i, (v.item() >> (5*i)) & 0x1f)
varTypes = np.zeros(2 * self.ctxSize, dtype=np.int32)
for i in range(self.ctxSize):
varTypes[self.modFeatureIdx[i]] = 8
varTypes[self.canonicalFeatureIdx[i]] = 4
self.predictions = np.zeros(len(ctxStrings), dtype=np.float32)
self.nativeInnerPredictCtx(
self.ctxSize, fp(self.predictions), ulp(packCol),
n, ip(self.leftNodesOffset), ip(
self.rightNodesOffset), ip(self.missingNodesOffset),
fp(self.splitCodesCtx), sp(self.splitVar16),
ip(varTypes), self.initialValue, self.treeSize, nTrees, self.maxCSplits)
return np.exp(self.predictions)
class IpdModel:
"""
Predicts the IPD of an any context, possibly containing multiple modifications.
We use a 4^12 entry LUT to get the predictions for contexts without modifications,
then we use the GbmModel to get predictions in the presence of arbitrary mods.
Note on the coding scheme. For each contig we store a byte-array that has size = contig.length + 2*self.pad
The upper 4 bits contain a lookup into seqReverseMap, which can contains N's. This is used for giving
template snippets that may contains N's if the reference sequence does, or if the snippet
The lowe 4 bits contain a lookup into lutReverseMap, which
"""
def __init__(self, fastaRecords, modelFile, modelIterations=-1):
"""
Load the reference sequences and the ipd lut into shared arrays that can be
used as numpy arrays in worker processes.
fastaRecords is a list of FastaRecords, in the alignments file order
"""
self.pre = 10
self.post = 4
self.pad = 30
self.base4 = 4 ** np.array(range(self.pre + self.post + 1))
self.refDict = {}
self.refLengthDict = {}
for contig in fastaRecords:
if contig.alignmentID is None:
# This contig has no mapped reads -- skip it
continue
rawSeq = contig.sequence[:]
refSeq = np.frombuffer(rawSeq.encode("utf-8"), dtype=byte)
# Store the reference length
self.refLengthDict[contig.alignmentID] = len(rawSeq)
# Make a shared array
sa = SharedArray(dtype='B', shape=len(rawSeq) + self.pad * 2)
saWrap = sa.getNumpyWrapper()
# Lut Codes convert Ns to As so that we don't put Ns into the Gbm Model
# Seq Codes leaves Ns as Ns for getting reference snippets out
innerLutCodes = lutCodeMap[refSeq]
innerSeqCodes = seqCodeMap[refSeq]
innerCodes = np.bitwise_or(
innerLutCodes, np.left_shift(innerSeqCodes, 4))
saWrap[self.pad:(len(rawSeq) + self.pad)] = innerCodes
# Padding codes -- the lut array is padded with 0s the sequence
# array is padded with N's (4)
outerCodes = np.left_shift(np.ones(self.pad, dtype=uint8) * 4, 4)
saWrap[0:self.pad] = outerCodes
saWrap[(len(rawSeq) + self.pad):(len(rawSeq) + 2 * self.pad)] = outerCodes
self.refDict[contig.alignmentID] = sa
# No correction factor for IPDs everything is normalized to 1
self.meanIpd = 1
# Find and open the ipd model file
self.lutPath = modelFile
if os.path.exists(self.lutPath):
with gzip.open(self.lutPath, "rb") as npz_in:
gbmModelData = np.load(npz_in, allow_pickle=True)
self.gbmModel = GbmContextModel(gbmModelData, modelIterations)
# We always use the model -- no more LUTS
self.predictIpdFunc = self.predictIpdFuncModel
self.predictManyIpdFunc = self.predictManyIpdFuncModel
else:
logging.info("Couldn't find model file: %s" % self.lutPath)
def _loadIpdTable(self, nullModelGroup):
"""
Read the null kinetic model into a shared numpy array dataset
"""
nullModelDataset = nullModelGroup["KineticValues"]
# assert that the dataset is a uint8
assert(nullModelDataset.dtype == uint8)
# Construct a 'shared array' (a numpy wrapper around some shared memory
# Read the LUT into this table
self.sharedArray = SharedArray('B', nullModelDataset.shape[0])
lutArray = self.sharedArray.getNumpyWrapper()
nullModelDataset.read_direct(lutArray)
# Load the second-level LUT
self.floatLut = nullModelGroup["Lut"][:]
def refLength(self, refId):
return self.refLengthDict[refId]
def cognateBaseFunc(self, refId):
"""
Return a function that returns a snippet of the reference sequence around a given position
"""
# FIXME -- what is the correct strand to return?!
# FIXME -- what to do about padding when the snippet runs off the end of the reference
# how do we account for / indicate what is happening
refArray = self.refDict[refId].getNumpyWrapper()
def f(tplPos, tplStrand):
# skip over the padding
tplPos += self.pad
# Forward strand
if tplStrand == 0:
slc = refArray[tplPos]
slc = np.right_shift(slc, 4)
return seqMap[slc]
# Reverse strand
else:
slc = refArray[tplPos]
slc = np.right_shift(slc, 4)
return seqMapComplement[slc]
return f
def snippetFunc(self, refId, pre, post):
"""
Return a function that returns a snippet of the reference sequence around a given position
"""
refArray = self.refDict[refId].getNumpyWrapper()
def f(tplPos, tplStrand):
"""Closure for returning a reference snippet. The reference is padded with N's for bases falling outside the extents of the reference"""
# skip over the padding
tplPos += self.pad
# Forward strand
if tplStrand == 0:
slc = refArray[(tplPos - pre):(tplPos + 1 + post)]
slc = np.right_shift(slc, 4)
return "".join(c for c in seqMapNp[slc])
# Reverse strand
else:
slc = refArray[(tplPos + pre):(tplPos - post - 1):-1]
slc = np.right_shift(slc, 4)
return "".join(c for c in seqMapComplementNp[slc])
return f
def getReferenceWindow(self, refId, tplStrand, start, end):
"""
Return a snippet of the reference sequence
"""
refArray = self.refDict[refId].getNumpyWrapper()
# adjust position for reference padding
start += self.pad
end += self.pad
# Forward strand
if tplStrand == 0:
slc = refArray[start:end]
slc = np.right_shift(slc, 4)
return "".join(seqMap[x] for x in slc)
# Reverse strand
else:
slc = refArray[end:start:-1]
slc = np.right_shift(slc, 4)
return "".join(seqMapComplement[x] for x in slc)
def predictIpdFuncLut(self, refId):
"""
Each (pre+post+1) base context gets mapped to an integer
by converting each nucleotide to a base-4 number A=0, C=1, etc,
and treating the 'pre' end of the context of the least significant
digit. This code is used to lookup the expected IPD in a
pre-computed table. Contexts near the ends of the reference
are coded by padding the context with 0
"""
# Materialized the numpy wrapper around the shared data
refArray = self.refDict[refId].getNumpyWrapper()
lutArray = self.sharedArray.getNumpyWrapper()
floatLut = self.floatLut
def f(tplPos, tplStrand):
# skip over the padding
tplPos += self.pad
# Forward strand
if tplStrand == 0:
slc = np.bitwise_and(
refArray[(tplPos + self.pre):(tplPos - self.post - 1):-1], 0xf)
# Reverse strand
else:
slc = 3 - \
np.bitwise_and(
refArray[(tplPos - self.pre):(tplPos + 1 + self.post)], 0xf)
code = (self.base4 * slc).sum()
return floatLut[max(1, lutArray[code])]
return f
def predictIpdFuncModel(self, refId):
"""
Each (pre+post+1) base context gets mapped to an integer
by converting each nucleotide to a base-4 number A=0, C=1, etc,
and treating the 'pre' end of the context of the least significant
digit. This code is used to lookup the expected IPD in a
pre-computed table. Contexts near the ends of the reference
are coded by padding the context with 0
"""
# Materialized the numpy wrapper around the shared data
snipFunction = self.snippetFunc(refId, self.post, self.pre)
def f(tplPos, tplStrand):
# Get context string
context = snipFunction(tplPos, tplStrand)
# Get prediction
return self.gbmModel.getPredictions([context])[0]
return f
def predictManyIpdFuncModel(self, refId):
"""
Each (pre+post+1) base context gets mapped to an integer
by converting each nucleotide to a base-4 number A=0, C=1, etc,
and treating the 'pre' end of the context of the least significant
digit. This code is used to lookup the expected IPD in a
pre-computed table. Contexts near the ends of the reference
are coded by padding the context with 0
"""
# Materialized the numpy wrapper around the shared data
snipFunction = self.snippetFunc(refId, self.post, self.pre)
def fMany(sites):
contexts = [snipFunction(x[0], x[1]) for x in sites]
return self.gbmModel.getPredictions(contexts)
return fMany
|