1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// Description:
// Fast GBM tree predict routintes
//
// Author: Patrick Marks (pmarks@pacificbiosciences.com)
//
#include <assert.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
int init_native(int a) { return 1; }
#ifndef isnan
inline bool isnan(double x) { return x != x; }
#endif
#ifndef min
inline int min(int x, int y) { return (x > y) ? y : x; }
#endif
/// <summary>
/// Walk the tree for each example, and sum up the leaf nodes. Emit the total
/// scores for each observation.
/// </summary>
void innerPredict(float radPredF[], float** dataMatrix, int nCtxs, int left[], int right[],
int missing[], float splitCode[], int splitVar[], int cSplits[], int varTypes[],
float initialValue, int treeSize, int numTrees, int maxCSplitSize)
{
int tStep = 50;
int obsStep = 60;
for (int i = 0; i < nCtxs; i++) {
radPredF[i] = initialValue;
}
for (int t0 = 0; t0 < numTrees; t0 += tStep) {
for (int obs0 = 0; obs0 < nCtxs; obs0 += obsStep) {
for (int t = t0; t < min(t0 + tStep, numTrees); t++) {
int offset = t * treeSize;
for (int iObs = obs0; iObs < min(obs0 + obsStep, nCtxs); iObs++) {
int iCurrentNode = 0;
while (splitVar[offset + iCurrentNode] != -1) {
float dX = dataMatrix[splitVar[offset + iCurrentNode]][iObs];
// missing?
if (isnan(dX)) {
iCurrentNode = missing[offset + iCurrentNode];
}
// continuous?
else if (varTypes[splitVar[offset + iCurrentNode]] == 0) {
if (dX < splitCode[offset + iCurrentNode]) {
iCurrentNode = left[offset + iCurrentNode];
} else {
iCurrentNode = right[offset + iCurrentNode];
}
} else // categorical
{
int iCatSplitIndicator =
cSplits[((int)splitCode[offset + iCurrentNode] * maxCSplitSize) +
(int)dX];
if (iCatSplitIndicator == -1) {
iCurrentNode = left[offset + iCurrentNode];
} else if (iCatSplitIndicator == 1) {
iCurrentNode = right[offset + iCurrentNode];
} else // categorical level not present in training
{
iCurrentNode = missing[offset + iCurrentNode];
}
}
}
radPredF[iObs] +=
(float)splitCode[offset + iCurrentNode]; // add the prediction
}
} // iObs
} // iTree
}
}
static uint32_t modToCanonicalMap[8] = {0, 1, 2, 3, 0, 1, 1, 1};
/// <summary>
/// Walk the tree for each example, and sum up the leaf nodes. Emit the total
/// scores for each observation.
/// </summary>
void innerPredictCtx(int ctxSize, float radPredF[], uint64_t contextPack[], int nCtxs, int left[],
int right[], int missing[], float splitCode[], int16_t splitVar[],
int varTypes[], float initialValue, int treeSize, int numTrees,
int maxCSplitSize)
{
// contextPack contains 24 3-bit numbers in feature order
uint32_t* uintSplitCode = (uint32_t*)splitCode;
int tStep = 20;
int obsStep = 1000;
for (int i = 0; i < nCtxs; i++) {
radPredF[i] = initialValue;
}
for (int t0 = 0; t0 < numTrees; t0 += tStep) {
for (int obs0 = 0; obs0 < nCtxs; obs0 += obsStep) {
for (int t = t0; t < min(t0 + tStep, numTrees); t++) {
int offset = t * treeSize;
for (int iObs = obs0; iObs < min(obs0 + obsStep, nCtxs); iObs++) {
uint64_t ctx = contextPack[iObs];
int currentNode = offset;
while (splitVar[currentNode] >= 0) {
int currentVar = splitVar[currentNode];
int ctxPos = currentVar;
// Canonical feature means feature over canonical bases A,C,G,T
int isCanonicalFeature = currentVar >= ctxSize;
if (isCanonicalFeature) ctxPos = currentVar - ctxSize;
// context is packed 4 bits per slot, lower 3 bits are the modified base code
uint32_t dX = (ctx >> (4 * ctxPos)) & 0x7;
if (isCanonicalFeature)
// Need the canonical base -- convert
// from the general base back to the canonical base
dX = modToCanonicalMap[dX];
// split code contains packed indicators for each categorical level
uint32_t splitPack = uintSplitCode[currentNode];
uint32_t ind = (splitPack >> dX) & 0x1;
if (ind == 0) {
// Left node comes precomputed with offset
currentNode = left[currentNode];
} else {
// Right node come precomputed with offset
currentNode = right[currentNode];
}
}
radPredF[iObs] += (float)splitCode[currentNode]; // add the prediction
}
} // iObs
} // iTree
}
}
|